Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Автомобильная техника - Двигатели внутреннего сгорания - файл 1.docx


Автомобильная техника - Двигатели внутреннего сгорания
скачать (2236.9 kb.)

Доступные файлы (1):

1.docx2237kb.20.11.2011 17:30скачать

содержание
Загрузка...

1.docx

  1   2   3   4
Реклама MarketGid:
Загрузка...
Двигатель

Двигатели внутреннего сгорания.

В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т.д.

Тепловые двигатели могут быть разделены на две основные группы:
1). Двигатели с внешним сгоранием - паровые машины, паровые турбины, двигатели Стирлинга и т.д.
2). Двигатели внутреннего сгорания. В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.

Наиболее экономичными являются поршневые и комбинированные двигатели внутреннего сгорания. Они имеют достаточно большой срок службы, сравнительно небольшие габаритные размеры и массу. Основным недостатком этих двигателей следует считать возвратно-поступательное движение поршня, связанное с наличием кривошипно-шатунного механизма, усложняющего конструкцию и ограничивающего возможность повышения частоты вращения, особенно при значительных размерах двигателя.

А теперь немного о первых ДВС. Первый двигатель внутреннего сгорания (ДВС) был создан в 1860 г. французским инженером Этвеном Ленуаром, но эта машина была еще весьма несовершенной.

В 1862 г. французский изобретатель Бо де Роша предложил использовать в двигателе внутреннего сгорания четырехтактный цикл:


  1. всасывание;

  2. сжатие;

  3. горение и расширение;

  4. выхлоп.



Эта идея была использована немецким изобретателем Н.Отто, построившим в 1878 г. первый четырехтактный двигатель внутреннего сгорания. КПД такого двигателя достигал 22%, что превосходило значения, полученные при использовании двигателей всех предшествующих типов.

Быстрое распространение ДВС в промышленности, на транспорте, в сельском хозяйстве и стационарной энергетике была обусловлена рядом их положительных особенностей.

Осуществление рабочего цикла ДВС в одном цилиндре с малыми потерями и значительным перепадом температур между источником теплоты и холодильником обеспечивает высокую экономичность этих двигателей. Высокая экономичность - одно из положительных качеств ДВС.

Среди ДВС дизель в настоящее время является таким двигателем, который преобразует химическую энергию топлива в механическую работу с наиболее высоким КПД в широком диапазоне изменения мощности. Это качество дизелей особенно важно, если учесть, что запасы нефтяных топлив ограничены.

К положительным особенностям ДВС стоит отнести также то, что они могут быть соединены практически с любым потребителем энергии. Это объясняется широкими возможностями получения соответствующих характеристик изменения мощности и крутящего момента этих двигателей.

Рассматриваемые двигатели успешно используются на автомобилях, тракторах, сельскохозяйственных машинах, тепловозах, судах, электростанциях и т.д., т.е. ДВС отличаются хорошей приспособляемостью к потребителю.

Сравнительно невысокая начальная стоимость, компактность и малая масса ДВС позволили широко использовать их на силовых установках, находящих широкое применение и имеющих небольшие размеров моторного отделения.

Установки с ДВС обладают большой автономностью. Даже самолеты с ДВС могут летать десятки часов без пополнения горючего.

Важным положительным качеством ДВС является возможность их быстрого пуска в обычных условиях. Двигатели, работающие при низких температурах, снабжаются специальными устройствами для облегчения и ускорения пуска. После пуска двигатели сравнительно быстро могут принимать полную нагрузку. ДВС обладают значительным тормозным моментом, что очень важно при использовании их на транспортных установках.

Положительным качеством дизелей является способность одного двигателя работать на многих топливах. Так известны конструкции автомобильных многотопливных двигателей, а также судовых двигателей большой мощности, которые работают на различных топливах - от дизельного до котельного мазута.

Но наряду с положительными качествами ДВС обладают рядом недостатков. Среди них ограниченное по сравнению, например с паровыми и газовыми турбинами агрегатная мощность, высокий уровень шума, относительно большая частота вращения коленчатого вала при пуске и невозможность непосредственного соединения его с ведущими колесами потребителя, токсичность выхлопных газов, возвратно-поступательное движение поршня, 

ограничивающие частоту вращения и являющиеся причиной появления неуравновешенных сил инерции и моментов от них.

Но невозможно было бы создание двигателей внутреннего сгорания, их развития и применения, если бы не эффект теплового расширения. Ведь в процессе теплового расширения нагретые до высокой температуры газы совершают полезную работу. Вследствие быстрого сгорания смеси в цилиндре двигателя внутреннего сгорания, резко повышается давление, под воздействием которого происходит перемещение поршня в цилиндре. А это-то и есть та самая нужная технологическая функция, т.е. силовое воздействие, создание больших давлений, которую выполняет тепловое расширение, и ради которой это явление применяют в различных технологиях и в частности в ДВС.

^ Корпус двигателя

Поршневой двигатель внутреннего сгорания классической (традиционной) конструкции имеет корпус, состоящий из блока цилиндров (блок-картера) и головки блока цилиндров, закрытых, сверху - клапанной крышкой, снизу - масляным поддоном, спереди и сзади - передней и задней крышками коленчатого вала с самоподжимными сальниками. Корпус может иметь и иную конструкцию. Например, нижняя часть картера может быть разъёмной, и в этом случае корпус будет состоять из трёх составных частей: блока цилиндров (средней части корпуса), головки блока цилиндров (верхней части корпуса) и фундаментной рамы (нижней части корпуса) и соответствующих крышек. Встречаются двигатели с моноблочной конструкцией корпуса, в котором блок цилиндров и головка блока цилиндров выполняются в виде единой, неразъёмной отливки. Многообразие конструкций двигателей различных моторостроительных предприятий, предполагает различные подходы к их ремонту.

^ Корпусные детали двигателя являются основанием для крепления деталей кривошипно-шатунного и газораспределительного механизмов, а так же узлов и деталей систем смазки, охлаждения, зажигания, питания и др.


Корпусные детали двигателя.
1 - блок-картер (блок цилиндров); 2 - прокладка головки блока; 3 - головка блока;
4 - прокладка клапанной крышки; 5 - клапанная крышка.


Блоки цилиндров отливаются из серого легированного чугуна или высококремнистых алюминиевых сплавов (силуминов). Некоторыми фирмами практикуется изготовление блоков из металлокерамики. Блоки цилиндров двигателя с жидкостным охлаждением имеют двойные стенки, образующие «рубашку охлаждения». Рубашка охлаждения заполняется охлаждающей жидкостью. Блоки цилиндров двигателей с воздушным охлаждением цилиндров имеют оребрение. Цилиндры, как правило, заключены в кожух, через который вентилятором системы охлаждения прокачивается воздух. Головки блоков цилиндров бензиновых и дизельных двигателей легковых автомобилей отливаются из алюминиевых сплавов и реже из чугуна и, за редким исключением, имеют моноблочную конструкцию, т.е. на один ряд цилиндров двигателя устанавливается одна, единая для всех цилиндров, головка. На части дизельных двигателях каждый цилиндр (или пара цилиндров) может иметь собственную головку. Головка через термостойкую прокладку крепится к привалочной плоскости блока цилиндров болтами, если блок чугунный, или гайками через шпильки, если блок алюминиевый. Болты крепления головки изготавливаются из высокопрочных сталей и при небольших диаметрах должны обеспечивать значительные усилия (моменты) затяжки. Усилия затяжки болтов (гаек) крепления головки блока регламентируется производителем и, для большинства автомобилей, в среднем составляют 9,0 – 10,0 кгс м. Стенки головки блока двойные. Рубашка охлаждения, образованная двойными стенками головки блока соединяется с рубашкой охлаждения блока цилиндров. В головке блока выполняются камеры сгорания. На головке размещают детали газораспределительного механизма, включая распределительный вал (валы), впускные и выпускные клапаны и детали привода клапанов.

^ Классификация ДВС

В качестве энергетических установок автомобилей наибольшее распространение поучили ДВС, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. Но в большинстве современных автомобилей установлены двигатели внутреннего сгорания, которые классифицируются по различным признакам:

По способу смесеобразования - двигатели с внешним смесеобразованием, у которых горючая смесь приготовляется вне цилиндров (карбюраторные и газовые), и двигатели с внутренним смесеобразованием (рабочая смесь образуется внутри цилиндров) - дизели;

По способу осуществления рабочего цикла - четырехтактные и двухтактные;

По числу цилиндров - одноцилиндровые, двухцилиндровые и многоцилиндровые;

По расположению цилиндров - двигатели с вертикальным или наклонным расположением цилиндров в один ряд, V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным);

По способу охлаждения - на двигатели с жидкостным или воздушным охлаждением;

По виду применяемого топлива - бензиновые, дизельные, газовые и многотопливные;



По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12...18) и низкого (E=4...9) сжатия;

По способу наполнения цилиндра свежим зарядом:

а) двигатели без наддува, у которых впуск воздуха или горючей смеси осуществляется за счет разряжения в цилиндре при всасывающем ходе поршня;

б) двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым компрессором, с целью увеличения заряда и получения повышенной мощности двигателя;

По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;

По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.

^ Мощность двигателя

Мощность - это физическая величина, равная отношению работы, совершенной за определенное время, к этому времени. В системе единиц СИ мощность измеряется в Ваттах (Вт). Поднимая груз массой 1 килограмм на высоту 1 метр за 1 секунду, мы развиваем мощность 1 кг x 9,8 м/с2 x 1 м/с = 9,8 Вт.

Мощность автомобильных двигателей обычно измеряют в лошадиных силах.

Термин «лошадиная сила» был введен в конце XVIII в. английским изобретателем Дж. Уаттом. Наблюдая за работой лошадей, вытягивающих из угольных шахт при помощи блоков корзины с углем, ученый измерил общий вес извлеченной ими породы и высоту, на которую он был поднят за определенное время. Уатт рассчитал, что 1 лошадь за 1 минуту с глубины 30 м вытягивает в среднем 150 кг угля. Эта единица мощности и получила название лошадиной силы (horsepower).

После принятия в 1960 г. системы единиц СИ лошадиная сила стала вспомогательной единицей мощности, равной 736 Вт. Средняя мощность человека равна 70-90 Вт, что составляет 0,1 лошадиной силы.

Двигатель

Кривошипно-шатунный механизм

^ Блок и головка цилиндров

Наиболее крупными и сложными деталями кривошипно-шатунного механизма являются блок цилиндров и его головка (или головки). Как показано на рисунке блок цилиндров 5 и головка цилиндров 1 имеют сложную форму, поэтому их изготовляют литьем. Между ними для герметизации стыка установлена прокладка 9. Спереди (а иногда и сзади) также 

через прокладку 6 к блоку крепится крышка распределительных шестерен. Все остальные детали кривошипно-шатунного механизма расположены в блоке цилиндров, их обычно объединяют в несколько групп.
Головка и блок цилиндров V-образного восьмицилиндрового двигателя ЗМЗ-53:
1 - головка правого ряда цилиндров, 2 - гильза цилиндра, 3 - прокладка гильзы,
4 - направляющий поясок для гильзы, 5 - блок цилиндров, 6 - прокладка крышки
распределительных шестерен, 7 - сальник переднего конца коленчатого вала,
8 - крышка распределительных шестерен, 9 - прокладка головки цилиндров.


^ Блок цилиндров. Его отливают из чугуна (СЧ 21, СЧ 15) или из алюминиевых (например, АЛ4) сплавов. Соотношение масс чугунных и алюминиевых блок-картеров составляет примерно 4:1. За одно целое с блоком отлита верхняя часть картера.

В отливке блока цилиндров выполнены рубашка охлаждения, окружающая цилиндры, постели для коренных подшипников коленчатого вала и подшипников распределительного вала, а также места для установки других узлов и приборов. Чугунные блок-картеры изготовляют или вместе с цилиндрами или со вставными цилиндрами - гильзами, а алюминиевые только со вставными гильзами. Уплотнение гильз в блоке осуществляется с помощью резиновых колец или прокладок 3. Тщательно обработанная внутренняя поверхность гильз (или цилиндров) называется зеркалом.


Детали кривошипно-шатунного механизма двигателя ЗИЛ-130:
1 - поршень, 2 - вкладыши коренных подшипников коленчатого вала, 3 - маховик,
4- коренная шейка коленчатого вала, 5 - крышка заднего коренного подшипника,
6 - пробка, 7 - противовес, 8 - щека, 9 - крышка среднего коренного подшипника,
10 - передняя шейка коленчатого вала, 11 - крышка переднего коренного подшипника,
12 - шестерня, 13 - носок коленчатого вала, 14 - шкив, 15 - храповик, 16 - упорная шайба,
17 - биметаллические шайбы, 18-шатунные шейки коленчатого вала, 19 - вкладыши шатунного
подшипника, 20 - стопорное кольцо, 21 - поршневой палец, 22 - втулка верхней головки шатуна,
23 - шатун, 24 - крышка шатуна, 25 - сальник, 26 - маслоотгонная канавка,
27 - маслосбрасывающий гребень, 28 - дренажная канавка.


^ Головка цилиндров. Головка закрывает цилиндры сверху; в ней размещены клапаны, камеры сгорания, свечи, форсунки. В головку цилиндров запрессованы направляющие втулки и седла клапанов. Плоскость разъема между головками и блоком цилиндров уплотнена сталеасбестовыми прокладками. Между головкой цилиндров и крышкой клапанов установлены пробковые или резиновые прокладки.

Головки отлиты из алюминиевого сплава или чугуна. Двигатели с рядным расположением цилиндров имеют одну головку цилиндров, двигатели с V-образным расположением - две головки на каждый ряд (двигатель ЗИЛ-130), четыре - на каждые три цилиндра (двигатель ЯМЗ-240), восемь — на каждый цилиндр (двигатель КамАЗ-740).

^ Поршневая группа

В поршневую группу входят поршни, поршневые кольца и поршневые пальцы. Поршень представляет собой металлический стакан, днищем обращенный вверх. Он воспринимает давление газов и передает его через поршневой палец и шатун на коленчатый вал. Отлиты поршни из алюминиевого сплава.

Поршень имеет днище, уплотняющую и направляющую (юбку) части. Днище и уплотняющая часть составляют головку поршня. Днище поршня вместе с головкой цилиндра ограничивают объем камеры сгорания. В головке поршня проточены канавки для колец. При работе двигателя на поршень действуют большие механические и тепловые нагрузки от давления горячих газов.



Конструкция поршня должна обеспечивать такой зазор между поршнем и цилиндром, который исключал бы стуки поршня после запуска двигателя и заклинивание его в результате теплового расширения при работе двигателя под нагрузкой.

На юбке поршня делают разрезы, придают ему овальную форму в поперечном сечении и коническую - по высоте, производят заделку в поршень специальных компенсационных пластин из металла с малым коэффициентом теплового расширения. Например, в поршнях некоторых двигателей с зажиганием от искры юбку выполняют с косым разрезом, что делает ее более упругой и позволяет устанавливать поршень с минимальным зазором, не опасаясь заклинивания.

При шлифовании поршню придают овальную форму (большая ось овала должна быть перпендикулярна оси поршневого пальца), чтобы под действием боковых усилий и нагрева юбка поршня в рабочем состоянии принимала цилиндрическую форму.

Так как температура головки поршня примерно на 100-150°С выше, чем нижней части юбки, то наружный диаметр юбки делают больше, чем диаметр головки.

Большую опасность представляет собой перегрев поршня из-за недостаточного его охлаждения. При перегреве прогорает днище поршня, происходит задир рабочей поверхности цилиндра, залегание колец и даже заклинивание поршня. Иногда для улучшения охлаждения поршня на его внутреннюю поверхность направляют струю масла.
^ Детали поршневой группы:
1 - поршень, 2 - поршневой палец, 3 - стопорные кольца, 4, 5 - компрессионные кольца,
6 - маслосъемное кольцо.


Поршень дизеля КамАЗ-740 отлит из высококремнистого алюминиевого сплава со вставкой из специального чугуна под верхнее компрессионное кольцо. На юбку поршня нанесено коллоидно-графитовое покрытие для улучшения приработки и предохранения от задиров. В головке поршня расположена тороидальная камера сгорания, а сбоку от нее в днище — две; выемки для предотвращения касания его с клапанами. Под бобышками в нижней части юбки сделаны выемки для прохода противовесов коленчатого вала в НМТ.

С шатуном поршень соединен пальцем 2 плавающего типа, стопорные кольца 3 вставляются в канавки, проточенные в бобышках, кольца ограничивают осевое смещение 

пальца в поршне. Палец имеет форму пустотелого цилиндрического стержня, он сделан из хромоникелевой стали, упрочнен цементацией и термообработан закалкой.

На поршне выполнены канавки для двух компрессионных 4, 5 и одного маслосъемного 6 кольца. ^ Компрессионные кольца уплотняют поршень в гильзе цилиндров и предотвращают прорыв газов через зазор между юбкой поршня и стенкой гильзы. Маслосъемные кольца снимают излишки масла со стенок гильз и не допускают попадания его в камеры сгорания.

Поршневые кольца изготовлены из чугуна. Иногда маслосъемные кольца делают из стали. Для установки на поршень кольца имеют разрез, называемый замком.

После установки в цилиндр зазор в замке должен быть в пределах 0,3-0,5 мм, чтобы кольцо не заклинивало при нагревании. Замки на поршне должны располагаться на равных расстояниях друг от друга по окружности, что уменьшает прорыв газов из цилиндра.

Компрессионные кольца и особенно первое (верхнее) из них работают в тяжелых условиях. Из-за соприкосновения с горячими газами и большой работы трения, производимой первым кольцом, оно сильно нагревается (до 225-275°С), что осложняет его смазку и вызывает увеличенный износ как самого кольца, так и верхнего пояса цилиндра.

Для повышения износостойкости поверхность верхнего компрессионного кольца подвергают пористому хромированию. Остальные кольца для ускорения приработки покрывают тонким слоем олова или молибдена (двигатель КамАЗ-740).

Поршневые кольца разрезные, в свободном состоянии их диаметр несколько больше диаметра цилиндра. Поэтому в цилиндре кольцо плотно прижимается к его стенкам. В канавках поршня кольца образуют лабиринт с малыми зазорами, в котором газы, прорывающиеся из надпоршневого пространства, с одной стороны, теряют давление и скорость, а с другой — прижимают кольца к стенке цилиндра.


Поршневые кольца: а - внешний вид, б - расположение колец на поршне (двигателя ЗИЛ-130), в - составное маслосъемное кольцо; 1 - компрессионное кольцо, 2 - маслосъемное кольцо, 3 - плоские стальные диски, 4 - осевой расширитель, 5 - радиальный расширитель.

Компрессионные кольца имеют разную форму поперечного сечения. Компрессионное кольцо 1 с прямоугольным сечением (а) прилегает к цилиндру по всей наружной поверхности. Для увеличения удельного давления кольца на зеркало цилиндра и более быстрой приработки наружной поверхности кольцу придается коническая форма или делается на верхней внутренней кромке кольца 1 специальная выточка (6).

Маслосъемные кольца также имеют различную форму: коническую, скребковую, пластинчатую с осевым и радиальным расширителями (в). При движении вверх маслосъемное кольцо как бы «всплывает» в масляном слое, а при движении вниз острая кромка кольца соскабливает масло.

Маслосъемное кольцо отличается от компрессионных сквозными прорезями для прохода масла. В канавке поршня для маслосъемного кольца сверлят один или два ряда отверстий для отвода масла внутрь поршня.

Маслосъемное кольцо двигателей ЗМЗ и ЗИЛ состоит из двух стальных кольцевых дисков, осевого 4 и радиального 5 расширителей. Вследствие быстрой прирабатываемости и упругости стальные маслосъемные кольца хорошо прилегают к гильзе цилиндра.

^ Шатуны и коленчатый вал.

Шатун соединяет поршень с коленчатым валом. Он состоит из верхней головки 5, стержня 6 двутаврового сечения и разъемной нижней головки 3, закрепляемой на шатунной шейке коленчатого вала. Шатун и его крышка 1 изготовлены из легированной или углеродистой стали. В верхнюю головку шатуна запрессованы одна или две втулки 4 из оловянистой бронзы, а в нижнюю вставлены тонкостенные стальные вкладыши 8, залитые слоем антифрикционного сплава.

Крышка 1 обрабатывается в сборе с шатуном, их нумеруют порядковым номером цилиндра. Ширина нижней головки такова, что позволяет вынимать поршень с шатуном вверх через цилиндр. Нижняя головка 3 шатуна и крышка 1 соединяются двумя болтами 7 или шпильками. Под головки болтов кладут специальные стопорные шайбы с усиками, а гайки имеют резьбу, несколько отличающуюся от резьбы на шпильках или болтах, в результате чего гайки самостопорятся, На двигателях старых конструкций они иногда шплинтовались.

Вкладыши двигателя КамАЗ-740 изготовлены из стальной ленты, покрытой слоем свинцовистой бронзы и тонким слоем свинцовистого сплава. Вкладыши шатунных подшипников двигателей. ЗМЗ-24,. ЗМЗ-53 и ЗИЛ-130 выполнены из сталеалюминиевой ленты антифрикционный слой которой представляет собой алюминиевый сплав АМО-1-20.

От проворачивания в нижней головке шатуна вкладыши удерживаются выступами (усиками 2), которые входят в канавки, выфрезерованные в шатуне и его крышке.


Шатун:
1 - крышка нижней головки, 2 - усики, фиксирующие вкладыши от проворачивания,
3 - нижняя головка, 4 - втулка верхней головки, 5-верхняя головка, 6- стержень шатуна,
7 - болт с гайкой для крепления крышки нижней головки, 8 - вкладыши нижней головки.


^ Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент. Он имеет коренные и шатунные шейки, щеки, соединяющие коренные и шатунные шейки, фланец для крепления маховика, носок, в котором имеется отверстие для установки храповика пусковой рукоятки. Шатунная шейка с щеками образует колено (или кривошип) вала. Расположение колен на валу обеспечивает равномерное чередование рабочих ходов.

Коленчатый вал штампуют из стали или отливают из магниевого чугуна. Стальные валы при одинаковых с литыми чугунными валами размерах шеек и щек имеют большую прочность, а к преимуществам литых валов следует отнести их меньшую стоимость, меньший расход металла при изготовлении, сокращение числа операций механической обработки, а также возможность придания оптимальных форм отдельным элементам кривошипа, например внутренним полостям шатунных и коренных шеек.

Литье позволяет выполнить все шейки вала полыми. Шейки стальных коленчатых валов закаливают токами высокой частоты. Все шейки коленчатых валов тщательно шлифуют и полируют. Переходы (галтели) от шеек к щекам выполняют плавными.

Количество шатунных шеек в двигателе, имеющем однорядное расположение цилиндров, равно числу цилиндров, а в V-образном двигателе - их в два раза меньше числа цилиндров, так как на каждую шатунную шейку устанавливают по два шатуна.



Количество коренных шеек четырехцилиндровых двигателей с рядным расположением цилиндров три или пять, в шестицилиндровых - четыре или семь, а V-образных восьмицилиндровых - пять.

Если шатунная шейка с двух сторон имеет коренную шейку, то такой коленчатый вал называют полноопорным. Полноопорный вал меньше прогибается и обеспечивает лучшие условия работы подшипников и больший срок их службы.

В современных автомобильных двигателях частота вращения коленчатого вала достигает 3ccc-4ccc мин -1 (грузовые автомобили) и 4500-6ccc мин -1 (легковые). Поэтому возникают большие силы инерции, действующие на шатунные шейки, щеки и нижние головки шатунов. Эти силы нагружают подшипники, вызывая их ускоренное изнашивание. Для разгрузки коренных подшипников от центробежных сил служат противовесы, расположенные на щеках против шатунных шеек коленчатого вала.

Коренные и шатунные шейки вала соединены наклонными каналами, просверленными в щеках и служащими для подвода масла от коренных к шатунным подшипникам. Шатунные шейки выполняют полыми или высверливают в них полости грязеуловители. В этих полостях под действием центробежных сил отлагаются тяжелые частицы и продукты изнашивания, содержащиеся в масле. Грязеуловители очищают при разборке двигателя, вывертывания пробки.
Коленчатый вал V - образного 8-цилиндрового двигателя ЗИЛ-130:
1 - противовес, 2 - заглушка, 3 - полость, 4 - отверстие для крепления маховика,
5 - сверления для подачи масла к шейке.


^ Маховик и поддон картера. Подвеска двигателя.

Маховик представляет собой массивный диск, отливаемый из чугуна. Он повышает равномерность вращения коленчатого вала, что особенно важно при малой частоте вращения, и передает крутящий момент трансмиссии автомобиля. Изготовлен маховик из чугуна. На обод маховика напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя.

На некоторых двигателях на маховик наносят метки или запрессовывают в него стальной шарик, по которому устанавливают поршень первого цилиндра в ВМТ и проверяют установку зажигания.

Поддон, или нижняя часть картера, предохраняет от попадания в него пыли и грязи и служит резервуаром для масла. Его штампуют из листовой стали или отливают из легкого сплава. Поддон крепится болтами или шпильками, плоскость разъема уплотняется 

пробковой прокладкой и располагается ниже оси коленчатого вала, что повышает жесткость картера.

^ Подвеску двигателя к раме делают в трех или четырех точках. В качестве опор к блоку двигателя приворачивают специальные кронштейны (лапы). Задними опорами иногда служат лапы картера сцепления или удлинитель коробки передач. Под опоры устанавливают резиновые подушки или пружины. Это уменьшает вибрации двигателя из-за неравномерности крутящего момента и неполной уравновешенности вращающихся масс, смягчает удары, передаваемые от рамы к двигателю при движении автомобиля по неровной дороге.

Подвеска двигателя на эластичных опорах имеет ограничители продольного перемещения, их выполняют в виде тяги или скобы. Часто для фиксации двигателя относительно рамы используют реактивные тяги.

Двигатель

Система питания

^ Общие сведения о системе питания

Системы питания дизельных и карбюраторных двигателей принципиально различаются.

В карбюраторном двигателе горючая смесь требуемого состава приготовляется из топлива и воздуха в специальном приборе - карбюраторе, а затем подается в нужном количестве в цилиндры двигателя.

В пусковых тракторных двигателях (рис.1 а) топливо из бака 1 самотеком подается через фильтр-отстойник 4 в карбюратор 7.

В автомобильном карбюраторном двигателе (рис. 1, б) топливо из бака 1 засасывается через фильтр-отстойник 4 и топливопровод топливным насосом 11 и подается им в карбюратор 7. Воздух из атмосферы при такте впуска, пройдя воздушный фильтр (воздухоочиститель) 8, очищается от посторонних примесей и поступает в карбюратор. Здесь воздух смешивается с распыленным топливом и направляется во впускную трубу (коллектор) 10. Приготовление горючей смеси продолжается во впускной трубе, в которой топливо испаряется и перемешивается с воздухом. Этот процесс заканчивается в цилиндрах двигателя во время тактов впуска и сжатия. После сгорания рабочей смеси, отработавшие газы через выпускной трубопровод и глушитель 9 выбрасываются в атмосферу.

Карбюраторные автомобильные двигатели в основном работают на бензине.


Рис. 1 Система питания карбюраторного двигателя:
а - пускового двигателя, б - автомобильного двигателя;
1 - топливный бак, 2 - крышка, 3 - фильтрующая сетка, 4 - фильтроотстойник, 5 - рукоятка,
6 - топливопровод, 7 - карбюратор, 8 - воздушный фильтр, 9 - глушитель,
10 – впускной и выпускной трубопроводы, 11 - топливный насос.

Для обеспечения надежной и экономичной работы двигателя бензин должен обладать хорошей испаряемостью и достаточной детонационной стойкостью.

Детонация - это быстрое сгорание топлива, подобное взрыву. Работа двигателя с детонацией недопустима, так как сопровождается ударной нагрузкой на поршни, поршневые пальцы, шатунные и коренные подшипники, местным нагревом деталей, прогоранием поршней и клапанов, дымным выпуском, снижением мощности двигателя и увеличением расхода топлива. На появление детонации влияют также скоростной режим и нагрузка двигателя, нагарообразование на поршне и головке цилиндров, опережение зажигания и т. д.

Антидетонационные свойства бензина оценивают октановым числом. Бензин сравнивают со смесью из двух топлив: гептана и изооктана. Гептан сильно детонирует и октановое число для него условно принимают равным нулю. Изооктан слабо детонирует и для него октановое число условно принимают равным 100 единицам.

^ Октановым числом топлива называют процентное содержание изооктана в такой смеси с гептаном, которая по детонационной стойкости равноценна испытываемому топливу. Например, если смесь, состоящая из 76% изооктана и 24% гептана (по объему), по детонационным свойствам соответствует проверяемому бензину, то октановое число такого бензина равно 76. Чем выше октановое число топлива, тем больше его стойкость против детонации.

В соответствии с ГОСТ 2084-67 выпускают пять марок автомобильных бензинов: А-66, А-72, А-76, АИ-93 и АИ-98. Буква А обозначает, что бензин автомобильный, а цифра - 

октановое число бензина. За исключением марки АИ-98, бензины бывают летние и зимние.

Для повышения антидетонационной стойкости в бензин иногда добавляют антидетонатор (этиловую жидкость). Бензин марки А-72 неэтилированный. Бензины других марок промышленность выпускает как этилированные, так и неэтилированные. Этилированные бензины окрашены в следующие цвета: А-66 - оранжевый, А-76 - зеленый, АИ-93 - синий и АИ-98 - желтый.

Работая с бензином, необходимо строго соблюдать правила техники безопасности, так как он легко воспламеняется. Бензин, попавший на окрашенные детали и резину, портит их, растворяя краску и резину.

При работе с этилированным бензином следует быть особенно осторожным, потому что при попадании в организм человека он может вызвать отравление. Запрещается использовать этилированный бензин для мытья рук и деталей, стирки одежды, засасывать его ртом из шланга. При попадании этилированного бензина на кожу необходимо зараженный участок промыть керосином, а затем водой с мылом.

Система питания дизельного двигателя служит для подачи в цилиндры очищенного воздуха и распыленного топлива.

Смесеобразование в дизельных двигателях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы и чтобы каждая частица имела вокруг себя достаточное для полного сгорания количество воздуха.

С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания. В современных тракторных двигателях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление, выполненное в днище поршня, способствует созданию вихревого движения воздуха.

Чтобы топливо полностью сгорало и дизельный двигатель имел наилучшие мощностные и экономические показатели, нужно впрыскивать топливо в цилиндр до прихода поршня в ВМТ. Чтобы форсунка вспрыскивала топливо с необходимым опережением, топливный насос должен начинать подавать топливо немного раньше. Схема системы питания тракторного дизельного двигателя показана на рис. 2.

Во время работы двигателя топливо из топливного бака 9 самотеком поступает по топливопроводу в фильтр 5 грубой очистки, где отделяются крупные механические примеси. Из фильтра грубой очистки топливо засасывается подкачивающей помпой 12 и нагнетается через фильтр 6 тонкой очистки топлива в топливный насос 14. Топливный насос по топливопроводам 4 высокого давления подает топливо под большим давлением к форсункам 3, через которые оно впрыскивается в распыленном состоянии в камеру сгорания. В топливный насос топливо подается подкачивающей помпой в избытке. Излишки топлива отводятся из топливного насоса по перепускной трубке 13 во впускную часть подкачивающей помпы через перепускной клапан, находящийся в штуцере топливопровода.


Рис 2. Схема системы питания дизельного двигателя Д-240:
1 – воздухоочиститель, 2 - стеная трубка, 3 – форсунка, 4 – топливопровод высокого давления,
5 - фильтр грубой очистки топлива, 6 - фильтр тонкой очистки топлива,
7 - датчик указателя уровня топлива, 8 - топливо мерная трубка,
9 - топливные баки (основной и дополнительный), 10 - запорный кран, 11 -сливной кран,
12 – подкачивающая помпа, 13- трубка перепуска топлива, 14 - топливный насос.

Просочившееся через зазоры между деталями форсунок топливо (до 0,02% от расходуемого) отводится по сливной трубке 2 в фильтр тонкой очистки или в топливный бак. Давление топлива на выходе из фильтров тонкой очистки контролируется манометром и должно быть в пределах 0,06-0,09 МПа.



Для питания дизельного двигателя применяют дизельное топливо, являющееся продуктом перегонки нефти и представляющее собой маслянистую жидкость светло-коричневого цвета.

Для обеспечения экономичности, надежности и долговечности работы двигателя дизельное топливо должно отвечать определенным требованиям. Главные показатели качества топлива - чистота, высокая теплотворная способность, малая вязкость, низкая температура самовоспламенения, высокое цетановое число (не ниже 40). Чем больше цетановое число топлива, тем меньше период задержки самовоспламенения после момента впрыска его в цилиндр и двигатель работает мягче (без стуков).

Присутствие серы уменьшает период задержки самовоспламенения топлива в цилиндре, что благоприятно сказывается на работе двигателя. Двигатель работает мягче, т. е. с меньшими ударными нагрузками. Однако сера повышает нагарообразование и способствует быстрому износу деталей цилиндропоршневой группы.

При поставках к марке топлива добавляется цифра, обозначающая процент содержания серы, 0,2 или 0,5.

Буквы в марке топлива обозначают: Л - летнее, 3 - зимнее, А - арктическое. При отсутствии арктического топлива и эксплуатации двигателей при низкой температуре к зимнему топливу добавляют до 50% керосина. Повышенная вязкость топлива ухудшает его текучесть и распыл, а низкая - смазывающую способность. Сорта топлива необходимо применять соответственно сезону года.

Кроме перечисленных свойств топливо для автомобильных двигателей характеризуют высокая теплотворная способность, хорошая распыляемость, испаряемость в горячем воздухе, оно должно быть химически стабильным при хранении, не вызывать коррозии металлов, не содержать воды и механических примесей.

Система питания дизельного двигателя включает такие агрегаты, как топливный насос и форсунки, имеющие трущиеся пары с весьма малым зазором в десятки раз меньше толщины человеческого волоса. Попадание механических примесей приводит к быстрому износу или выходу из строя форсунок.. Поэтому заправлять топливный бак трактора надо чистым топливом. Перед заправкой трактора топливо должно отстаиваться в цистерне не менее двух суток. Резервуары для хранения топлива должны быть чистыми, без ржавчины и окалины. Их горловины следует закрывать. Отстоявшееся топливо из резервуаров откачивают насосом или сливают через сифонную трубку. При этом заборный шланг опускают не ниже 8 см от дна резервуара. Нельзя взбалтывать топливо перед заправкой. При возможности для очистки топлива надо пользоваться стационарными фильтрами.

Следует остерегаться попадания в топливный бак воды, что может вызвать выход из строя топливной аппаратуры.

Вместимость топливного бака обеспечивает работу трактора без заправки в течение полутора смен при полной нагрузке. Бак следует держать полным, заправляя его топливом ежесменно. Это снижает взбалтывание топлива, уменьшает коррозию стенок и конденсацию паров воды в баке.

Перед заправкой следует тщательно очистить горловину бака и крышку oт пыли, прочистить отверстие в крышке и промыть сетчатый фильтр горловины. При заправке топлива необходимо соблюдать правила противопожарной безопасности.

  1   2   3   4



Скачать файл (2236.9 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru