Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции - Телекоммуникационные информационные системы - файл 1.doc


Лекции - Телекоммуникационные информационные системы
скачать (5202.5 kb.)

Доступные файлы (1):

1.doc5203kb.19.11.2011 23:10скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7   8   9   ...   12
Реклама MarketGid:
Загрузка...
1. Тематический план

    1. Темы лекций


  1. Классификация ТС.

  2. Телевещание. Системы персонального вызова, стандарты POCSAG, ERMES, FLEX.

  3. Транкинговые (зоновые) системы связи.

  4. Спутниковые системы мобильные связи. Спутниковые системы Internet.

  5. Системы сотовой связи (ССС): структура, принципы функционирования, стандарты. Пути повышения абонентской емкости сотовых систем связи. Обслуживание вызовов, эстафетная передача, роуминг.

  6. Аналоговые сотовые системы связи (стандарты AMPS, NMT-450); организация каналов.

  7. Цифровые сотовые системы связи стандарта GSM. Структура каналов. Идентификация, аутентификация. Сотовые системы связи стандарта IS-95 (CDMA). Каналы стандарта IS-95 (CDMA).

  8. Систем беспроводной связи, стандарт DECT.

  9. Проектирование сотовых систем связи.


2. Курс лекций

^

Классификация телекоммуникационных систем



Под телекоммуникационными системами (ТС) принято понимать структуры и средства, предназначенные для передачи больших объёмов информации (как правило, в цифровой форме) посредством специально проложенных линий связи или радиоэфира. При этом предполагается обслуживание значительного количества пользователей систем (от нескольких тысяч). Телекоммуникационные системы включают такие структуры передачи информации, как телевещание (коллективное, кабельное, спутниковое, сотовое), телефонные сети общего пользования (ТфОП), сотовые системы связи (в том числе макро- и микро- сотовые), системы персонального вызова, спутниковые системы связи и навигационное оборудование, волоконные сети передачи информации.

Следует отметить, что основным требованием к системам связи является отсутствие факта прерывания связи, но допускается некоторое ухудшение качества передаваемого сообщения и ожидание установления связи.
^

Типы телекоммуникационных систем


По назначению телекоммуникационные системы группируются следующим образом:

  • системы телевещания;

  • системы связи (в т.ч. персонального вызова);

  • компьютерные сети.

По типу используемой среды передачи информации:

  • кабельные (традиционные медные);

  • оптоволоконные;

  • эфирные;

  • спутниковые.

По способу передачи информации:

  • аналоговые;

  • цифровые.

Системы связи подразделяются по мобильности на:

  • стационарные (традиционные абонентские линии);

  • подвижные.

Подвижные системы связи подразделяются по принципу охвата зоны обслуживания:

  • на микросотовые - DECT;

  • сотовые - NMT-450, D-AMPS, GSM, CDMA;

  • транкинговые (макросотовые, зоновые) – TETRA, SmarTrunk;

  • спутниковые.
^

Системы телевещания


Системы телевещания (ТВ) по способу доставки сигнала и зоне охвата подразделяются на:

  • сети телевизионного приёма;

  • «кабельные» (систем коллективного телевизионного приёма (СКТП));

  • технологии беспроводного высокоскоростного распределения мультимедийной информации MMDS , MVDS и LMDS;

  • спутниковые.

Сети телевизионного приёма, исторически - самые первые ТС, доставляют сигнал к потребителю посредством ретрансляторов (релейных линий связи), охватывающих территорию России (густонаселенные регионы). Расстояние между ретрансляторами составляет порядка 40-80 км.

На современном этапе развитие техники коллективного телевизионного приёма связано с созданием систем кабельного телевидения (СКТ), каждая из которых может обслуживать до нескольких десятков тысяч абонентов. Использование таких систем позволяет решать вопросы обеспечения качественной доставки программ в районах со сложными условиями приёма, а также обеспечить передачу абонентам дополнительной информации - телетекстовой информации, каналы спутникового вещания.

Системы коллективного телевизионного приёма в зависимости от объёма охватываемых абонентов разделяют следующим образом:

  • системы коллективного телевизионного приёма;

  • крупные системы коллективного телевизионного приёма;

  • системы кабельного телевидения.

При этом принимается, что СКТП рассчитаны на обслуживание абонентов одного подъезда или здания, КСКТП - нескольких зданий, СКТ - большого жилого массива. К отличительным особенностям СКТ следует отнести также технико-экономическую целесообразность использования в них наряду с эфирным приёмом в стандартных каналах ТВ и радиовещания других видов программ (спутниковых, локальных видеостудий и пр.). Следует отметить, что необходимым условием успешного развития СКТ является выбор такой схемы построения, при которой можно использовать в качестве низших звеньев распределительных сетей линий КСКТП и СКТП без существенных переделок, иначе реализация СКТ в районах со сложившейся застройкой связана с большими дополнительными капитальными затратами.

Системы спутникового телевидения получили новое развитие в направлении создания недорогих установок индивидуального прие­ма программ спутникового телевидения. Трансляция программ те­левидения через системы спутникового телевизионного вещания (СТВ) оказалась экономически выгодной для небольших территории. По ряду энергетических параметров подходящим диапазоном частот является диапазон в области 12 ГГц: на этих частотах сравнительно невелики потери в осадках (в Европе изменение затухания из-за осадков не превышает 3,3 дБ в течение 99,9% времени, приемлемы размеры антенн (диаметром 2 м) с узкой диаграммой направленности, разработана сравнительно дешевая элементная база.

Для прямой трансляции телевизионных программ используют ге­остационарные спутники. Спутни­ки для передачи телевизионных программ делятся на:

  • спутники дальней связи для теле­фонной связи, передачи информации и передачи телевизионных про­грамм;

  • спутники перераспределения телевизионных программ, на­пример, на кабельные сети;

  • спутники для передачи программ те­левидения и радиовещания непосредственно на индивидуальные при­емники, ТВ-спутники: в английском обозначении DBS (спутник прямого вещания), в немецком обозначении SDE (спутник прямого приема);
^

Системы подвижной связи


Сотовые системы подвижной связи (СПС), сети персонального радиовызова (СПР) и системы спутниковой связи предназначены для передачи данных и обеспечения подвижных и стационарных объектов телефонной связью. Передача данных подвижному абоненту резко расширяет его возможности, посколь­ку, кроме телефонных, он может принимать телексные и факсимильные сообщения, различ­ного рода графическую информацию и пр. Увеличение объема информации требует сокращения времени на ее передачу и получение, в следствие чего наблюдается устой­чивый рост производства мобильных средств радиосвязи (пейджеров, сотовых радиотелефо­нов, спутниковых пользовательских терминалов).

Основное преимущество СПС: подвижная связь позволяет абоненту полу­чать услуги связи в любой точке в пределах зон действия наземных или спутниковых сетей; благодаря прогрессу в технологии производства средств связи созданы малогабаритные уни­версальные абонентские терминалы (AT). СПС представляют потребителям возможность выхода в те­лефонную сеть общего пользования (ТфОП), передачу компьютерных данных.

К сетям подвижной связи относятся: сети сотовой подвиж­ной связи (ССПС); сети транкинговой связи (СТС); сети персонального радиовызова (СПР); сети персональной спутниковой (мобильной) связи.
^

Сети сотовой подвижной связи


Среди современных телекоммуникационных средств наиболее стремительно развива­ются сети сотовой радиотелефонной связи. Их внедрение позволило решить проблему эко­номичного использования выделенной полосы радиочастот путем передачи сообщений на одних и тех же частотах, но в разных зонах (сотах) и увеличить пропускную способность телекоммуникационных се­тей. Свое название они получили в соответствии с сотовым принципом организации связи, согласно которому зона обслуживания делится на ячейки (соты).

Система сотовой связи - это сложная и гибкая техническая система, допускающая большое разнообразие по вариантам конфигурации и набору выполняемых функций. Она может обеспечивать передачу речи и других видов информации. Для передачи речи, в свою очередь, может быть реали­зована обычная двухсторонняя и многосторонняя телефонная связь (конференцсвязь - с уча­стием в разговоре более двух абонентов одновременно), голосовая почта. При организации обычного телефонного разговора возможны режимы автодозвона, ожидания вызова, переад­ресации (условной или безусловной) вызова и пр.

Современные технологии позволяют обеспечить абонентам ССС высокое качество речевых сообщений, надежность и конфиденциальность связи, миниатюр­ность радиотелефонов, защиту от несанкционированного доступа.
^

Сети транкинговой связи


Сети транкинговой связи в некоторой степени близки к сотовым: это также сети на­земной радиотелефонной подвижной связи, обеспечивающие мобильность абонентов в пределах достаточно большой зоны обслуживания. Основ­ное отличие состоит в том, что СТС проще по принципам построения и предоставляют або­нентам меньший набор услуг, но за счет этого они дешевле сотовых. СТС имеют значительно меньшую емкость, чем сотовые, и принципиально ориентированы на ведомственную (корпоративную) мо­бильную связь. Основное применение СТС - корпоративная (служебная, ведомственная) связь, на­пример, оперативная связь пожарной службы с числом выходов (каналов) «в город», значи­тельно меньшим числа абонентов системы. Основными требованиями к СТС являются: обеспечение связи в заданной зоне обслуживания независимо от местоположения подвижных абонентов (МА); возможность взаимодействия отдельных групп абонентов и организации циркулярной связи; оперативность управления связью, в том числе на различных уровнях; обеспечение связи через центры управления; возможность приоритетного установления каналов связи; низкие энергетические затраты подвижной станции (ПС); конфиденциальность разговоров.

Название транкинговой связи происходит от английского trunk (ствол) и отражает то обстоятельство, что ствол связи в такой системе содержит несколько физических (как прави­ло, частотных) каналов, каждый из которых может быть предоставлен любому из абонентов системы. Указанная особенность отличает СТС от предшествовавших ей систем двухсторон­ней радиосвязи, в которых каждый абонент имел возможность доступа лишь к одному кана­лу, но последний должен был поочередно обслуживать ряд абонентов. СТС по сравнению с такими системами обладают значительно более высокой емкостью (пропускной способно­стью) при тех же показателях качества обслуживания.

Если использовать аналогию с сотовой связью, то в простейшем случае СТС - это од­на ячейка сотовой системы, но при несколько специфическом (узком) наборе услуг. Сотовая сеть всегда строится в виде множества ячеек, замыкающихся на общий центр коммутации (ЦК), с передачей обслуживания из ячейки в ячейку по мере перемещения абонента. При необходи­мости наращивания емкости сотовой сети производится дополнительное дробление ячеек с соответствующей модификацией частотного плана (распределения частот по ячейкам). В СТС, заведомо идущей на функционирование с ограниченной емкостью, обычно стремятся предельно увеличить зону действия. Практически, радиус ячейки СТС может достигать 40-50 км и более. Отсюда вытекает большая по сравнению с сотовой связью мощность передатчи­ка, больший расход энергии источника питания, большие габариты и масса абонентского оборудования.

Даже если СТС строится в виде нескольких ячеек (многозоновая система), это делает­ся в первую очередь с целью расширения зоны действия, а не ради повышения емкости; при этом раз­меры ячеек (зон) остаются достаточно большими. Централизованное управление совокупно­стью зон остается при этом ограниченным, как и передача обслуживания из зоны в зону, ко­торая (если она вообще реализуется) приводит к кратковременному прерыванию связи.

Для повышения пропускной способности обычно накладываются ограничения на дли­тельность разговора, а специфика корпоративной связи находит отражение в системе при­оритетов пользователей, учитываемых при предоставлении канала связи в условиях очереди, и в объединении абонентов в группы с возможностью диспетчерского вызова одновременно всех абонентов группы. Та же специфика обусловливает более высокие, в среднем, по сравне­нию с сотовой связью, требования к оперативности и надежности установления связи. Кроме речевой информации в СТС возможна передача и некоторых других видов информации, в част­ности, цифровой - управления, телеметрии, охранной сигнализации и др.

Общей тенденцией развития профессиональных систем подвижной радиосвязи являет­ся переход от аналоговых стандартов к единым международным цифровым стандартам, обеспечивающим конфиденциальность и повышенное качество связи, более эффективное использование частотного диапазона, роуминг для всех абонентов и возможность передачи данных с высокой скоростью.
^

Сети персонального радиовызова


Сети персонального радиовызова (СПР), или пейджинговые сети (paging - вызов), - это сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений из центра системы (с пейджингового терминала) на миниатюрные абонентские приемники (пейджеры).

В простейшем случае СПР состоит из пейджингового терминала (ПТ), базовой стан­ции (БС) и пейджеров. Терминал, включающий пульт оператора и контроллер системы, вы­полняет все функции управления системой. БС состоит из радиопередатчика и антенно-фидерного устройства, и обеспечивает передачу пейджинговых сигналов на всю зону дейст­вия системы, радиус которой может составлять до 100 км. Пейджеры осуществляют прием тех сообщений, которые им адресованы. В более сложных случаях СПР может иметь не­сколько радиопередатчиков, по возможности равномерно распределенных в пределах зоны действия, что позволяет более надежно обеспечить связью всю зону.

В СПР могут передаваться сообщения четырех типов: тональные, цифровые, буквенно-цифровые, речевые. Тональные сообщения были единственным типом сообщений в ранних моделях пейджеров. Цифровое сообщение может содержать номер телефона, по ко­торому следует позвонить. Наиболее распространена передача текстового сообщения длиной до 100-200 символов. Сообще­ние отображается на дисплее пейджера, который может иметь от одной до восьми строк, до 12-20 символов в строке, длинные сообщения отображаются по частям. Передача речевых сообщений широкого распространения пока не получила. Вызов абонента, т.е. адресация со­общения, может осуществляться одним из трех способов: индивидуально, нескольким абонентам (общий вызов) или группе абонентов (групповой вызов (ГВ)). В первом случае вызов адресуется конкретному абоненту по его индивидуальному номеру, во втором - нескольким абонентам с последовательной передачей их индивидуальных номеров, в третьем - вызов адресуется одновременно группе абонентов по общему групповому номеру. Сообщения, подлежащие передаче, также вводятся в систему одним из трех способов: голосом через телефонную сеть и оператора пейджинговой связи; через телефонную сеть с тональным набором - сообщение набирается на клавиатуре телефонного аппарата и проходит сразу на пейджинговый терминал, минуя оператора; с компьютера (через телефонную сеть) с набором сообщения на компьютере и выходом непосредственно на ПТ.

К недостаткам пейджинговой связи следует отнести передачу сообщения вне реального времени: сообщение передается не в момент его выдачи отправителем, а в порядке очереди с анало­гичными сообщениями других отправителей; практически задержка от момента получе­ния сообщения до его передачи в эфир невелика - обычно она не превышает нескольких ми­нут. Следует иметь так же в виду, что в случае передачи сообщения на пейджер, находящийся на момент передачи в «теневой» зоне, сообщение будет потеряно (не получено абонентом).

Асинхронность (очерёдность) передачи сообщений в сочетании с краткостью последних, передаваемых, как правило, только в одну сторо­ну, обеспечивается весьма эффективное использование канала связи, по меньшей мере, на два порядка более эффективное (по числу обслуживаемых абонентов), чем в сотовой связи, даже с учетом повторного использования частот в последней. В результате пейджинг оказывается технически проще и экономичнее сотовой связи, т.е., в конечном итоге, значительно дешевле для абонента.

Кроме сообщений, предназначенных конкретным абонентам или группам абонентов, в пейджинговых системах обычно организуется своеобразный общий информационный канал, содержащий оперативную информацию о биржевых новостях, погоде, обстановке на дорогах и т.п. В пейджерах, как правило, предусматривается ряд дополнительных услуг: часы, кален­дарь, возможность регулировки типа и громкости звукового сигнала, сохранение в памяти полученных ранее сообщений с возможностью их повторного чтения и др.

Сети персонального радиовызова предоставляют услуги удобного и относительно де­шевого вида мобильной связи, но с существенными ограничениями: связь односторонняя, не в реальном времени и только в виде коротких сообщений. СПР получили в мире довольно широкое распространение - в целом, того же порядка, что и сети сотовой связи, хотя их распространенность в разных странах существенно различается.
^

Сети мобильной спутниковой связи


Наряду со ставшими уже общедоступными СПС (персонального радиовызова и сото­выми), все более активно развиваются сети спутниковой связи. Актуальными являются следующие области применения мобильной спутниковой связи:

  • расширение сотовых сетей;

  • использование спутниковой связи в районах, где развертывание СПС нецелесообразно, например, из-за низкой плот­ности населения;

  • использование спутниковой связи в дополнение к существующей сотовой, например, для обеспечения роуминга при несовместимости стан­дартов, или в каких-либо чрезвычайных ситуациях;

  • стационарная беспроводная связь в районах с малой плотностью населения при отсутствии СПС и проводной связи;

  • при передаче информации в глобальном масштабе (акваториях Мирового океана, местах разрывов на­земной инфраструктуры и т.д.).

В частности, при удалении абонента за пределы зоны обслуживания местных сотовых сетей спутниковая связь играет ключевую роль, поскольку она не имеет ограничений по при­вязке абонента к конкретной местности. Во многих регионах мира спрос на услуги подвижной связи может быть эффективно удовлетворен только с помощью спутниковых систем.

Спутниковая связь достаточно органично сочетается с сотовой. Прак­тически во всех СПСС предусматривается довольно высокая степень интеграции с сотовой связью; в частности, кроме AT, предназначенных для спутниковых систем, предполагается создание двухрежимных терминалов, предназначенных для работы в спутниковой системе и в каком-либо из сотовых стандартов.

Для абонента пользование спутниковым терминалом не требует специальных знаний. Набор номера производится пользователем с помощью клавиа­туры, как и при пользовании обычным телефоном. Система автоматически выделяет свобод­ный канал и закрепляет его за собеседниками на время разговора. Как правило, используется уплотнение (временное, частное или кодовое), хорошо зарекомендовавшее себя в многока­нальной связи.

Безусловно, оборудование (не только абонентское) сетей спутниковой связи является более дорогим, чем у ССС, соответственно, и значительно выше абонентская плата. Некоторое неудобство представляет и задержка речевого сигнала в силу удаленности базовой (спутниковой) станции (порядка 36 000 км), составляющая доли секунды.

Различные СПСС обладают своими особенностями, обусловленными, главным обра­зом, характеристиками их орбитальных группировок, но в сфере пользовательских характе­ристик и предоставляемых услуг они имеют много общего (как между собой, так и с назем­ными сотовыми системами). Передача всех видов информации ведется в цифровой форме со скоростями от 1200 до 9600 бит/с. Телефонный режим организуется с помощью встроенных в AT устройств преобразования скорости передачи сигналов. Кроме дуплексной телефонной связи, персональные AT позволяют подключать компьютер и поддерживают разнообразный набор услуг, таких, как передача факсимильных сообщений, электронная и голосовая почта, персональный вызов и приоритетное обслуживание, шифрование, а также определение ме­стоположения абонента.
^

Волоконно-оптические сети


Волоконно-оптическая линия связи (ВОЛС) - это вид системы передачи, при котором информация передается по оптическим диэлектрическим волноводам, известным под назва­нием "оптическое волокно". Волоконно-оптическая сеть - это информационная сеть, связую­щими элементами между узлами которой являются волоконно-оптические линии связи. Тех­нологии волоконно-оптических сетей, помимо вопросов волоконной оптики, охватывают также вопросы, касающиеся электронного передающего оборудования, его стандартизации, прото­колов передачи, вопросы топологии сети и общие вопросы построения сетей.

^ Преимущества ВОЛС

Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014 ГГц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отече­ственными и зарубежными производителями промышленное оптическое волокно имеет зату­хание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.

Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания путем передачи различной модуляции сигналов с малой избыточностью кода.

Высокая помехозащищенность. Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих мед­ных кабельных систем и электрического оборудования, способного индуцировать электромаг­нитное излучение (линии электропередачи, электродвигательные установки и т.д.). В много­волоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.

Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. На­пример, 900-парный телефонный кабель диаметром 7,5 см может быть заменен одним во­локном диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.

Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оп­тической линии связи, используя свойства высокой чувствительности волокна, могут мгновен­но отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, ис­пользующие интерференционные эффекты распространяемых световых сигналов (как по раз­ным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колеба­ниям, к небольшим перепадам давления. Такие системы особенно необходимы при созда­нии линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "зе­мельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например, на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волок­но повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет дву­окись кремния, широко распространенного, а потому недорогого материала, в отличие от ме­ди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использо­вании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть, только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

Длительность срока эксплуатации. Со временем волокно испытывает деградацию. Это оз­начает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря со­вершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с опти­ческими волокнами кабель оснащается медным проводящим элементом. Такой кабель широ­ко используется как в России, так и за рубежом.

Несмотря на многочисленные преимущества перед другими способами передачи ин­формации, волоконно-оптические сети имеют также и недостатки, главным образом из-за дороговизны прецизионного монтажного оборудования и надежности лазерных источников излучения. Многие из недостатков, вероятнее всего, будут нивелированы с приходом новых конкурентоспособных технологий в волоконно-оптические сети.

^ Недостатки ВОЛС

Стоимость интерфейсного оборудования. Электрические сигналы должны преобразовы­ваться в оптические, и наоборот. Цена на оптические передатчики и приемники остается пока еще довольно высокой. При создании оптической линии связи также требуются высокона­дежное специализированное пассивное коммутационное оборудование, оптические соедини­тели с малыми потерями и большим ресурсом на подключение-отключение, оптические разветвители, аттенюаторы.

Монтаж и обслуживание оптических линий. Стоимость работ по монтажу, тестированию и поддержке волоконно-оптических линий связи также остается высокой. Если же поврежда­ется ВОК, то необходимо осуществлять сварку волокон в месте разрыва и защищать этот участок кабеля от воздействия внешней среды. Производители тем временем поставляют на рынок все более совершенные инструмен­ты для монтажных работ с ВОК, снижая цену на них.

Требование специальной защиты волокна. Прочно ли оптическое волокно? Теоретиче­ски - да. Стекло, как материал, выдерживает колоссальные нагрузки с пределом прочности на разрыв выше 1ГПа (109 Н/м2). Это, казалось бы, означает, что волокно в единичном коли­честве с диаметром 125 мкм выдержит вес гири в 1 кг. К сожалению, на практике это не дос­тигается. Причина в том, что оптическое волокно, каким бы совершенным оно ни было, имеет микротрещины, которые инициируют разрыв. Для повышения надежности оптическое волокно при изготовлении покрывается специальным лаком на основе эпоксиакрилата, а сам оптиче­ский кабель упрочняется, например, нитями на основе кевлара (kevlar). Если требуется удов­летворить еще более жестким условиям на разрыв, кабель может упрочняться специальным стальным тросом или стеклопластиковыми стержнями. Но все это влечет увеличение стоимо­сти оптического кабеля.

Преимущества от применения волоконно-оптических линий связи настолько значитель­ны, что, несмотря на перечисленные недостатки оптического волокна, дальнейшие перспекти­вы развития технологии ВОЛС в информационных сетях более чем очевидны.
^

Телевидение коллективного пользования

Принципы построения систем телевещания


На первом этапе развитие систем коллективного телевизионного приёма (СКТП) происходило, в основном, в направлении совершенствования используемого оборудования и практически не затрагивало схем построения сетей телевизионного приёма; системы строились по принципу - одна антенна на один подъезд. По мере расширения территорий, т.е. увеличения числа жилых и общественных зданий, обслуживаемых СКТП, всё чаще отмечались случаи неудовлетворительного качества телевизионного изображения: приёмные антенны оказывались либо в зоне затенения, где напряжённость поля была недопустимо низкой, либо в зоне с высокой интенсивностью запаздывающих сигналов, обусловленной отражениями электромагнитных волн в тракте распространения. Ситуация особенно осложнялась в связи с застройкой городов зданиями, резко различавшимися по высоте, что привело к образованию «пораженных» зон, охватывающих целые кварталы.

Проведенные исследования показали, что наиболее эффективным решением возникшей проблемы является создание крупных систем коллективного телевизионного приёма (КСКТП), каждая из которых рассчитана на обслуживание от одной антенной установки, расположенной в точке с благоприятными условиями приёма, нескольких тысяч абонентских устройств.

Развитие техники коллективного телевизионного приёма связано с созданием систем кабельного телевидения (СКТ), каждая из которых может обслуживать до нескольких десятков тысяч абонентов. Использование таких систем позволяет решить вопросы обеспечения качественной доставки программ в районах со сложными условиями приёма, а также обеспечить передачу абонентам дополнительной информации - телетекстовой, каналов спутникового вещания.

Системы коллективного телевизионного приёма в зависимости от объёма охватываемых абонентов разделяют следующим образом:

  • системы коллективного телевизионного приёма;

  • крупные системы коллективного телевизионного приёма;

  • системы кабельного телевидения.

При этом принимается, что СКТП рассчитаны на обслуживание абонентов одного подъезда или здания, КСКТП - нескольких зданий, СКТ - большого жилого массива. К отличительным особенностям СКТ следует отнести также технико-экономическую целесообразность использования в них наряду с эфирным приёмом в стандартных каналах ТВ и ЧМ вещания других видов программ (спутниковых, локальных видеостудий и пр.). Следует отметить, что необходимым условием успешного развития СКТ является выбор такой схемы построения, при которой можно использовать в качестве низших звеньев распределительных сетей линий КСКТП и СКТП без существенных переделок, иначе реализация СКТ в районах со сложившейся застройкой связана с большими дополнительными капитальными затратами.

Наибольшие искажения (или затухания) сигнала возникают на участке распространения от передающей антенны (телецентра) до приёмной (абонента). Выбор места установки приёмных антенн, улучшение их параметров не всегда приводят к желаемому результату. Решить проблему качественного приёма сигнала системой кабельного телевидения можно созданием специальных линий подачи программ на головные станции (ГС) СКТ, в частности - с излучением в СВЧ-диапазоне или с использованием волоконно-оптических линий связи (ВОЛС). Однако такие решения оправданы только при высокой насыщенности крупных городов системами кабельного телевидения.

Значительна роль систем кабельного телевидения при распределении программ, получаемых через спутниковые системы вещания. Совмещение приёмных установок с эфирными ретрансляторами сопряжено с ухудшением параметров сигнала, обусловленным отражением в тракте распространения радиоволн от ретранслятора до приёмной антенны абонента. Устранить этот недостаток можно использованием СКТ для распространения ТВ-программ, полученных со спутникового ретранслятора.

Системы кабельного телевидения имеют потенциальную возможность организации двустороннего обмена информацией между абонентом и головной станцией (в диапазоне частот, расположенных ниже стандартных телевизионных каналов, например, 5÷30 МГц), что фактически значительно расширяет сферу услуг, предоставляемых СКТ. При этом необходимо иметь в виду, что СКТ являются широковещательными, т.е. способными распространять циркулярную информацию и собирать определённую информацию, поступающую от абонентов, но не могут устанавливать связь между любыми (абонент - абонент) абонентами СКТ.

Частотный план телевизионного вещания (таблица 2.1) охватывает спектр частот в метровом диапазоне 48.5-100 МГц и 170-230 МГц (частоты 100-170 МГц для вещания не используются), в дециметровом диапазоне - 470-790 МГц. Полоса частот одного канала составляет 8 МГц.

Структурная схема СВТ определяется в каждом конкретном случае и зависит от различных факторов: условий приёма, планировки жилого массива, характера застройки и т.п.

Наибольшее распространение среди различных схем построения СКТ получила древовидная структура с аналоговым способом передачи сигналов и частотным разделением каналов в метровом диапазоне волн.

На рис. 2.1 приведена простейшая схема СКТП, предназначенная для обслуживания абонентов одного здания. Сигналы ТВ и ЧМ-вещания, принятые антенной, после усиления и преобразования (если приём осуществлялся в дециметровом диапазоне) складываются на общую нагрузку. С выхода устройства сложения сигналы подаются в домовую распределительную сеть,

Т
аблица 2.1


Частотный план телевизионного вещания

Диапазон

Номер канала

Полоса частот, МГц

1

1

48,5...58,5

2

58...66

2

3

76...84

4

84...92

5

92...100

3

6

174...182

7

182...190

8

190...198

9

198…206

10

206…214

11

214...222

12

222...230

4

21-34

470-582

5

35-60

582-790


включающую несколько распределительных линий (обычно, соответственно количеству подъездов). К ответвительным устройствам через абонентские коробки посредством кабеля подключаются оконечные устройства (телевизоры, видеомагнитофоны, ЧМ-приёмники). Направленные ответвители обеспечивают разделение мощности сигнала в равных пропорциях и обеспечивают высокую степень защищенности абонентских отводов от отраженных волн кабеля.

Необходимость конвертирования частот дециметрового диапазона в свободные в данной местности каналы метрового диапазона диктуется также экономическими соображениями: оборудование распределительных сетей рассчитано на работу в диапазоне до 230 МГц (т.е. в метровом диапазоне), что позволяет использовать существующие PC без каких-либо изменений. Реализация же сети в дециметровом диапазоне сопряжена с существенным увеличением её стоимости. Перенос каналов метрового диапазона на другие частоты обеспечивает исключение помех, обусловленных прямой наводкой ретрансляторов на входы телевизоров и абонентские кабели. При подключении телевизора к СКТ на его входе присутствуют два сдвинутых во времени сигнала; один приходит по кабелю, второй - наводится в силу недостаточной экранировки входных цепей, что приводит к наличию на экране опережающего левого повтора изображения. Благодаря селективности входных цепей телевизионного приёмника и переносу канала в другой частотный диапазон помеха в виде эхо-изображения отсеивается.

При создании СКТ значения параметров усилительных устройств должны быть на уровнях, необходимых для построения многоканального линейного тракта требуемой протяженности и емкости. Реализуется это посредством широкополосных усилителей, обладающих высокой линейностью передаточной характеристики, низким коэффициентом шума, высокой равномерностью АЧХ. Причём, если усилители предназначены для использования в трактах большой протяженности, должны быть приняты меры по автоматической, стабилизации уровней, сигнала. Для уменьшения влияния искажений из-за отражения от неоднородностей необходимо высокое согласование элементов тракта и коаксиального кабеля.

Потенциальная пропускная способность распределительной сети соответствует полосе 20-ти телевизионных каналов и 70 каналов радиовещания, однако реализовать её трудно из-за недостаточной избирательности по соседнему каналу используемых телевизоров и наличия на их входах, напряжений гетеродинов селекторов каналов с достаточно высоким уровнем. Необходимость преобразования частоты принимаемых сигналов из-за недостаточной экранировки входных цепей телевизоров также снижает пропускную способность распределительных систем. С учётом указанных факторов существующие СКТ обеспечивают возможность распределения 5-8 ТВ программ.

Качественные показатели СКТ во многом определяются качеством сигнала на выходах антенн; требования к коэффициенту усиления антенн - порядка 5-8 дБ (в зависимости от диапазона), к помехозащищённости - порядка 20-30 дБ. Несмотря на использование довольно эффективных антенн, качество приёма во многом зависит от места расположения, определяемого обычно эмпирическим путем.

В СКТ с преобразованием частот накладывается много ограничений, связанных с распределением частот и с особенностями работы самих конверторов. В частности:

  • сдвиг по частоте (для однократного преобразования) не должен превышать 8 МГц, поскольку иначе будет трудно отфильтровать сигнал на выходе смесителя;

  • частоты гетеродинов, телевизоров и конверторов не должны попадать в полосы других каналов распределения, чтобы не создавать помех;

  • номера каналов должны сочетаться так, чтобы уровни комбинационных помех, возникающих в смесителе конвертора, находились ниже уровней, определяемых допустимыми защитными отношениями;

  • каналы желательно сочетать так, чтобы полосы частот, принимаемых сигналов не были зеркальными по отношению друг к другу для используемых в данной местности конверторов.

Для обеспечения равномерного деления мощности сигналов между отводами, подключенными к одной линии, коэффициент ответвления должен увеличиваться к концу линии по закону, обратно-пропорциональному закону затухания сигнала - это основное требование к ответвителям. Кроме того, ответвители должны иметь практически линейную характеристику переходного затухания при высокой направленности и согласовании. Наиболее полно этим требованиям соответствуют направленные ответвители (НО) с использованием трансформаторов на магнитных сердечниках. При построении домовых разветвительных устройств широко распространены УАР-6, выполненные по принципу НО с электромагнитной связью и имеющие переходное затухание в отвод около 17 дБ.
^

Оборудование систем телевещания


Рассмотрим построение типовой системы кабельного телевидения. На рисунке 2.2 приняты следующие условные графические обозначения:

Наличие отдельных антенн для каждого канала обусловлено различным расположением передающих станций, исключение составляют 1-й, 4-й и 21-й каналы, передающие антенны которых расположены на одной вышке; кроме того, антенны метрового диапазона рассчитаны на приём 1-3 соседних каналов.

Сигнал, полученный с антенн, выравнивается (усиливается или ослабляется) антенными усилителями для достижения уровня, достаточного для обеспечения качественного приёма программ. Посредством канальных фильтров отсеиваются боковые каналы приёма и помехи. Каналы, расположенные в дицеметровом диапазоне, переносятся посредством конверторов в свободные метровые каналы; занятыми являются 1-й и 4-й метровые каналы. Конверторы также обеспечивают стабилизацию уровня сигнала. Сумматор производит сложение сигналов принимаемых программ для дальнейшей передачи по коаксиальному кабелю в магистраль СКТ. Программы спутникового телевидения после преобразования ресивером и конвертором также поступают в сумматор. С выхода сумматора сигналы вводятся в линейный коаксиальный тракт, включающий коаксиальные кабели, широкополосные линейные усилители и распределители мощности сигналов. Следует отметить необходимость хорошего согласования линейного оборудования с кабелем во избежание потерь мощности сигнала. Поскольку магистральные кабели подвержены влиянию температуры внешней среды (от -35° до +40)°, магистральные усилители снабжены блоками автоматической регулировки уровня, компенсирующими изменения затухания сигнала в кабеле.

Унифицированное телевизионное оборудование (УТО) для СКТП используется в качестве составного элемента линейного тракта СКТ. В состав УТО входят необходимый набор канальных усилителей (или комплект диапазонных усилителей) метрового диапазона частот, конвертор и смеситель сигналов. Канальный усилитель предназначен для усиления сигнала одного определенного канала, т. о. существуют канальные усилители на 1-й,. 2-ой, 3-й и т.д. ТВ каналы в УТО устанавливаются канальные усилители соответственно транслируемым в данном здании ТВ

каналам. Диапазонные усилители перекрывают несколько соседних каналов (см. табл. 3.1). Наряду с описанными канальными усилителями используется более поздние разработки - диапазонные усилители УТД-1,11 и УТД-111,, перекрывающие соответственно диапазоны 1-5 каналов (48.5-100 МГц) и 6-12: каналов (174-230 МГц). Наряду с описанными усилителями в состав УТО входит дециметровый конвертор, включающий трёхрезонаторный коаксиальный
фильтр, устройство сложения мощностей сигнала и гетеродина, смесителя, гетеродина и усилителя промежуточной частоты. Схема конвертора (и конструкция) позволяет настраивать его на любые заданные сочетания каналов, за исключением несовместимых.
^

Системы персонального радиовызова

Структура пейджинговых систем


Сети персонального радиовызова (СПР), или пейджинговые сети (paging - вызов), - это сети односторонней мобильной связи, обеспечивающие передачу коротких сообщений из центра системы (с пейджингового терминала) на миниатюрные абонентские приемники (пейджеры).

В
простейшем случае СПР состоит из пейджингового терминала (ПТ), базовой стан­ции (БС) и пейджеров. Терминал, включающий пульт оператора и контроллер системы, вы­полняет все функции управления системой. БС состоит из радиопередатчика и антенно-фидерного устройства и обеспечивает передачу пейджинговых сигналов на всю зону дейст­вия системы, радиус которой может составлять до 100 км. Пейджеры осуществляют прием тех сообщений, которые им адресованы. В более сложных случаях (рисунок 3.1) СПР может иметь не­сколько радиопередатчиков, по возможности равномерно распределенных в пределах зоны действия, что позволяет более надежно обеспечить связью всю зону.
^

Пейджинговый протокол POCSAG


Во второй половине 70-х годов с целью объединения производителей пейджингового оборудования для создания стандарта, соответствующего требованиям рынка, была образована специальная группа – Post Office Code Standartisation Advisory Group. Ее аббревиатура POCSAG и дала название новому протоколу (т.е. структуре организации передачи информации по каналу связи), спецификации которого были опубликованы в 1978 г. Первоначально код предназначался для передачи тональных сообщений со скоростью 512 бит/с. Но уже годом позже, в 1979 г., он был адаптирован для передачи цифровых и буквенно-цифровых сообщений. Разработка не была запатентована и стала использоваться в ряде стран в качестве стандарта. В 1982 г. этот стандарт был утвержден Международным консультативным комитетом по радиосвязи Международного союза электросвязи, как международный стандарт, получив наиме­нование Radio Paging Code №1 или сокращенно RPCN1 (Рекомендация 584). Однако это название протокола встречается, в основном, в сугубо официальных документах и вряд ли известно широкому кругу. Но сам факт признания POCSAG на таком уровне объясняет то, что этот протокол сегодня используется в подавляющем большинстве пейджинговых систем, оставив позади собственные разработки протоколов фирм Motorola и NEC. Основными преимуществами формата по сравнению с другими форматами того времени были скорость, эффективный алгоритм исправления ошибок и большое число производителей оборудования. Впоследствии с целью увеличения количества передаваемых сообщений протокол был адаптирован для передачи со скоростью 1200 бит/с, а в начале 90-х годов, со скоростью 2400 бит/с. В качестве модуляции используется частотная манипуляция.

Как и любой метод однонаправленной передачи информации, POCSAG использует метод прямого исправления ошибок. Цифровые данные обычно собираются в слова, которые, в свою очередь, группируются в блоки. Код, в котором коррекция ошибок осуществляется в блоках, называется блочным. Одним из самых простых методов обнаружения/исправления ошибок является добавление избыточных битов. Например, цифровое слово из восьми бит может содержать один избыточный. Этот бит вставляется для определения, четное или нечетное число "единиц" в слове с целью выявления возможной ошибки. Для более наглядной иллюстрации представим, что передается семизначное слово "1100011". Общее число "единиц" в нем равно четырем. Тогда для проверки на четность избыточный бит должен быть равен "0", так что слово будет иметь вид "11000110". И, наоборот, для проверки на нечетность этот бит равен "1" и общее слово соответственно выглядит как ”11000111”.

Приемники пейджеров обычно работают в условиях большого уровня помех и число ошибок довольно высоко (примерно одна ошибка на 15-18 передаваемых битов). Для борьбы с этим должны применяться более эффективные способы. В протоколе POCSAG в 32-битных кодовых словах используется циклический блочный код БСН 31,21 (получивший название по именам создателей Боуз-Чхоудхури-Хоквингем или просто БЧХ), где 31 - общая длина слова, 21 - число информационных бит в слове.

Не вдаваясь во все тонкости алгоритма, скажем, что он позволяет исправлять две ошибки, а его адресная емкость равна 2 097152 адресам.

Структура протокола POCSAG показана на рисунке 3.2. Протокол по своей сути является асинхронным. В начале каждой передачи стоит преамбула длиной не менее 576 бит, представляющая собой последовательность 10101010... Во время ее передачи пейджер переводится в режим "Прием сообщения", причем в интервале приема преамбулы осуществляется тактовая синхронизация. После этого следует передача "пачек" (batch), число которых произвольно.
К
аждая "пачка" состоит из слова синхронизации в ее начале и восьми кадров (frame). Так как слово синхронизации по длине равно одному 32-битному слову, то "пачка" состоит из 17 слов. Структура кадров такова, что каждому из них (пронумерованному 0-7) соответствует группа пейджеров. Это означает, что каждый индивидуальный пейджер оказывается постоянно закрепленным за конкретным кадром и будет "слушать" адресную информацию только в своем собственном кадре. Кадр состоит из двух кодовых слов: адреса пейджера и сообщения плюс избыточные биты. Когда в кадре отсутствует сообщение, вместо адреса передается незанятое кодовое слово, имеющее определенный протоколом формат.

Структура кодовых слов приведена на рисунке 3.2. Длина адресной части равна 18 бит, но действительный адрес пейджера равен 21 биту. Обычно эти три избыточных бита служат для определения номера кадра, содержащего адрес пейджера. Функциональные биты обычно используются для того, чтобы разрешить передачу многократных сообщений на один пейджер, таких как разные коды тональных посылок ("бипов"). Длина информационного поля в слове равна 20 бит, однако это не ограничивает размер сообщения, и в случае необходимости может быть передано дополнительное кодовое слово. Если нет, то сообщение заканчивается передачей в кадре следующей "пачки". Такой вариант используется для сохранения структуры протокола.

В
настоящее время протокол POCSAG применяется почти во всех странах, где внедрены системы персонального радиовызова. Однако, из-за значительного увеличения нагрузки системы POCSAG перестает соответствовать реалиям нынешнего времени - при трафике средней плотности, на одном радиоканале, использующем максимальную для протокола скорость 2400 бит/с, без потери качества обслуживания можно разместить примерно 20-25 тыс. пользователей. Это привело к возникновению следующего этапа развития пейджинга – разработке высокоскоростным протоколам FLEX и ERMES.
^

Пейджинговый протокол ERMES


Для создания единой европейской системы персонального радиовызова в конце 80-х годов несколько операторов, объединившихся под эгидой одной из комиссий Европейского Сообщества, принялись за разработку концепции. В 1989 году были разработаны рекомендации ЕЭС 166/3, формально положившей начало стандарту. По сути дела, он должен был стать для пейджинга тем, чем стали сети на основе GSM и DCS на рынке сотовой телефонии - всемирной универсальной технологией.

В январе 1990 года, между 23 заинтересованными сторонами, в том числе 16 операторами из 8 стран, был подписан Меморандум о взаимопонимании, утвердивший график реализации проекта. Согласно ему, началом коммерческой эксплуатации сетей ERMES должен был стать декабрь 1992 г. Практически одновременно с этим за разработку стандарта принялся Европейский Институт Стандартизации в области Телекоммуникаций (ETSI), создавший для этой цели специальный Технический комитет пейджинговых систем. Результатом его работы стало появление и утверждение в 1992 г. довольно объемной спецификации стандарта ETS 300-133, иначе ERMES (European Radio Message System). В октябре 1994 года Международный союз электросвязи рекомендовал использовать ERMES в качестве международного стандарта в СПРВ различных стран мира. Но на 2002 год в коммерческой эксплуатации сети стандарта находятся лишь в нескольких (более 8) странах мира.

Системы персонального радиовызова ERMES позволяют предоставлять следующие услуги:

  • передачу цифровых сообщений длиной 20-1600 знаков;

  • передачу буквенно-цифровых сообщений длиной от 400 до 9000 символов;

  • передачу произвольного набора данных объемом до 64 кбит;

  • возможность приема вызова и сообщений одним пейджинговым приемником (пейджером) во всех странах, входящих в СПРВ ERMES.

Одним из условий, позволяющем обеспечить эту услугу, является договоренность стран, участвующих в проекте ERMES, выделять для этих систем единого частотного диапазона 169,4...169,8 МГц, что позволяет организовать 16 радиоканалов с разносом несущих частот в 25 кГц с использованием при приеме сигналов сканирующие по частоте приемники.

Структура радиосигнала в системах ERMES выбрана таким образом, что позволяет повысить емкость трафика в 10-15 раз по сравнению с существующими аналоговыми СПРВ. При этом следует отметить, что ERMES является полностью цифровой системой, обеспечивающей скорость передачи информации 6,25 кбит/с.

Структура радиоинтерфейса в системе ERMES показана на рисунке 3.3. Цикл передачи состоит из 60 циклов по одной минуте каждый, в свою очередь, каждый цикл содержит пять последовательностей по 12 с. Каждая из подпоследовательностей включает в себя 16 типов "пачек", которые условно обозначены от А до Р. Все пачки содержат четыре группы бит, позволяющие обеспечить:

  • синхронизацию;

  • передачу служебной системной информации;

  • передачу адреса;

  • передачу информационного сообщения.

Процедура поиска и приема сообщения приемником пейджера заключается в следующем. Следует иметь в виду, что пейджер "не знает", во-первых, в каком из 16 каналов передается сообщение, предназначенное именно для него, и во-вторых, в какой из 16 пачек (от А до Р) находится это сообщение. Поэтому, чтобы "выловить" сообщение из эфира, приемник настраивается на первый канал, просматривает все пачки, далее, если не было найдено сообщение с адресом данного пейджера, приемник перестраивается на следующую частоту, т. е. на следующий канал, и опять просматривает все пачки и так до тех пор, пока не будет найдена и принята информация, адресованная этому абоненту. После этого процедура повторяется снова. Возможна также ситуация, когда сообщение большого объема передается в определенном пакете (например, только в А), но последовательно на каждом из каналов.

Протоколу ERMES свойственно экономичное использование источника питания. Например, при длине сообщения 40 знаков соотношение режимов работы "прием - дежурный прием (standbye)" может быть равно 1:200 при условии, что на передачу всего сообщения понадобилось 6 с. Так что при соотношении режимов работы только 1:70 и токе потребления приемника 30 мкА (что вполне реально достижимо в современных пейджерах) время непрерывной работы приемника составляет более 40 недель.

Важным преимуществом также является более высокая помехоустойчивость системы ERMES, поскольку предполагается использование помехоустойчивого кодирования, а именно прямой коррекции ошибок (FES), циклического кода (30,18).

Помимо преимуществ, связанных со структурой протокола, можно выделить еще и расширенный интерфейс доступа всевозможных систем связи к пейджинговой системе (см. рисунок 3.1). Эта особенность позволяет получить несколько более богатый набор сервисных услуг, среди которых можно выделить переадресацию пейджингового сообщения, приходящего на ваш пейджер, на пейджер другого абонента или переадресацию звонка, поступающего на радиотелефон стандарта GSM, в пейджинговую сеть, абонентом которой является владелец радиотелефона. Таким образом, он получает возможность выключать свой телефон и экономить аккумуляторную батарею, а человек, который звонит на мобильный телефон, может передать нужное сообщение. Кроме того, система позволяет осуществлять процедуру роуминга, т. е. абонент получает возможность использовать свой пейджер в странах, охваченных сетями ERMES. При этом пользователю только нужно сообщить оператору "родной" (или "домашней") сети о планах своего путешествия, и тогда оператор позаботится о том, чтобы все сообщения, поступившие для абонента, попадали в соответствующую пейджинговую сеть по месту его нахождения.

Существенными достоинства­ми стандарта ERMES яв­ляются обеспечение совместимо­сти с европейским стандартом сотовой связи GSM в диапазоне 900 МГц и возможность роумин­га одного и того же пейджера в любых сетях, использующих стандарт ERMES. Недостатками являются сложность внедрения этого стандарта в существующие российские пейджинговые сети вследствие необходимости ис­пользования новых типов передающего и приемного оборудо­вания, что естественно потре­бует существенных капитальных вложений.
^

Пейджинговый протокол FLEX


Мотивом разработки пртокола FLEX явился рост числа потребителей услуги пейджинговой связи и объемов пе­редаваемой информации. В начале 90-х годов фирмой «Моторола» был разработан протокол FLEX. Именно за счет того, что протокол позволяет операторам об­служивать большее количество абонентов и обеспечивать более высокие скорости пере­дачи данных, он был принят на вооружение во многих странах Азии, Северной и Южной Аме­рики.

Структура протокола представлена на рисунке 3.5. После того, как информация абонента подвер­гается кодированию, происходит ее структур­ная организация. Все данные передаются в ви­де пакетов определенной длины (их иногда на­зывают окнами или кадрами). Система FLEX содержит 128 окон. Чтобы передать все 128 окон, требуется ровно 4 минуты вне зависимо­сти от скорости передачи информации. Пере­дача всех 128 окон носит название flex-цикл. Таким образом, получается, что за один час можно передать 15 циклов.

Основными задачами, которые удалось решить разработчикам про­токола, являются: максимиза­ция емкости канала, уве­личение скорости передачи данных, увеличение срока службы источников питания и усовершенствование методов защиты данных от ошибок. Рассмотрим каждый из этих аспектов.

FLEX позволяет переда­вать сообщения на трех ско­ростях, что дает возможность операторам пейджинговой связи адаптировать емкость своей системы под определенные требования рынка. Высокоскоростной протокол позволяет обеспечить более высокую пропускную спо­собность канала, а также более низкую за­держку передачи сообщений.

Протокол поддерживает следующие скоро­сти: 1600 бит/с, 3200 бит/с и 6400 бит/с. При работе со скоростью 6400 бит/с выигрыш в емкости канала составляет примерно 10 раз по сравнению с системой POCSAG, работающей на скорости 512 бит/с. В системе FLEX на один ка­нал может приходиться 600 000 абонентов, имеющих цифровые пейджеры, что значитель­но выше, чем в системе POCSAG. Также, важ­но отметить, что если число адресов в системе POCSAG ограничено двумя миллионами, то адресное поле FLEX составляет более миллиарда. Кроме того, пейджер системы FLEX может работать на любой из возможных скоро­стей, таким образом, отпадает необходимость использовать различные пейджинговые при­емники для различных скоростей передачи.

Известно, что POCSAG, например, по своей структуре протокол асинхронный, что требу­ет сигнала, сигнализирующего о начале ин­формационной последовательности (так назы­ваемая преамбула). Чтобы ее обнаружить, пей­джеру необходимо хотя бы периодически включаться в режим поиска преамбулы, со­ответствующей номеру данного абонента. Это, в свою очередь, приводит к значительным за­тратам электроэнергии. FLEX, напротив, прото­кол синхронный. Любое сообщение, предназначенное для конкретного абонента, посыла­ется в эфир не случайным образом, а в опре­деленный момент времени, т. е. в определенном временном интервале. Это значит, что прием­нику достаточно включаться для просмотра одного или более предназначенных для него временных окон всего один раз каждый flex-цикл, так что не требуется расходовать энергию на декодирование сообщений, предназначен­ных для других пейджеров. Такая организация передачи сообщений значительно снижает энергопотребление, что приводит к увеличению времени работы источников питания, которые можно сделать несколько меньших размеров, а, следовательно, сделать сам пейджер более компактным.

В системах данного класса предусмотрена дополнительная защита от замираний сигнала, вызванных многолучевым распространением радиоволн в условиях города. По этому пока­зателю системы FLEX в 12 раз более эффек­тивны, чем POCSAG со скоростью передачи 1200 и в 24 раза более эффективны, чем POC­SAG со скоростью 2400.

В отличие от ERMES внед­рение стандарта FLEX не требует кардинальной замены передающего оборудования. Имеющаяся аппара­тура позволяет проводить смеше­ние протоколов FLEX и POCSAG во время передачи информации, т.е. осуществлять попеременно ее передачу в синхронном режиме (стандарт FLEX) и в асинхрон­ном (стандарт POCSAG). В на­стоящее время в трех городах Российской Федерации — Моск­ве, Санкт-Петербурге и Самаре — существуют пейджинговые се­ти, работающие на основе стан­дарта FLEX.

Для работы в се­тях FLEX предназначен цифровой пейджер PROENCORE. Существуют также некоторые версии буквенно-цифровых пейджеров данного прото­кола. Одна из таких раз­работок, принадлежащих се­мейству FLEX, носит название ReFLEX и является первым про­токолом, позволяющим осуществлять двустороннюю пейджинговую связь. Для этих целей используется пейджер Tango, также разработанный фирмой Моторола. Эта же фирма активно работает над внедрением протокола In FLEXion для обеспечения передачи на пейджер голосо­вых сообщений. Первая модель такого пейджера называется Tenor.
^

Тенденции развития пейджинговой связи


В настоящее время в Рос­сии сложилась устойчи­вая структура связных систем персонального радиовызова. Число компаний — опе­раторов пейджинговой связи пе­ревалило за сотню, а их услугами охвачено большинство крупных российских промышленных го­родов и прилегающие к ним рай­оны. Системы персонального ра­диовызова обеспечивают своих абонентов достаточно оператив­ной и относительно недорогой связью. С другой стороны, они являются едва ли не единствен­ным видом односторонней связи. Работа большинства существую­щих пейджинговых систем стро­ится на утверждении, что их кли­ентам нет необходимости орга­низовывать двустороннюю связь, а достаточно получать только ко­роткую информацию или вызов.

Увеличение объема предоставляемых услуг абонентам пейд­жинговой связи достигается дву­мя основными методами: орга­низационно-техническим совер­шенствованием работы служб компаний и внедрением новых технологий и стандартов.

Метод в области расширения услуг основан на максимальном использовании возможностей су­ществующего связного оборудо­вания. Подавляющее большинст­во отечественных пейджинговых сетей работают в известном асин­хронном стандарте POCSAG (в документах МККР стандарт обо­значается как Radiopaging Code No. 1, рекомендация № 584), раз­работанном еще в начале 70-х го­дов. Хотя, безусловно, данный стандарт уже не удовлетворяет современным требованиям, но и в его рамках отдельным компа­ниям-операторам удается значи­тельно расширить комплекс пре­доставляемых услуг.

Клиентам предла­гается все более широкий диапа­зон информационных сообще­ний, получаемых по пейджинговым каналам. Стандартный на­бор многих крупных компаний включает курсы основных миро­вых валют, сводки погоды, описа­ние ситуаций на дорогах, инфор­мацию о работе клубов, театров, ресторанов и т.д. Пытаясь еще бо­лее расширить этот вид услуг, не­которые компании предлагают своим клиентам использовать ин­формационные каналы для их рекламных нужд, создают пакеты предоставляемой информации по группам пользователей, деля их по профессиональным и возраст­ным категориям. Расши­ряется перечень дополнительных услуг, общепринятыми дополнительными услугами в настоящее время являются:

  • сквозная нумерация сооб­щений;

  • ведение архива сообщений с возможностью ограничения до­ступа к хранящейся в нем ин­формации;

  • возможность временного отключения абонента;

  • отправка сообщения або­ненту в заданное время;

  • групповой вызов;

  • роуминг;

  • использование в качестве идентификатора абонента нескольких одновременно действующих цифровых и сим­вольных обозначений (фамилии или имени, пр.).

Отправить сообщение на пейджер, обслуживаемый в од­ной из крупных компаний, мож­но через Web-сайт этой компа­нии.

В 1998 г. в Москве введена в эксплуатацию система двусторонней пейджинговой связи, предоставляющая владельцам специальных двухсторонних пейджеров - твейджеров - возможность от­вета на получаемые сообщения и передачу собственных. Ис­пользование технологии двусто­роннего пейджинга позволило в значительной мере расширить возможности изначально симплексной (односторонней) пейджинговой связи. Пользователь твейджера в ответ на полученное сообщение выби­рает подходящий ответ и отсыла­ет его адресату. Для массовых пользова­телей выпускается твейджер SPR-8000 фирмы Samsung. Существу­ет модель твейджера фирмы Nexus Telocation Systems (Израиль), специально разработанная для применения в автоматизи­рованных системах промышлен­ного мониторинга или охраны объектов. Данный тип твейдже­ра не имеет экрана и органов ручного управления, ему требу­ется внешнее питание напряже­нием 12 В, но он обладает все­ми возможностями полноцен­ной связи с внешними устрой­ствами, такими как компьютер через интерфейс RS-422. Это позволяет строить на его основе автоматизиро­ванные системы связи и управле­ния. Областями применения этих систем могут быть: автоматичес­кое определение местоположения подвижных объектов, управление обеспечением безопасности по­движных и стационарных объек­тов, дистанционное управление включением и выключением раз­личных приборов, автоматичес­кое снятие показаний удаленных датчиков и т.д.

Еще одно направление раз­вития пейджинговой связи - спутниковый пейджинг. С 1998 г. в России существует воз­можность полного международ­ного пейджингового роуминга через спутниковую систему связи IRIDIUM. По существу он является многочастотным синтезаторным приемником спутникового сиг­нала, способным принимать сообщения, приходящие по одному из четырех частотных каналов в диапазоне 1,6 ГГц. Об­ладая возможностью измерения уровня сиг­нала из эфира, он поз­воляет осуществлять индикацию зоны уве­ренного приема.
^

Сети транкинговой связи

Организация транкинговой радиосвязи


Транкинговая система радиосвязи (TCP) — это система, в которой используется принцип равной доступности каналов для всех абонентов или групп абонентов. Этот принцип давно и повсеместно используется в телефонных сетях, откуда в радиосвязь и пришло слово "trunk" (пучок, т.е. пучок равнодоступных каналов). Транковые системы создавались как ведомственные и хорошо себя зарекомендовали в эксплуатации в течение 30 лет, однако, на текущий момент транкинговые системы являются морально устаревшими.

Суть транкинга заключается в следующем. Рассмотрим ситуацию, когда имеется три радиочастотных канала, каждый из которых жестко закреплен за несколькими группами пользователей. Для такой системы (точнее, трех раздельных систем) типична ситуация: канал 1 перегружен и абонент этой группы не может выйти на связь, в то же время каналы 2 и 3 не используется. В случае, когда три канала объединены в единую систему (т.е. присутствует элемент централизации – базовая станция) и равнодоступны для любой группы абонентов, тот самый абонент имеет возможность установления связи.

Основной, определяющей название, функцией оборудования TCP является автоматическое предоставление свободного радиоканала по требованию абонента радиостанции и переключение на этот канал вызываемого абонента или группы абонентов. Кстати, с этой точки зрения беспроводные телефоны (такие, как PANASONIC KX-T9080), работающие на общем наборе радиоканалов, также в совокупности образуют TCP.

Транкинговые сети связи предоставляют широкий спектр услуг, а именно:

  • внутренние вызовы (индивиду­альный и групповой);

  • роуминг;

  • передача данных;

  • режим непосредственной связи;

  • тарификация;

  • удаленное управление абонентскими радиостанциями.

Системы профессиональной радиосвязи характеризуются большим радиусом действия, поскольку, даже в простейшей TCP, связь радиостанций между собой осуществляется через ретрансляторы базовой станции (БС). Кроме того, многозоновые TCP имеют в своем составе несколько (от единиц до сотен) БС, каждая из которых обслуживает свою зону. При этом система установит соединение между радиостанциями независимо от их местоположения и, как правило, совершенно прозрачно для пользователей вызываемой и вызывающей радиостанций.

Кроме вызова группы радиостанций (имеется во всех TCP), почти все системы обеспечивают индивидуальный вызов конкретной радиостанции. При этом многие современные TCP обеспечивают разделение всего парка радиостанций на отдельные отряды. Отряд - это совокупность радиостанций, принадлежащих определенной организации, внутри которого осуществим индивидуальный и групповой вызов. Предполагается, что вызовы между отрядами в большинстве случаев запрещены. Таким образом, каждая из организаций, пользующихся TCP, может иметь как бы свою изолированную систему связи.

Как правило, TCP обеспечивают связь радиостанции с абонентами городской и нескольких учрежденческих телефонных сетей, причем их подключение к таким сетям может осуществляться как простейшим способом по абонентским линиям (аналогично офисным АТС), так и по соединительным линиям. В последнем случае, с точки зрения нумерации абонентов, TCP становится частью телефонной сети города или учреждения.

Доступ к каждому виду услуг, предоставляемых системой, обычно программируется индивидуально для каждого абонента. Кроме того, программируется предельное время разговора и приоритет абонента. TCP имеют также защиту от несанкционированного доступа в систему. Все радиостанции, рассчитанные на работу в TCP, имеют возможность переключения в режим обычной радиостанции.

Оборудование любой TCP рассчитано на коммерческую эксплуатацию, поэтому обязательно обеспечивает учет времени использования системы каждым абонентом (тарификацию).

В таблице 4.1 приведены характеристики некоторых TCP, заложенные в стандарты. Оборудование TCP зачастую позволяет расширить эти возможности (несколько банков каналов в SmarTrunkII, многозоновая работа в LTR и т.п.).

Таблица 4.1

Основные характеристики ТСР

Характеристика

Стандарт TCP

SmarTrunk II

LTR

МРТ1327

TETRA

Способ передачи речи

Аналоговый

Аналоговый

Аналоговый

Цифровой

Структура системы

Однозоновая

Однозоновая

Многозоновая

Многозоновая

Принцип действия

Сканирующий

Распределенный управляющий канал

Выделенный управляющий канал

Выделенный управляющий канал

Скорость обмена управляющей информацией, бит/с

560

300

1200

7200

Время установления соединения, с

0,8 + 0,2 * N где N - число каналов

0,3

0,4

0,3

Количество каналов

16

300

1024

Нет данных

Количество абонентов или групп

10000

7500

1 000 000

Нет данных

Ширина полосы в эфире, кГц/канал

12,5; 25

12,5; 25

12,5; 25

25 кГц на 4 канала

Постановка на очередь

Нет

Нет

Да

Да

Индивидуальный вызов

Да

Нет

Да

Да

Передача коротких данных

Нет

Нет

Да

Да

Передача данных по разговорным каналам

С дополнитель­ным оборудова­нием

С дополнитель­ным оборудова­нием

1200 б/с, с дополнительным оборудова-нием

7,2-28,8 кб/с при занятии 1-4 каналов


Как следует из таблицы, наиболее впечатляющими возможностями обладает стандарт TETRA, что и неудивительно - он разработан с учетом опыта эксплуатации существующих TCP.

В настоящее время наиболее эффективными в условиях России являются системы SmarTrunkII и МРТ1327.
^

Классификация сетей транкинговой связи


Транкинговые системы радиосвязи классифицируют по следующим признакам.

1) По методу передачи речевой информации: аналоговые и цифровые. Передача речи в радиоканале аналоговых систем осуществляется с использованием частотной модуляции, шаг сетки частот обычно составляет 12,5 кГц или 25 кГц. Для передачи речи в цифровых системах используются различные типы вокодеров, преобразующих аналоговый речевой сигнал в цифровой поток со скоростью до 4,8 кбит/с.

2) ^ В зависимости от количества БС и общей архитектуры: однозоновые или много­зоновые системы. В системах первого типа имеется одна БС, в системах второго типа - не­сколько БС с возможностью роуминга.

3) ^ По методу объединения БС в многозоновых системах. БС могут объединяться с по­мощью единого коммутатора (системы с централизованной коммутацией), или соединяться друг с другом непосредственно, или через системы с распределенной коммутацией (СОП).

4) ^ По типу многостанционного доступа: FDMA, FDMA+TDMA. В большинстве ТСР используется многостанционный доступ с частотным разделением (FDMA), включая цифро­вые системы. Комбинация FDMA и многостанционного доступа с временным разделением (TDMA) используется в системах стандарта TETRA.

5) ^ По способу поиска и назначения канала: системы с децентрализованным (СДУ) и централизованным (СЦУ) управлением. В СДУ процедуру поиска свободного канала выпол­няют абонентские радиостанции (АР). В этих системах ретрансляторы БС обычно не связаны друг с другом и работают независимо. Особенностью СДУ является относительно большое время установления соединения между абонентами, растущее с увеличением числа ретрансляторов. Такая зависимость вызвана тем, что АР вынуждены непрерывно последовательно скани­ровать каналы в поисках вызывного сигнала (последний может поступить от любого ретранслятора) или свободного канала (если абонент сам посылает вызов). Представителями данного класса являются системы стандарта SmarTrunk.

В СЦУ поиск и назначение свободного канала производится на БС. Для обеспечения нормального функционирования таких систем организуются каналы двух типов: рабочие (трафика, разговорные) и управления. Все запросы на предоставление связи направляются по каналу управления, по этому же каналу БС извещает абонентские устройства о назначении канала, отклонении запроса, или о постановке запроса в очередь.

6) ^ По типу канала управления (КУ). Во всех ТСР каналы управления являются цифро­выми. По принципу действия КУ можно выделить три типа:

  • сканирующие TCP;

  • TCP с распределенным управляющим каналом;

  • TCP с выделенным управляющим каналом.

Рассмотрим подробнее каждый из типов КУ.

Сканирующие TCP

Подобные системы несправедливо именуют псевдотранкинговыми. В таких системах радиостанция при вызове сама ищет незанятый канал и занимает его. В дежурном режиме радиостанция непрерывно перебирает (сканирует) все каналы системы, проверяя, не вызывают ли ее на одном из них. К таким TCP относятся некогда распространенная в СССР система "Алтай", а также система SmarTrunk II.

Сканирующие TCP просты и дешевы. В этих системах возможна полная независимость каналов БС друг от друга, поскольку их объединение в общую TCP происходит на уровне абонентской радиостанции. Это обуславливает высокую надежность и живучесть сканирую­щих TCP.

Однако таким TCP присущ ряд принципиальных недостатков. С ростом количества каналов быстро возрастает длительность установления соединения в такой системе, так как она не может быть меньше длительности полного цикла сканирования. Реально к этому добавляется еще и длительность поиска свободного канала вызывающей радиостанции. Кроме того, в сканирующих TCP затруднительна реализация многих современных требований, в числе которых многозоновость, гибкая и надежная система приоритетов, постановка на очередь при занятости системы или вызываемого абонента и т.д.

Таким образом, сканирующая TCP идеально подходит в качестве небольшой (1-8 каналов, до 200 абонентов) однозоновой системы связи, к которой предъявляются минимальные требова­ния. Это и обусловило в последние годы широкое распространение систем SmarTrunk II по России и странам СНГ.

^ TCP с распределенным управляющим каналом

Такими являются распространенная в США система LTR, разработанная еще в конце семидесятых годов (фирмой E.F. Johnson), и ее современная модификация ESAS (фирма UNIDEN). В этих TCP управляющая информация передается непрерывно по всем каналам, в том числе и по занятым. Это достигается использованием для ее передачи частот ниже 300 Гц. Каждый канал является управляющим для радиостанций, закрепленных за ним. В дежурном режиме радиостанция прослушивает свой управля­ющий канал. В этом канале БС непрерывно передает номер свободного канала, который радиостанция может использовать для передачи. Если же на каком-либо канале начинается передача, адресованная одной из радиостанций, то информация об этом передается на ее управляющем канале, в результате чего эта радиостанция переключается на канал, где происходит вызов.

Такие TCP обладают рядом достоинств, присущих TCP с управляющим каналом, не требуя в то же время выделения частот для него. В системе LTR установление соединения происходит настолько быстро, что оно осуществляется каждый раз при включении передатчика станции, т.е. в паузах разговора канал не занят.

Однако при выходе из строя какого-либо канала в системе LTR происходит отказ всех радиостанций, для которых он является управляющим. Кроме того, в таких TCP скорость передачи управляющей информации крайне ограничена.

Это затрудняет реализацию многих требований, предъявляемых к современным TCP, в том числе и многозоновости. Передача информации на частотах ниже 300 Гц одновременно с речью делает такие системы весьма критичными к точности регулировки. Все это привело к тому, что TCP с распределенным управляющим каналом в настоящее время не разрабатываются. Исключение составляет лишь ESAS, в котором используется данный принцип ради совместимости с LTR.

^ TCP с выделенным управляющим каналом

Для аналоговых систем речь идет о частотном канале, для цифровых - с временным разделением каналов - о временном слоте. В таких TCP радиостанция непрерывно прослушивает управляющий канал ближайшей к ней БС. При поступлении вызова БС передает информацию об этом по управляющему каналу, вызываемая радиостанция подтверждает прием вызова, после чего БС выделяет один из разговорных каналов для соединения и информирует об этом по управляющему каналу все участвующие в соединении радиостанции. Далее - БС переключаются на указанный канал и остаются на нем до окончания соединения. В то время, когда управляющий канал свободен, радиостанции могут передавать свои запросы на установление соединения. Некоторые типы вызовов (например, передача коротких пакетов данных между радиостанциями) могут осуществляться вообще без занятия разговорного канала.

TCP с выделенным управляющим каналом в наибольшей степени отвечает современным требованиям. В них легко реализуются многозоновость (радиостанция выбирает БС с лучше всего принимаемым управляющим каналом) и другие функции (в т.ч. постановка вызовов на очередь при занятости системы или вызываемого абонента), что переводит такие TCP из класса систем с отказом при занятости в класс систем с ожиданием. Тем самым не только повышается комфортность работы пользователя, но и, главное, увеличивается пропускная способность системы. В системах с отказом при занятости для обеспечения приемлемого качества сервиса в любой момент времени должен простаивать хотя бы один канал, чтобы абонент мог произвести вызов. В системе с ожиданием загружены могут быть все каналы - вызывающему абоненту придется немного подождать в очереди.

Однако выделение отдельного управляющего канала имеет свои недостатки. Во-первых, это худшее использование частотного ресурса. В большинстве систем этот недостаток смягчается возможностью перевода управляющего канала в разговорный режим при перегрузке системы. Во-вторых, выделенный управляющий канал является уязвимым местом TCP — при отсутствии специальных мер отказ оборудования БС для этого канала означает отказ всей БС. К тому же результату приводит и появление помехи на частоте приемника управляющего канала БС. По этой причине при разработке TCP с выделенным управляющим каналом автоматическому контролю за работой оборудования БС уделяется особое внимание. При обнаружении отказа или длительной помехи на частоте приема БС делает управляющим другой, исправный канал.

Выделенный управляющий канал предусматривается большинством современных стандартов на TCP - как закрытых, так и открытых (МРТ1327), а также перспективным стандартом TETRA.

7) ^ По способу удержания канала. ТСР позволяют абонентам удерживать канал связи на протяжении всего разговора или только на время передачи. Первый способ, называемый также транкингом сообщений, наиболее традиционен для систем связи и обязательно ис­пользуется во всех случаях применения дуплексной связи или соединения с ТфОП.

Второй способ может быть реализован только при использовании полудуплексных ра­диостанций (PC), в которых передатчик включается только на время произнесения абонен­том фраз разговора. В паузах между окончанием фраз одного абонента и началом ответных фраз другого передатчики PC выключены. Значительная часть ТСР эффективно использует такие паузы, освобождая канал немедленно после окончания работы передатчика АР. Репли­ки одного и того же разговора могут передаваться по разным каналам. Такой метод обслужи­вания, предусматривающий удержание канала только на время передачи, называется тран­кингом передачи. Платой за высокую эффективность данного метода служит снижение ком­фортности переговоров - в состоянии высокой нагрузки канал предоставляется с некоторой задержкой, что приводит к фрагментарности и раздробленности разговора.
^

Принципы построения транкинговых сетей


На рисунке 4.1 представлена обобщенная структурная схема однозоновой ТСР. В состав БС, кроме радиочастотного оборудования (ретрансляторы, устройство объединения радио­сигналов, антенны) входят также коммутатор, устройство управления (УУ) и интерфейсы к внешним сетям.

Ретранслятор - набор приемопередающего оборудования, обслуживающего одну пару несущих частот. До последнего времени в подавляющем большинстве ТСР одна пара несущих означала один канал трафика (КТ). В настоящее время, с появлением систем стан­дарта ТЕТRА и системы EDACS ProtoCALL, предусматривающих временное уплотнение, один РТ может обеспечить два или четыре КТ.

Антенны БС, как правило, имеют круговую диаграмму направленности. При располо­жении БС на краю зоны применяются направленные антенны. БС может располагать как единой приемопередающей антенной, так и раздельными антеннами для приема и передачи. В некоторых случаях на одной мачте может размещается несколько приемных антенн для борьбы с замираниями, вызванными многолучевым распространением.

Устройство объединения радиосигналов позволяет использовать одно и то же антен­ное оборудование для одновременной работы приемников и передатчиков на нескольких частотных каналах. РТ работают только в дуплексном режиме, разнос частот приема и пере­дачи составляет от 45 МГц до 3 МГц.


Коммутатор в однозоновой ТСР обслуживает весь ее трафик, включая соединение абонента с ТфОП и все вызовы, связанные с передачей данных.

Устройство управления обеспечивает взаимодействие всех узлов БС. Оно также обра­батывает вызовы, осуществляет аутентификацию вызывающих абонентов, ведение очередей вызовов, внесение записей в БД повременной оплаты. В некоторых системах УУ регулирует максимально допустимую продолжительность соединения с ТСР. Как правило, используются два варианта регулировки: уменьшение продолжительности соединения в заранее заданные часы наибольшей нагрузки, или адаптивное изменение в зависимости от текущей нагрузки.

Интерфейс к ТфОП реализуется в ТСР различными способами. В недорогих системах (например, SmarTrunk) подключение производится по двухпроводной коммутируемой линии. Более современные ТСР имеют в составе интерфейса к ТфОП аппаратуру прямого набора номера, обеспечивающую доступ к абонентам транкинговой сети с использованием стандартной нумерации АТС. Ряд систем использует цифровое ИКМ-соединение с аппаратурой АТС.

Одной из основных проблем при регистрации и использовании транкинговых систем в России является проблема их сопряжения с ТфОП. При исходящих вызовах транкинговых абонентов в телефонную сеть сложность заключается в том, что некоторые транкинговые системы не могут набирать номер в декадном режиме по абонентским линиям в электроме­ханических АТС. Таким образом, необходимо использовать дополнительное устройство пре­образования тонального набора в декадный. Входящая связь от абонентов ТфОП к радиоабонентам оказывается также проблематичной по ряду причин. Большинство транкинговых сетей сопрягаются с телефонной сетью по двухпроводным абонентским линиям. В этом случае после набора номера ТфОП требуется донабор номера радиоабонента. Однако после полного набора номе­ра абонентской липни и замыкания шлейфа управляющим устройством транкинговой систе­мы телефонное соединение считается установленным, и дальнейший набор номера в им­пульсном режиме затруднен, а в некоторых случаях невозможен. Применяемый в системе SmarTrunk II детектор «щелчков» не гарантирует правильности импульсного донабора, так как качество приходящих из абонентской линии «импульсов-щелчков» зависит от ее элек­трических характеристик, длины и т.д.

Телефонный интерфейс ELTA 200 предназначен для сопря­жения транкинговых систем связи разных типов с ТфОП; интерфейс позволяет сопря­гать транкинговые системы связи и ТфОП по цифровым каналам (2,048 Мбит/с), трехпроводным соединительным линиям с декадным набором номера или по четырехпроводным каналам тональной частоты с системами сигнализации различных типов с ведомственными телефонными сетями.

Соединение с ТфОП является традиционным для ТСР, но в последнее время все более возрастает число приложений, предполагающих передачу данных, всвязи с чем наличие интерфейса к сетям передачи данных (СПД) также становится обязательным.

Терминал технического обслуживания и эксплуатации располагается, как правило, на БС. Терминал предназначен для кон­троля за состоянием системы, проведения диагностики неисправностей, тарификации, внесе­ния изменений в БД абонентов. Большинство ТСР имеют возможность удаленного подклю­чения терминала через ТфОП или СПД.

Необязательными, но характерными элементами ТСР являются диспетчерские пульты (ДП). ТСР используются в первую очередь потребителями, работа которых требует наличия диспетчера - службы охраны, скорая медицинская помощь, пожарная охрана, транспортные компании, муниципальные службы. ДП могут включаться в систему по абонентским радио­каналам, или подключаться по выделенным линиям непосредственно к коммутатору БС. В рамках одной ТСР может быть организовано несколько независимых сетей связи. Пользова­тели каждой из таких сетей не будут замечать работу соседей и не смогут вмешиваться в ра­боту других сетей. Поэтому в одной ТСР могут работать несколько ДП, различным образом подключенных к ней.

Абонентское оборудование ТСР включает в себя широкий набор устройств. Как прави­ло, наиболее многочисленными являются полудуплексные PC, так как они в наибольшей степени подходят для работы в замкнутых группах. В основном это функционально ограниченные устройства, не имеющие цифровой клавиатуры. Их пользователи имеют возможность связы­ваться лишь с абонентами внутри своей рабочей группы, а также посылать экстренные вызовы диспетчеру. Существуют и полудуплексные PC с широким набором функций и цифровой клавиату­рой, но они, будучи существенно дороже, предназначены для более узкого круга абонентов.

В ТСР постепенно находит применение новый класс абонентских устройств - дуп­лексные PC, напоминающие сотовые телефоны, но обладающие значительно большей функ­циональностью по сравнению с последними.

Как полудуплексные, так и дуплексные транкинговые PC выпускаются не только в портативном, но и в автомобильном исполнении. Как правило, выходная мощность передат­чиков автомобильных PC выше.

Относительно новым классом устройств для ТСР являются терминалы ПД. В аналого­вых ТСР терминалы ПД - это специализированные радиомодемы, поддерживающие соответ­ствующий протокол радиоинтерфейса. Для цифровых систем более характерно встраивание интерфейса ПД в АР различных классов. В состав автомобильного терминала ПД часто вклю­чают спутниковый навигационный приемник системы Global Position System (GPS), предназна­ченный для определения текущих координат и последующей передачи их диспетчеру на пульт.

В ТСР используются также стационарные PC, преимущественно для подключения ДП. Выходная мощность передатчиков стационарных PC приблизительно такая же, как у автомобильных.

Архитектура многозоновых ТСР может строиться по двум принципам. Если опреде­ляющим фактором является стоимость оборудования, используется распределенная межзо­нальная коммутация. Каждая БС в такой системе имеет свое собственное подключение к ТфОП. При необ­ходимости вызова из одной зоны в другую он производится через интерфейс ТфОП, включая процедуру набора телефонного номера. Кроме того, БС могут быть непосредственно соеди­нены с помощью физических выделенных линий связи.

Использование распределенной межзональной коммутации целесообразно лишь для систем с небольшим количеством зон и с невысокими требованиями к оперативности межзо­нальных вызовов (особенно в случае соединения через коммутируемые каналы ТфОП). В системах с высоким качеством обслуживания используется архитектура с ЦК. Структура многозоновой ТСР с ЦК изображена на рисунке 4.2.



Основной элемент этой схемы - межзональный коммутатор. Он обрабатывает все ви­ды межзональных вызовов, т.е. весь межзональный трафик проходит через один коммутатор, соединенный с БС по выделенным линиям. Это обеспечивает быструю обработку вызовов, возможность подключения централизованных ДП. Информация о местонахождении абонен­тов системы с ЦК хранится в единственном месте, поэтому ее легче защитить. Кроме того, межзональный коммутатор осуществляет также функции централизованного интерфейса к ТфОП и СКП, что позволяет при необходимости полностью контролировать как речевой трафик ТС, так и трафик всех приложений ПД, связанный с внешними СПД, например Ин­тернет. Таким образом, система с ЦК обладает более высокой управляемостью.

^

Спутниковые системы связи

Классификация систем спутниковой связи


Сети спутниковой связи обладают преимуществом перед другими системами связи: спутниковая связь не имеет ограничений по привязке к местности и охватывает местности, где построение других систем связи нерентабельно или невозможно: морские транспортные магистрали, незаселённые или молозаселенные территории (в частности, северные территории России), местах разрыва наземной инфраструктуры телекоммуникаций.

В зависимости от вида предоставляемых услуг сети спутниковой связи можно разделить на следующие классы:

  • речевая (радиотелефонная) связь;

  • пакетная передача данных;

  • определение местоположения потребителей;

  • телевещание.

Радиотелефонная связь использует протоколы цифровой передачи сообщений, удовлетворяющие международным стандартам на спутниковую связь. В частности, передача сообщений должна осуществляться в реальном масштабе времени, задержка сигнала не должна превышать 0,3 с, недопустимо прерывание сеанса связи. Обеспечение перечисленных требований формируется посредством: высокоточной системой ориентации спутников для удержания луча антенн в заданном направлении, достаточным для сплошного (непрерывного) покрытия зоны обслуживания количеством спутников в системе и количеством многолучевых антенных систем (работающих на частотах выше 1,2 ГГц), достаточным количеством наземных узловых (шлюзовых) станций.

Системы пакетной передачи данных обеспечивают передачу любых данных в цифровом виде: телексные, факсимильные сообщения, компьютерные данные и т.д.; как правило, в таких системах отсутствуют требования к оперативности доставки сообщений, скорость передачи составляет от единиц до сотен килобайт в секунду. В настоящее время развернуты несколько систем пакетной передачи данных для организации доступа в Internet.

Для определения местоположения абонента развернута GPS система на базе спутниковой группировки ГЛОНАСС/НАВСТАР. Как правило, GPS система используется в промышленных и военных целях: определение координат морских судов, самолетов, железнодорожных и автомобильных транспортов специального назначения, находит применение в геологоразведовательных экспедициях и т.п.

Сеть спутникового телевещания охватывает практичести всю территорию материков и насчитывает сотни телевизионных каналов, сгруппированных по тематикам: новости, спорт, культура, развлекательное телевидение и т.д. Помимо сервиса в виде избыточного количества телеканалов достоинством сетей спутникового телевещания является охват малозаселённых территорий, где отсутствуют (в виду их нерентабельности) ретрансляционные сети телевещания.

Для построения спутниковых систем связи используют орбитальные группировки, расположенные на разных по высоте орбитах (классификация по высоте орбиты):

  • высокоорбитальные, или геостационарные – круговые экваториальные орбиты высотой около 40 000 км;

  • среднеорбитальные – с круговой орбитой высотой порядка 10 000 км;

  • низкоорбитальные – круговые орбиты высотой 700-1500 км.

Высота орбит определятся многими факторами: энергетические характеристики радиолиний (мощность уменьшается пропорционально квадрату расстояния), задержкой распространения радиоволн, размеры и расположение обслуживаемых территорий, угол места спутника, способ организации связи и т.д.

Геостационарные орбитальные группировки имеют период обращения спутника вокруг Земли 24 часа, т.е. спутник является неподвижным относительно поверхности Земли, как бы «висит» над одной и той же точкой экватора. Помимо этого, большое соотношение высоты орбиты и радиуса Земли позволяет трем геостационарным спутникам охватить практически полностью поверхность планеты (за исключением полюсов). Однако геостационарные космические группировки имеют значительный недостаток – большое время распространения радиосигнала, что приводит к задержкам передачи сообщений во время сеанса связи.

Спутники, находящиеся на низких орбитах, не имеют ощутимой задержки распространения радиосигнала. Однако в зону видимости абонента попадают лишь на 8-12 минут, что требует для обеспечения непрерывности связи наличие большого количества спутников, как бы «передающих по эстафете» абонента посредством наземных шлюзовых станций или межспутниковой связи.

С увеличением высоты орбиты увеличивается зона видимости и, соответственно, время нахождения спутника в зоне видимости, что позволяет уменьшить количество спутников в группировке. Высота орбит среднеорбитальных систем связи является компромиссным значением между параметрами: количество спутников в группировке и время распространения сигнала (при скорости спутника 7 км/с - порядка 130 мс).

Системы спутниковой связи имеют много общего с сотовыми системами связи: территория обслуживания, как правило, формируется посредством нескольких радиолучей, с той лишь разницей, что размер соты составляет несколько сотен километров, а роль базовых станций выполняют спутники (или многолучевые антенны). Многолучевые антенны используют в геостационарных (иногда – в среднеорбитальных) системах связи с целью достижения необходимой пропускной способности сети. Абонентские терминалы речевой связи оборудованы вокодерами, обеспечивающими переменную скорость передачи речевого сигнала; передача информации ведётся со скоростью порядка 1200-9600 бит/с. Геостациионарные системы связи в большинстве своём используют протокол TDMA, низкоорбитальные – CDMA (например: Globalstar, Odyssey). В настоящее время активно ведутся разработки по интеграции сотовых систем связи и спутниковых систем связи.
^

Принципы построения спутниковых систем связи


Спутниковая сеть связи (рисунок 5.1) включает в себя:

  • космический сегмент, состоящий из нескольких спутниковых ретрансляторов;

  • наземный сегмент, (центр управления орбитальными спутниками, шлюзовые станции);

  • абонентский сегмент (абонентские терминалы);

  • интерфейсы сопряжения шлюзовых станций с наземными сетями связи.

С целью обеспечения отсутствия взаимных помех систем спутниковой связи использование частот и расположение спутниковых ретрансляторов регламентируется Международным консультативным комитетом по радио и Международным комитетом по регистрации частот. Диапазоны частот, выделенные под типы связи (см. рисунок 5.1) представлены в таблице 5.1.

Космический сегмент включает спутниковую группировку, состоящую из нескольких спутниковых ретрансляторов, равномерно размещенных на орбитах. Космические аппараты (КА) включают:

  • центральный процессор;

  • радиоэлектронное оборудование бортового радиотрансляционного комплекса;

  • антенные системы;

  • системы ориентации и стабилизации;

  • двигательные установки;

  • система электропитания (аккумуляторы и солнечные батареи).


Т
аблица 5.1


Распределение частот по типам связи

Диапазон

Полоса частот,

ГГц

L

1,452 - 1,500

1,61 - 1,71

S

1,93 - 2,70

C

3,40 - 5,25

5,725 - 7,075

Ku

10,70 - 12,75

12,75 - 14,80

Ka

14,40 - 26,50

27,00 - 50,20

K

84,00 - 86,00

Количество спутников в орбитальной группировке определяется из соображений полного охвата обслуживаемой территории. Например, для низкоорбитальной группировки с орбитой 1000 км и при скорости спутника 7 км/с время видимости спутника составляет 14 минут; после этого спутник «уходит» за линию горизонта и, для обеспечения непрерывности связи, на смену ему должен приходить следующий, за ним – третий и т.д. Т.о. количество спутников будет определяться отношением периода обращения спутника вокруг Земли к периоду нахождения спутника в зоне видимости. С увеличение высоты орбиты увеличивается время видимости спутника, соответственно, уменьшаются требования к численности орбитальной группировки, однако, из-за увеличения дальности связи требуется более сложное и дорогостоящее оборудование. Численность орбитальной группировки определяется компромиссом между стоимостью и объёмом оказываемых услуг и простотой и стоимостью подвижного спутникового терминала.

Обеспечение связи абонента, находящегося в зоне видимости одного спутника, с абонентом, находящимся в зоне видимости другого спутника, организуется посредством связи между спутниковыми ретрансляторами (по цепочке, пока информация не дойдёт до спутникового ретранслятора второго абонента). В некоторых системах эту функцию выполняют шлюзовые станции, транслирующие информацию с одного спутника на другой.

Наземный сегмент включает:

  • центр управления системой;

  • центр запуска КА;

  • центр управления связью;

  • шлюзовые станции.

Центр управления системой осуществляет слежение за КА, расчёт их координат, сверку и коррекцию времени, диагностику бортовой аппаратуры, передачу командной информации и т.д. функции управления осуществляются на основе телеметрической информации, получаемой от каждого КА группировки. Благодаря использованию территориально разнесённых контрольно-измерительных станций центр управления системой с достаточно высокой оперативностью выполняет: контроль запуска и точность вывода КА на заданную орбиту, контроль состояния каждого КА, контроль и управление орбитой каждого КА, разрешение нештатных ситуаций, вывод КА из состава орбитальной группировки.

Центр запуска КА определяет программу запуска, осуществляет сборку ракеты-носителя, установку полезной нагрузки КА, предстартовую проверку; после запуска ракеты-носителя - траекторные измерения на активном участке полёта, которые передаёт в центр управления системой для корректировки последующей траектории.

Центр управления связью планирует использование ресурса спутника, посредством шлюзовых станций контролирует и управляет связью. В нормальных условиях работы орбитальной группировки связь со шлюзовой станцией и пользовательскими терминалами осуществляется автономно. В нештатных ситуациях (неработоспособность КА, оборудования спутникового ретранслятора или шлюзовой станции) центр переходит в режим поддержания связи с повышенной нагрузкой, или проводит реконфигурирование сети.

Абонентский сегмент определяется номенклатурой предоставляемых спутниковой системой связи услуг: связь абонентов спутниковой сети с абонентами спутниковой сети, ТфОП, пейджинговых и сотовых сетей, определение местоположения (координат) абонентов.

Абонентское оборудование разделяют на переносные спутниковые терминалы (весом до 700 г) и мобильные терминалы (весом порядка 2,5 кг). Спутниковые телефоны оборудованы антенной, не требующей ориентации на спутниковый ретранслятор. При установлении связи (что занимает порядка 2 с) система автоматически определяет свободный канал и закрепляет его за абонентом на период сеанса связи. Как правило, в телефонах используется временное или частотное уплотнение каналов, хорошо зарекомендовавшее себя в сотовой связи. Некоторые спутниковые телефоны способны работать с сотовыми сетями связи (устанавливается соответствующая SIM-карта).
^

Краткий обзор спутниковых систем мобильной связи

Teledesic


Teledesic - широкополосной низкоорбитальной спутниковой коммуникационной системе - выделены две полосы по 500 МГц в Ка-диапазоне (20-30 ГГц). Up-link: 28,6-29,1 ГГц; down-link: 18,8-19,3 ГГц.

Система состоит из 288 спутников на 12 орбитах. Все эти спутники, связанные в единую сеть, должны организовать систему "космического Интернета" (Internet in the sky). В пределах зоны радиусом 100 км система сможет поддерживать скорость 500 Мбит/с на и от пользователя. Большинство пользовательских терминалов способны поддерживать скорость 64 Мбит/с в обоих направлениях. Базовым режимом, то есть наиболее массовым, по оценкам экспертов компании, будет режим c up-link скоростью 2 Мбит/с и down-link скоростью 64 Мбит/с.

Celestri


Особенность этой системы заключается в совместном использовании низкоорбитальных и геостационарных спутников. Спутники, находящиеся на низких орбитах, будут осуществлять региональную трансляцию, геостационарные спутники — глобальную. Эта система является "второй серией", которую решила продемонстрировать компания Motorolla вслед за уже широко известным Iridium'ом. Если Iridium осуществляет телефонную и пейджинговую связь, то система Celestri должна предоставить своим пользователям полный набор мультимедийных услуг.

Низкоорбитальная группировка будет состоять из 63 спутников, расположенных на 7 орбитах. Высота орбиты - 1400 км, наклонение - 48°, период обращения - 1,9 часа. Каждый спутник будет общаться с пользователями со скоростью 80 Гбит/с. Минимальный срок службы каждого аппарата - 8 лет. Частотный диапазон: Up-link 28,6-29,1 и 29,5-30,0 ГГц; Down-link 18,8-19,3 и 19,7-20,2 ГГц; скорость межспутниковой связи 4,5 Гбит/с.

Геостационарная группировка состоит из девяти спутников, каждый из которых будет формировать 4 широких луча и 84 узких. Скорость связи в каждом луче - 2,8 Гбит/с. Набор пользовательской аппаратуры предусматривает терминалы со скоростями от 64 Кбит/с до 155 Мбит/с. Стоимость самого дешевого комплекта оборудования не должна превышать 750 долларов.

Ellipso


Ellipso является гибридной системой, включающей 17 спутников в двух группировках: средне- и низко-орбитальной.

Создатели системы поставили себе задачу минимизировать стоимость одной минуту, для чего они пошли по пути достижения максимальной эффективности системы минимальными средствами. То есть сделали так, чтобы спутники обслуживали заселенные области, а время пролета над малонаселенными областями было минимизировано.

Спутниковая группировка разделена на две половины: Ellipso-Boreal и Ellipso-Concordia. Первая предназначена для обслуживания Северного полушария, вторая - южного. В системе Ellipso-Boreal - 10 спутников, выведенных на эллиптические орбиты (апогей - 7846 км, перигей - 520 км, наклонение - 116,5°, период обращения - 3 часа). Апогей орбиты находится в северном полушарии, таким образом, большую часть периода спутник обслуживает северное полушарие. Система Ellipso-Concordia состоит из шести спутников, находящихся на круговых экваториальных орбитах высотой 8040 км. Эта система будет обслуживать южное полушарие, причем только до 47° ю.ш. Все территории, находящиеся южнее, по замыслу создателей, не заселены и в мобильной связи не нуждаются. Кстати, на эту орбитальную схему создателями получен патент. По их словам, данное расположение орбит повышает эффективность системы чуть ли не на 20 % по сравнению с системой, расположенной на круговых орбитах.

Globalstar


Система состоит из 56 спутников на восьми орбитах. При этом шесть спутников на каждой орбите являются рабочими, а по одному - резервными. Высота орбиты - 1414 км, наклонение - 52°. Масса каждого спутника - 450 кг, минимальный срок службы - 7,5 лет.

Особенность Globalstar заключается в том, что при запросе пользователя сначала будет сделана попытка соединить пользователя через местную сотовую сеть. При невозможности сделать это, сигнал будет отправлен на спутник, с которого - на узловую станцию (Gateway), и далее - в местные коммуникационные сети. Таким образом, Globalstar является не альтернативой традиционным методам связи, а только дополнением. В проект всех остальных систем тоже заложена совместимость с наземными сетями, однако, "врастание" в такой сильной степени характерно только для Globalstar.

Рабочие частоты Globalstar:

  • 1610-1621,35 МГц - Up-link - связь пользователь-спутник

  • 2483,5-2500 МГц - down-link - связь спутник-пользователь

  • 5091-5250 МГц - feeder up-link - связь gateway-спутник

  • 6875-7055 МГц - feeder down-link - связь спутник-gateway
^

Sky Bridge


Спутниковая группировка Sky Bridge включает 64 спутника на низких орбитах, обеспечивая пользователей всем "джентльменским набором" мультимедийных услуг: передача данных, корпоративная связь, выход в Интернет, игры. Каждый спутник формирует 45 лучей, каждый из которых обслуживает область радиусом 350 км. Масса спутника - 800 кг, минимальный срок службы - 8 лет. Пользовательский терминал обеспечивает скорость 64 Мбит/с на линии "спутник-Земля" и 2 Мбит/с на линии "Земля-спутник". Предполагается создать около 200 узловых трансляционных станций, обеспечивающих связь Sky Bridge c местными коммуникационными сетями. Эти же станции будут обеспечивать переключение пользователя со спутника, выходящего из зоны видимости.

ORBICOMM


В 1995 г. на орбиту были выведены два экспериментальных спутника. В настоящее время идет разворачивание системы из 28 КА. Система осуществляет слежение за передвижными объектами (аналогично системе Euteltraks), автоматический сбор информации (пожарные службы, радиационный контроль и др.), корпоративную и персональную связь. Спутники находятся на орбите высотой 825 км. Для трансляции "Земля-спутник" используется диапазон 137-138 МГц и 400 МГц, для трансляции "спутник-Земля" — 148-150 МГц.
^

Спутниковый Internet


Рекомендуемое использование высокоскоростного спутникового Интернета - подключе­ние групп пользователей: корпоративные структуры, небольшой город с медленной телекоммуникационной магистралью. Обычно используется выделенная линия небольшого (32-64 кбит/с) объема; при такой линии и возраста­нии числа пользователей «всё начинает тормозить». Подключение к высо­коскоростному спутниковому Интернету позволяет резко повысить скорость и улучшить качество приема при незначительном увеличении расходов.

Следует отметить, что посредством спутникового Internet принци­пиально невозможна IP-телефония, поскольку сервер обрабатывает только ftp- и http-протоколы.
^

НТВ Internet


В
предоставляемом НТВ-Интернет сервисе (сайт www.ntvi.ru) используется стандартная схема посылки запроса и получения ответа, которая отражена на рисунке 5.2. Работа портала НТВ-Интернет основана на PROXY-сервере, расположенном в Москве.

Для предоставления данного сервиса ра­ботает один транспондер спутника "Бонум" на частоте 12 297 МГц. Ширина транспондера 36 МГц. Не вдаваясь в точные расчеты, ориентиро­вочно можно сказать, что при гарантированной скорости 365 кбит/с одновременно около сотни пользователей могут непрерывно качать информацию. Понятно, что такого не быва­ет: во-первых, не все одновременно, во-вторых, не все время качают файлы. У серви­са EON на настоящий момент порядка 15 000 пользователей. Но при этом уже задействовано 4 или 5 транспондеров спутника "Астра". Предполагается подключить ещё 3 транспондера. Очевидно, с возрас­танием количества пользователей компания НТВ-Интернет будет предпринимать вся­кого рода шаги для обеспечения качества: от ограничения количества пользователей или скорости передачи до ввода новых мощностей. На этот случай резервы у ком­пании есть: еще далеко не все транспондеры спутника используются на полную мощность.

Абонентское оборудование для высокоскоростного доступа в Интернет с возможностью приема телеви­зионных каналов:

  • компьютер;

  • "тарелка" НТВ-Плюс;

  • DVB-карта (двойного назначения: Internet и телевещание);

  • CD-ROM с соответствующим программным обеспечением.

DVB-карта - со встроенным MPEG-2 декодером и тюнером - предназначена для приема данных Интернет и приема некодируемых телевизион­ных программ НТВ-Плюс (НТВ, ТНТ и др.); просмотр программ возможен, как на экране компьютерного монитора, так и на экране обычного телевизора. Эта карта комплектуется также выходом вы­сококачественного стереофонического звуко­вого сигнала.

Перечисленное оборудование предоставляет следующие функции:

  • прием и декодирование Интернет-трафика со спутника;

  • обработка push-потоков;

  • организация обратного потока от пользо­вателя;

  • просмотр на экране компьютерного мо­нитора в полностью масштабируемом окне те­левизионных программ НТВ-Плюс;

  • запись те­левизионных программ на дисковые накопители компьютера - программный видеомагнитофон.

Следует отметить, что такого сервиса, как одновремен­ный прием в компьютер телевидения и Интернет оборудование не предоставляет.

Гарантированная скорость Интернет-трафика составляет 365 кбит/с. Однако, эксперементально было определено: при подключении одного, двух, трех и более файлов наблюдается возраста­ние скорости скачки (920 кбит/с); особой разницы между скоро­стями закачки файлов по FTP и HTTP не замечено. Иногда скорость стабильно держалась (для 10 ftp соединений около 1800-2000 кбит/с.
^

EuropeOnline Internet


EuropeOnline стартовала немного раньше, чем НТВ-Интернет, возможно поэтому он сейчас несколько более распространен. На этот сервис работает пять транспондеров спут­ника "Астра". Для приёма, благодаря "московскому" лучу, достаточно 90-сантиметровой "тарелки". Скорость получения информации гарантирована на уровне 370 кбит/с.

Схема предоставления сервиса представлена на рисуноке 5.2. Несмотря на некоторые различия, по сравнению со схемой предоставления услуг компанией НТВ-Интернет, принцип у них одинаков. Программное обеспечение формирует и отсылает запросы к локальному Интернет-провайдеру, откуда они передаются на PROXY-сервер спутникового Интернет-провайдера, расположенный в Люксембурге. Все ответы на запро­сы, приходящие на сервер от пользователя, транслируются на спутник, а со спутника на компьютер пользователя. По сведениям сайта www.itelsat.com.ua, сервер работает как шлюз с Интернет через канал 622 Мбит (по сведениям из другого сайта www.omicom.ru - 650 Мбит).

Необходимое оборудование такое же, как и у НТВ-Интернет, за исключением спутниковой карты - EuropeOnline предлагает две платы:

  • SkyStar 1 со встроенным MPEG-2 декодером и тюнером (помимо Internet);

  • SkyStar 2 (только Internet).

Web-серфинг и ftp-закочка принципиально отличаются тем, что при web-серфмнге абонент часто посылает запросы, и соотношение времени 1/8 - 1/10 между запросом и получением ответа начинает играть существен­ную роль. Одно дело один раз подготовить информацию и долго ее пере­давать (ftp-закачка), другое дело - прыгать со странички на страничку в поисках какой-либо информации. Уже из принципа передачи (короткий запрос по медленному телефон­ному каналу и длинный ответ через спутниковый канал) ясно, что ftp-закач­ка предпочтительней web-серфинга.

Различий в скорости закачки по FTP- и HTTP-протоколам не замечено. Так, один из файлов, закачиваемых по FTP-протоколу, в роз­ные промежутки времени показывал различную скорость закачки: иногда скорость была выше, чем при закачке по HTTP-протоколу, иногда ниже. Чаще всего оказывается, что no FTP качаются большие файлы, о свойство IP-протокола такое, что скорость наращивается постепенно, и чем длин­нее файл, тем выше будет скорость к концу его закачки (поднимется до максимума). Файлы HTTP-протокола обычно меньше размером, поэтому, скорее всего, скорость просто не успевает подняться до максимальной. Скорость устойчиво возрастает при под­ключении дополнительных файлов, но с какого-то момента перестает ра­сти: скорости выше 950 кбит/с зафиксировать не удавалось.

Сам по себе сервер EuropeOnline насыщен огромным количе­ством информации. Одним из самых интересных вариантов является робота Download Centre EON. Обещана скорость перезагрузки по зака­зу(!) без связи через телефонный канал для запроса (?) в 2-2.5. Мбит/с! Однако, предварительно с компьютером необходимо проделать ряд действий (какие именно, можно уточнить на сервере).
^

Системы сотовой связи

Принципы функционирования систем сотовой связи


В системах радиальной или радиально-зоновой УКВ-связи, характерными представителями которых, в частности, являются широко известная транкинговая система «Алтай» и ее модификации, максимальная дальность действия зависит от мощности передатчика, чувствительности приемника и уровня шума и ограничивается необходимостью прямой видимости между антеннами станций. Передатчики таких (и им подобных) систем для обеспечения максимальной дальности связи имеют достаточно большую мощность. Количество передатчиков, работающих в отведенной полосе частот, ограничено, потому что разнос частот между соседними каналами должен составлять не менее 12,5 кГц (для передачи сообщений одного абонента требуется один частотный канал).

В 70-е годы был предложен новый принцип организации связи, который позволил увеличить число абонентов и повысить качество связи: разбивать обслуживаемую территорию на небольшие участки, называемые сотами или ячейками.
^

Деление обслуживаемой территории на соты


Разделить обслуживаемую территорию на ячейки (соты) можно двумя способами: либо основанным на измерении статистических характеристик распространения сигналов в системах связи, либо основанным на измерении или расчете параметров распространения сигнала для конкретного района. При реализации первого способа вся обслуживаемая территория разделяется на одинаковые по форме зоны, и с помощью закона статистической радиофизики определяются их допустимые размеры и расстояния до других зон, в пределах которых выполняются условия допустимого взаимного влияния. Для оптимального, т. е. без перекрытия или пропусков участков, разделения территории на соты использован шестиугольник, так как, если антенну с круговой диаграммой направленности устанавливать в его центре, то будет обеспечен доступ почти ко всем участкам соты. В этом случае  тщательно измеряют или рассчитывают параметры системы для определения минимального числа базовых станций, обеспечивающих удовлетворительное обслуживание абонентов по всей территории, определяют оптимальное место расположения базовой станции с учетом рельефа местности, рассматривают возможность использования направленных антенн, пассивных ретрансляторов и смежных центральных станций в момент пиковой нагрузки и т. д.
^

Повторное использование частот


Каждая из ячеек обслуживается своим передатчиком с невысокой выходной мощностью и ограниченным числом каналов связи. Это позволяет без помех использовать повторно частоты каналов этого передатчика в другой, удаленной на значительное расстояние, ячейке. Теоретически такие передатчики можно использовать и в соседних ячейках. Но на практике зоны обслуживания сот могут перекрываться под действием различных факторов, например, вследствие изменения условий распространения радиоволн. Поэтому в соседних ячейках используются различные частоты. Обычно антенны базовых станций имеют круговые диаграммами направленности (передача сигнала одинаковой мощности по всем направлениям). Пример построения сот при использовании трех частот f1 - f3 представлен на рисунке 6.1. Именно возможность повторного применения одних и тех же частот определяет высокую эффективность использования частотного спектра в сотовых системах связи.

Группа сот с различными наборами частот называется кластером. Определяющим его параметром является количество используемых в соседних сотах частот. На рисунке 6.1, например, размерность кластера равна трем. Но на практике это число может достигать пятнадцати. Базовые станции удалены друг от друга на расстояние В, называемое «защитным интервалом» (рисунок 6.1).

 

Смежные базовые станции, использующие различные наборы частотных каналов, образуют группу из С станций. Если каждой базовой станции выделяется набор из m каналов с шириной полосы каждого Fк, то общая ширина полосы, занимаемая системой сотовой связи, составит:

Fс = Fк*m*С (5.1)

Таким образом, величина С определяет минимально возможное число каналов в системе, поэтому ее часто называют частотным параметром системы, или коэффициентом повторения частот. Коэффициент С не зависит от числа каналов в наборе и увеличивается по мере уменьшения радиуса ячейки, следовательно, при использовании ячеек меньших радиусов имеется возможность увеличения повторяемости частот. Применение шестиугольных ячеек позволяет минимизировать ширину необходимого частотного диапазона, поскольку такая форма обеспечивает оптимальное соотношение между величинами С и В. Кроме того, шестиугольная форма наилучшим образом вписывается в круговую диаграмму направленности антенны базовой станции, установленной в центре ячейки. Остановимся более подробно на вопросе выбора размера ячейки (радиуса R). Эти размеры определяют защитный интервал В между ячейками, в которых одни и те же частоты могут быть использованы повторно. Заметим, что величина защитного интервала В, кроме уже перечисленных факторов, зависит также от допустимого уровня помех и условий распространения радиоволн. В предположении, что интенсивность вызовов в пределах всей зоны одинакова, ячейки выбираются одного размера. Размер зоны обслуживания базовой станции, выражаемый через радиус ячейки R, определяет также число абонентов N, способных одновременно вести переговоры на всей территории обслуживания. Следовательно, уменьшение радиуса ячейки позволяет не только повысить эффективность использования выделенной полосы частот и увеличить абонентскую емкость системы, но и уменьшить мощность передатчиков и чувствительность приемников базовых и подвижных станций. Это, в свою очередь, улучшает условия электромагнитной совместимости средств сотовой связи с другими радиоэлектронными средствами и системами.

Эффективным способом снижения уровня помех может быть использование направленных секторных антенн с узкими диаграммами направленности. В секторе такой направленной антенны сигнал излучается преимущественно в одну сторону, а уровень излучения в противоположном направлении сокращается до минимума. Деление сот на секторы позволяет чаще применять частоты в сотах повторно. Общеизвестный способ повторного использования частот в организованных таким образом сотах основан на применении 3-секторных антенн для каждой базовой станции и трех соседних базовых станций с формированием ими девяти групп частот (рисунок 6.2). В этом случае используются антенны с шириной диаграммы направленности 120. Самую высокую эффективность использования полосы частот и, следовательно, наибольшее число абонентов сети, работающих в этой полосе, обеспечивает разработанный фирмой Motorola (США) способ повторного использования частот, при котором задействуются две базовые станции. При реализации этого способа каждая частота используется дважды в пределах кластера, состоящего из 4 ячеек; базовая станция каждой из них может работать на 12 частотах, используя антенны с диаграммой направленности шириной 60.


^

Состав системы сотовой связи


Каждая из сот обслуживается многоканальным приемопередатчиком, называемым базовой станцией. Она служит своеобразным интерфейсом между сотовым телефоном и центром коммутации подвижной связи, где роль проводов обычной телефонной сети выполняют радиоволны. Число каналов базовой станции обычно кратно 8, например, 8, 16, 32... Один из каналов является управляющим (control channel), в некоторых ситуациях он может называться также каналом вызова (call channel). На этом канале происходит непосредственное установление соединения при вызове подвижного абонента сети, а сам разговор начинается только после того, как будет найден свободный в данный момент канал и произойдет переключение на него. Все эти процессы происходят очень быстро и потому незаметно для абонента. Он лишь набирает нужный ему телефонный номер и разговаривает, как по обычному телефону.

Любой из каналов сотовой связи представляет собой пару частот для дуплексной связи, т. е. частоты базовой и подвижной станций разнесены. Это делается для того, чтобы улучшить фильтрацию сигналов и исключить взаимное влияние передатчика на приемник одного и того же устройства при их одновременной работе.

Все базовые станции соединены с центром коммутации подвижной связи (коммутатором) по выделенным проводным или радиорелейным каналам связи (рисунок 6.3). Центр коммутации MSC - это автоматическая телефонная станция системы сотовой связи, обеспечивающая все функции управления сетью. Она осуществляет постоянное слежение за подвижными станциями, организует их эстафетную передачу, в процессе которой достигается непрерывность связи при перемещении подвижной станции из соты в соту и переключение рабочих каналов в соте при появлении помех или неисправностей, производит соединение подвижного абонента с тем, кто ему нужен в обычной телефонной сети и др.


^

Алгоритмы функционирования систем сотовой связи


Не смотря на разнообразие стандартов сотовой связи, алгоритмы их функционирования в основном сходны. Для абонента практически нет разницы, в каком стандарте осуществляется связь. Если ему нужно позвонить, то он просто нажимает клавишу на своём телефоне, что соответствует снятию трубки обычного телефона. Когда же радиотелефон находится в режиме ожидания (состояние "трубка положена" обычного телефона), его приёмное устройство постоянно сканирует (просматривает) либо все каналы системы, либо только управляющие. Для вызова соответствующего абонента всеми базовыми станциями сотовой системы связи по управляющим каналам  передаётся сигнал вызова. Сотовый телефон вызываемого абонента при получении этого сигнала отвечает по одному из свободных каналов управления. Базовые станции, принявшие ответный сигнал, передают информацию о его параметрах в центр коммутации, который, в свою очередь, переключает разговор на ту базовую станцию, где зафиксирован максимальный уровень сигнала сотового телефона вызываемого абонента.

Во время набора номера радиотелефон занимает один из свободных каналов, уровень сигнала базовой станции в котором в данный момент максимален. По мере удаления абонента от базовой станции или в связи с ухудшением условий распространения радиоволн уровень сигнала уменьшается, что ведёт к ухудшению качества связи. Улучшение качества разговора достигается путём автоматического переключения абонента на другой канал связи. Это происходит следующим образом. Специальная процедура, называемая передачей управления вызовом или эстафетной передачей (в иностранной литературе - handover, или handoff), позволяет переключить разговор на свободный канал другой базовой станции, в зоне действия которой оказался в это время абонент. Аналогичные действия предпринимаются при снижении качества связи из-за влияния помех или при возникновении неисправностей коммутационного оборудования. Для контроля таких ситуаций базовая станция снабжена специальным приёмником, периодически измеряющим уровень сигнала сотового телефона разговаривающего абонента и сравнивающим его с допустимым пределом. Если уровень сигнала меньше этого предела, то информация об этом автоматически передаётся в центр коммутации по служебному каналу связи. Центр коммутации выдаёт команду об измерении уровня сигнала сотового радиотелефона абонента на ближайшие к нему базовые станции. После получения информации от базовых станций об уровне этого сигнала центр коммутации переключает радиотелефон на ту из них, где уровень сигнала оказался наибольшим. Переключение производится так быстро, что абонент совершенно не замечает этих переключений.

Иногда возникает ситуация, когда поток заявок на обслуживание, поступающий от абонентов сотовой сети, превышает количество каналов, имеющихся на всех близко расположенных базовых станциях. Это происходит тогда, кода все каналы станций заняты обслуживанием абонентов и нет ни одного свободного, но поступает очередная заявка на обслуживание от подвижного абонента. В этом случае как временная мера (до освобождения одного из каналов) используется принцип эстафетной передачи внутри соты. При этом происходит поочерёдное переключение каналов в пределах одной и той же базовой станции для обеспечения связью всех абонентов.

Одна из важных услуг сетей сотовой связи - предоставление возможности использования одного и того же радиотелефона при поездке в другой город, область или страну, причём сотовая сеть позволяет не только самому абоненту звонить из другого города или страны, но и получать звонки от тех, кто ему звонит. В сотовой связи такая возможность называется роуминг (от англ. roam - скитаться, блуждать). Для организации роуминга сотовые сети должны быть одного стандарта (например, телефон стандарта GSM не будет работать в сети стандарта CDMA и т.п.), а центры коммутации подвижной связи этого стандарта должны быть соединены специальными каналами связи для обмена данными о местонахождении абонента. Т.е. для обеспечения роуминга в сотовых сетях необходимо выполнение трёх условий:

  • наличие в требуемых регионах сотовых систем стандарта, совместимого со стандартом компании, у которой подключен данный радиотелефон;

  • наличие соответствующих организационных и экономических соглашений о роуминговом обслуживании абонентов;

  • наличие каналов связи между системами, обеспечивающими передачу звуковой и другой информации для роуминговых абонентов.

При перемещении абонента в другую сеть её центр коммутации запрашивает информацию в первоначальной сети и при наличии подтверждения полномочий абонента регистрирует его. Данные о местоположении абонента постоянно обновляются в центре коммутации первоначальной сети, и все поступающие туда вызовы автоматически переадресовываются в ту сеть, где в данный момент находится абонент.

При организации роуминга не достаточно провести только технические мероприятия по соединению различных сетей сотовой связи. Очень важно ещё решить проблему взаиморасчётов между операторами этих сетей.

Различают три вида роуминга:

  • автоматический, т.е. предоставление абоненту возможности выйти на связь "в любое время в любом месте";

  • полуавтоматический, когда абоненту для пользования данной услугой в каком-либо регионе необходимо предварительно поставить об этом в известность своего оператора;

  • ручной, по сути, простой обмен одного радиотелефона на другой, подключенный к сотовой системе другого оператора.

Существующий объём услуг роуминга во многом определяется активностью деятельности конкретных компаний, так как возникающие при этом технические проблемы у всех приблизительно одинаковы (хотя в стандарте GSM услуга роуминга была заложена изначально). Перспективы развития этой сферы услуг зависят уже от распространённости стандартов.

Например, для создания единой сети стандарта GSM в России, предлагающей услуги роуминга в национальном масштабе, требуется организация связи с каждым региональным оператором. Кроме того, для передачи служебных сообщений необходим, как минимум, выделенный цифровой канал со скоростью передачи информации 64 Кбит/с. 
^

Сотовый радиотелефон и здоровье


Время от времени в средствах массовой информации поднимается вопрос о вредном воздействии на человека систем сотовой связи, в частности, связанном с последствиями облучения головного мозга при пользовании сотовым радиотелефоном. Однако пока не установлены какие-либо статистически обоснованные закономерности распространения тех или иных заболеваний среди абонентов систем сотовой связи.

Никто не может, категорически утверждать, что нет вреда от радиотелефонов, равно как никто не может утверждать, что вред есть. Исследования в этой области ведутся с начала 90-х годов. Все учёные единодушно сходятся на том, что электромагнитное излучение сотовых телефонов, конечно же, влияет на ткани головного мозга.
^

Эволюция систем сотовой связи

История развития систем сотовой связи


Появлению сетей сотовой подвижной связи предшествовал долгий период эволюционного развития радиотелефонной системы связи, в течение которого осваи­вались различные частотные диапазоны, и совершенствовалась техника связи. Идея сотовой связи была предложена в ответ на необходимость развития широкой сети подвижной связи в условиях ограничений на доступные полосы частот.

В середине 40-х годов исследовательский центр Bell Labs американской компании AT&T предложил идею разбиения обслуживаемой территории на небольшие участки, кото­рые стали называться сотами, (cell - ячейка, сота). Каждая сота должна была обслуживаться передатчиком с ограниченным радиусом действия и фиксированной частотой. Это позволило бы без взаимных помех использовать ту же самую частоту повторно в другой ячейке (соте).

Но прошло около 30 лет, прежде чем такой принцип организации связи был реализован на аппаратном уровне. В 70-х годах начались работы по созданию единого стандарта сотовой связи для пяти североевропейских стран - Швеции, Финляндии, Исландии, Дании и Норвегии, который по­лучил название NMT-450 (Nordic Mobile Telephone) и был предназначен для работы в диапа­зоне 450 МГц. Эксплуатация первых систем сотовой связи этого стандарта началась в 1981 г. Сети на основе стандарта NMT-450 и его модифицированных версий стали широко использоваться в Австрии, Голландии, Бельгии, Швейцарии, а также в странах Юго-Восточной Азии и Ближнего Востока. На базе этого стандарта в 1985 г. был разработан стандарт NMT-900 диапазона 900 МГц, который позволил расширить функциональные возможности и зна­чительно увеличить абонентскую емкость системы.

В 1983 г. в США вступила в эксплуатацию сеть стандарта AMPS (Advanced Mobile Phone Service). Этот стандарт был разработан в исследовательском центре Bell Laboratories.

В 1985 г. в Великобритании был принят в качестве национального стандарт TACS (Total Access Communications System), разработанный на основе американского стандарта AMPS.

В конце 80-х годов приступили к созданию систем сотовой связи (ССС), основанных на цифровых методах обработки сигналов. С целью разработки единого европейского стан­дарта цифровой сотовой связи для выделенного в этих целях диапазона 900 МГц в 1982 г Европейская Конференция Администраций Почт и Электросвязи (СЕРТ) создала специальную группу Groupe Special Mobile. Аббревиатура GSM дала название новому стандарту (позднее GSM стали расшифровывать как Global System for Mobile Communications). Резуль­татом работы этой группы стали опубликованные в 1990 г. требования к системе ССС стан­дарта GSM.

В США в 1990 г. американская Промышленная Ассоциация в области связи TIA (Tele­communications Industry Association) утвердила национальный стандарт IS-54 цифровой сотовой связи. Этот стандарт более известен под аббревиатурой D-AMPS. В отличие от Евро­пы, в США не были выделены новые частотные диапазоны, поэтому система должна была ра­ботать в полосе частот, общей с обычным AMPS. В то же время американская компания Qual-comm начала разработку нового стандарта сотовой связи, основанного на технологии шумоподобных сигналов и кодовом разделении каналов - CDMA (Code Division Multiple Access).

В 1991 г. в Европе появился стандарт DCS-1800 (Digital Cellular System 1800 МГц), созданный на базе стандарта GSM.

В Японии был разработан собственный стандарт сотовой связи JDC (Japanese Digital Cellular), близкий по своим показателям к стандарту D-AMPS. Стандарт JDC был утвержден в 1991 г. Министерством почт и связи Японии.

В 1993 г. в США Промышленная Ассоциация в области связи (TIA) приняла стандарт CDMA как внутренний стандарт цифровой сотовой связи, назвав его IS-95. В сентябре 1995 г. в Гонконге была открыта коммерческая эксплуатация первой сети стандарта IS-95.

В общем виде эволюция систем подвижной связи представлена на рисунке 6.4.


^

Поколения систем сотовой связи


В эволюционном развитии сотовых систем связи можно выделить три поколениях: первое - аналоговые системы; второе - цифровые системы; третье - универсальные системы мобильной связи. Следует отметить, что стандарты первого поколения разрабатывались почти каждой экономически развитой страной самостоятельно, чем объясняется их большое количество; второе поколение уже имеет тенденцию к объединению (примером является стандарт GSM).
^

Аналоговые системы сотовой связи


В таблице 6.1 представлены наиболее распространенные стандарты аналоговой связи.

Характеристики ССС основных аналоговых стандартов представлены в таблице 6.2.

Во всех аналоговых стандартах применяется частотная (ЧМ) или фазовая (ФМ) моду­ляция для передачи речи и частотная манипуляция для передачи информации управления. Этот способ

Таблица 6.1

Аналоговые стандарты сотовой связи

Абривиа-тура

Расшифровка абривиатуры

Перевод

Распространненость

AMPS

Advanced Mobile Phone Service

Усовершенствованная мобильная телефонная служба

^ Широко используется в США, Канаде, Центральной и Южной Америке, Австралии; используется в России в качестве ре­гионального стандарта

TACS

Total Access Communications System

Общедоступная система связи

^ Используется в Англии, Ита­лии, Испании, Австрии, Ирландии, с модификациями ETACS (Англия) и JTACS/NTACS (Япония); второй по распространенности стандарт среди аналоговых

NMT-450 NMT-900

Nordic Mobile Telephone

Мобильный телефон северных стран

^ Используется в Скандинавии и во многих других странах; третий по распространенности среди аналоговых стандартов; стандарт NMT-450 принят в России в качестве федерального

С-450




(диапазон 450 МГц)

^ Используется в Германии и Португалии

RTMS

Radio Telephone Mobile System

Мобильная радиотелефонная система, диапа­зон 450 МГц

^ Используется в Италии

Radiocom 2000







Используется во Франции

NTT

Nippon Telephone and Telegraph system

Японская система телефона и телеграфа

Используется в Японии


имеет ряд существенных недостатков:

  • возможность прослушивания разговоров другими абонентами;

  • отсутствие эффективных методов борьбы с замираниями сигналов под влиянием окружающего ландшафта и зданий или вследствие передвижения абонентов.

Таблица 6.2

Характеристики аналоговых стандартов сотовой связи

Характеристика

Стандарт

AMPS

TACS

NMT-450

NMT-900

Radiocom-2000

NTT

Диапазон частот, МГц

800

900

450

900

170, 200, 400

800-900

825-845 870-890

935-950 890-905

453-457,5 463-467,5

935-960 890-915

424,8-427,9 418,8-421,9

925-940 870-885

Метод доступа

FDMA

FDMA

FDMA

FDMA

FDMA

FDMA

Радиус ячейки, км

2-20

2-20

2-45

0,5-20

5-20

5-10

Число каналов подвижной станции

666


600 (640)


180


1000/1999


256


До 1000


Число каналов базовой станции

96


144


30


30


-


120


Мощность передатчика базовой станции, Вт

45


50


50


40


-


25


Ширина полосы частот канала, кГц

30


25


25


25 (12,5)


12,5


25


Время переключения канала на границе ячей­ки, мс

250


290


1250


270


-


800


Минимальное отноше­ние сигнал/шум, дБ

10


10


15


15


-


15


Для передачи информации различных каналов используются различные участки спектра частот - применяется метод множественного доступа с частотным разделением каналов (Frequency Division Multiple Access - FDMA), с полосами каналов в различных стандартах от 12,5 до 30 кГц. С этим непосредственно связан основной недостаток аналоговых систем - относительно низкая емкость, являющаяся следствием недостаточно рационального использования выде­ленной полосы частот при частотном разделении каналов.
^

Цифровые системы сотовой связи


Перечисленные недостатки обусловили появление цифровых ССС. Переход к цифро­вым системам также стимулировался широким внедрением цифровой техники в отрасль свя­зи и в значительной степени был обеспечен разработкой низкоскоростных методов.

Переход к цифровым системам натолкнулся на некоторые трудности. В США анало­говый стандарт AMPS получил столь широкое распространение, что прямая замена его циф­ровым стандартом оказалась практически невозможной. Выход был найден в разработке двухрежимной аналого-цифровой системы, позволяющей совмещать работу аналоговой и цифровой систем в одном и том же диапазоне. Разработанный стандарт получил наименование D-AMPS, или IS-54 (IS - сокращение от Interim Standard, т.е. «промежуточный стандарт»). В Европе ситуация осложнялась наличием множества несовместимых аналоговых систем. Здесь выходом оказалась разработка единого общеевропейского стандарта GSM (GSM-900 - диапазон 900 МГц). Цифровой стандарт, по техническим характеристикам схо­жий с D-AMPS, был разработан в Японии; первоначально он назывался JDC, а с 1994 г. - PDC (Personal Digital Cellular - «персональная цифровая сотовая связь»).

Стандарт D-AMPS дополнительно усовершенствовался за счет введения нового типа каналов управления (КУ). Цифровая версия IS-54 сохранила структуру КУ аналогового AMPS, что ограничивало возможности системы. Новые чисто цифровые КУ были введены в версии IS-136. При этом была сохранена совместимость с AMPS и IS-54, но повышена ем­кость КУ и расширены функциональные возможности системы. Позже было принято реше­ние обозначать этот стандарт GSM-1800. В США диапазон 1800 МГц оказался занят другими пользователями, но была найдена возможность выделить полосу частот в диапазоне 1900 МГц, которая получила в Америке название диапазона систем персональной связи (PCS - Personal Communications Systems), в отличие от диапазона 800 МГц, за которым сохранено название сотового (cellular). Освоение диапазона 1900 МГц началось с конца 1995 г.; работа в этом диапазоне предусмотрена стандартом D-AMPS и разработана соответствующая версия стандарта GSM («американский» GSM-1900 - стандарт IS-661).

Цифровые системы второго поколения основаны на методе множественного доступа с временным разделением каналов (Time Division Multiple Access - TDMA). Однако уже в 1992 - 1993 гг. в США был разработан стандарт ССС на основе метода множественного доступа с кодовым разделением каналов (Code Division Multiple Access - CDMA) - стандарт IS-95 (диапазон 800 МГц). Он начал применяться с 1995-1996 гг. в Гон­конге, США, Южной Корее, а в США начала использоваться и версия этого стандарта для диапазона 1900 МГц.

Основные цифровые стандарты ССС приведены в таблице 6.3:

Таблица 6.3

Основные цифровые стандарты сотовой связи

Абривиатура

Расшифровка абривиатуры

Перевод

Распространненость

D-AMPS

Digital AMPS (Advanced Mobile Phone Service)

Усовершенствованная мобильная телефонная служба

цифровой AMPS

GSM

Global System for Mobile Communications

Глобальная система мобильной связи

второй по распространенности стандарт мира

CDMA

Code Division Multiple Access

Множественный доступ с кодовым разделени­ем каналов




JDC

Japanese Digital Cellular

Японский стандарт цифровой сотовой связи



  1   2   3   4   5   6   7   8   9   ...   12



Скачать файл (5202.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru