Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых - файл 1.doc


Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых
скачать (370.5 kb.)

Доступные файлы (1):

1.doc371kb.21.11.2011 09:41скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению Классификации запасов

месторождений и прогнозных ресурсов

твердых полезных ископаемых


Литиевые и цезиевые руды


Москва, 2007

Разработаны Федеральным государственным учреждением «Госу­дарственная комиссия по запасам полезных ископаемых» (ФГУ ГКЗ) по заказу Министерства природных ресурсов Российской Федерации и за счет средств федерального бюджета.
Утверждены распоряжением МПР России от 05.06.2007 г. № 37-р.
Методические рекомендации по применению Классификации запа­сов месторождений и прогнозных ресурсов твердых полезных иско­паемых. Литиевые и цезиевые руды.
Предназначены для работников предприятий и организаций, осу­ществляющих свою деятельность в сфере недропользования, неза­висимо от их ведомственной принадлежности и форм собственно­сти. Применение настоящих Методических рекомендаций обеспе­чит получение геологоразведочной информации, полнота и каче­ство которой достаточны для принятия решений о проведении дальнейших разведочных работ или о вовлечении запасов разведан­ных месторождений в промышленное освоение, а также о проекти­ровании новых или реконструкции существующих предприятий по добыче и переработке полезных ископаемых.


  1. ^

    Общие сведения


1. Настоящие Методические рекомендации по применению Классификации запасов к месторождениям литиевых и цезиевых руд (далее – Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. № 370 (Собрание законодательства Российской Федерации, 2004, № 31, ст.3260; 2004, № 32, ст. 3347, 2005, № 52 (3ч.), ст. 5759; 2006, № 52 (3ч.), ст. 5597), Положением о Федеральном агентстве по недропользованию, утвержденным постановлением Правительства Российской Федерации от 17 июня 2004 г. № 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669; 2006, №25, ст.2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 11 декабря 2006 г. № 278, и содержат рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых в отношении литиевых и цезиевых руд.

2. Методические рекомендации направлены на оказание практической помощи недропользователям и организациям, осуществляющим подготовку материалов по подсчету запасов полезных ископаемых и представляющих их на государственную экспертизу.

3. Литий – серебристо-белый металл (на воздухе быстро тускнеет), отличающийся необычайной легкостью (плотность его самая низкая из всех металлов – 0,53 г/см3), большой теплоемкостью (близкой к удельной теплоемкости воды), исключительной реакционной способностью, легко образует сплавы с бериллием, магнием, алюминием, медью, свинцом.

В XIX в. литий применялся в ограниченном количестве в медицине. Исключительное значение он приобрел в 50-х гг. XX в., когда было установлено, что изотоп 6Li может служить источником получения трития, необходимого для осуществления термоядерных процессов. Потенциальный крупный потребитель лития – энергетические установки, реализующие управляемую реакцию термоядерного синтеза, будущие основные источники энергии. В последние годы ведущей областью применения лития стала алюминиевая промышленность – добавки 3–5 % карбоната лития в алюминиевые электролизеры снижают расход электроэнергии на 20 % (в общей сложности) и сокращают не менее чем на 25 % эмиссию фторидов в окружающую среду.

Литий (в виде обезжелезненного сподумена, петалита и карбоната лития) – традиционный компонент специальных видов керамики, стекла и ситаллов.

Литиевые соли жирных кислот служат основой высококачест­венных консистентных смазок, работающих в широком температурном диапазоне (от –60 до +60 °С).

Весьма перспективным направлением использования металлического лития становятся алюминиевые сплавы (96 % Аl, 3 % Li и ряд других компонентов) для авиационной и аэрокосмической промышленности; добавка лития к авиационным алюминиевым сплавам на 10 % снижает массу конструкций и тем самым на 20 % на единицу массы повышает эффективность эксплуатации самолета.

В электротехнической промышленности литий используется в ХИТах (химических источниках тока) – компактных электрических батареях для электронных часов, стимуляторов сердечной деятельности, устройств памяти в ЭВМ, фото- и кинокамер. Гигроскопические соединения лития эффективно применяются в установках кондиционирования воздуха (гидроксид лития входит в системы жизнеобеспечения космонавтов), в производстве глазурей, жаростойких эмалей для реактивных и турбореактивных двигателей, высокопрочных цементов, лаков и красок, а также в медицине (карбонат лития) и ряде других областей.

Структура мирового потребления лития по областям применения и видам товарных продуктов такова (%): производство алюминия, стекла и керамики – 48 (карбонат лития); консистентные смазки – 20 (гидроксид лития); стекло, керамика – 15 (минеральные концентраты); кондиционирование и очистка воздуха и газов – 9 (соли лития); аккумуляторные батареи, сплавы – 5 (металл); катализаторы для получения каучука – 2 (бутил-литий); фармацевтика и прочие области применения – 1.

Цезий – блестящий металл белого цвета с желтоватым оттенком, самый мягкий из всех металлов, имеющий плотность 1,87 г/см3, самую низкую температуру плавления (+ 28,5 °С), обладающий уникальными свойствами – из всех металлов он наиболее легко ионизируется при облучении солнечными или космическими лучами; при нагревании цезий становится источником потока электронов, на чем основано производство фотоэлементов, фотоэлектронных умножителей электронно-оптических преобразователей, солнечных батарей. Это свойство, наряду с большой атомной массой (132,91) и низкой температурой кипения, открывает перспективы использования цезия в качестве топлива в ионных ракетных двигателях для космических полетов, а также для повышения эффективности работы плазменных генераторов, т. е. непосредственного преобразования тепловой энергии в электрическую, что осуществляется в магнитогидродинамических (МГД) генераторах и термоэлектронных преобразователях (ТЭП).

4. Среднее содержание в земной коре лития – 2,7·10–3 %, цезия – 3,7·10–4 %. Литий входит в состав 86 минералов, в основном силикатов и фосфатов, но извлекается он преимущественно из сподумена (примерно 80 % всех запасов лития в эндогенных месторождениях связаны со сподуменовыми рудами); цезий образует свой собственный минерал – поллуцит, в изоморфной форме входит в состав минералов с благоприятной для этого структурой (слюды, бериллы, астрофиллит), а также цезиевый биотит, содержащий до 4–6 % Cs2O (таблица 1). Минералы лития и цезия характеризуются высокой изменчивостью содержаний как основных компонентов, так и элементов-примесей в пределах отдельных рудных тел и месторождений в целом.
Таблица 1

^ Важнейшие промышленные минералы лития и цезия

Минерал

Структурно-химическая формула

Содержание Li2O, Cs2O, %

Элементы-примеси

Плотность,

г/см3




1

2

3

4

5

Минералы лития

Сподумен

LiAl(Si2O6)

Li2O 5,9–7,6

Rb, Cs, Ga, Sn

3,1–3,2

Амблигонит

LiAl(PO4)F

Li2O 7,6

Sn, Ga, Be, Ta

3,0–3,1

Монтебразит

LiAl(PO4)OH

Li2O 7,0–9,0



3,0–3,1

Петалит

LiAlSi4O10

Li2O 3,4–4,1

Ba, Sr

2,4

Эвкриптит

LiAlSiO4

Li2O 6,1

Ba, Sr, Ga, Be, Sn

2,6–2,7

Лепидолит

KLi1,5Al2,5Si3O10(F, OH)2 – K2Li3Al5Si6O20(F, OH)4

Li2O 4,1–5,5

Ge, Tl, Ga, Rb, Cs

2,8–2,9

Циннвальдит

KLiFeAl2Si3O10F2

Li2O 2,9–4,5

Rb, Cs, Be

2,9–3,2

Полилитионит

KLi2AlSi4O10(F, OH)2

Li2O 5,5–8,8

Rb

2,8

Минералы цезия

Поллуцит

CsAlSi2O6· H2O

Cs2O 20–36,1

Rb, Be, Li

2,8–2,9

Цезиевый биотит

(К, Cs, Rb)(Fe, Mg)3 [Si3AlO10](F, ОН)2

Cs2O до 6

Li, Ga, Rb

3,0–3,1

5. Основными сырьевыми источниками лития в России являются редкометалльные пегматиты и граниты, содержащие сподумен, иногда петалит, лепидолит, реже амблигонит и эвкриптит (табл. 2), а за рубежом – обогащенные литием воды: рапа высохших озер, рассолы подземных, а также сильно испаряющихся водных бассейнов, высокоминерализованные йодобромные нефтяные подземные воды. Попутно литий может извлекаться из различных слюд (циннвальдит, лепидолит, полилитионит) при разработке месторождений в метасоматически измененных гранитах и различных грейзеновых месторождений.

Месторождения лития и цезия в редкометалльных пегматитах подразделяются на два промышленных типа: литиевые и литий-цезий-танталовые месторождения, для которых соответственно основными полезными компонентами при подсчете запасов считаются литий и тантал.

Литиевые месторождения в пегматитах (Завитинское, Колмозерское, Тастыгское в России, Кингс-Маунтин в США) представлены линейно вытянутыми субпараллельными крутопадающими жилами пегматитов, протягивающимися на многие сотни метров и километры вдоль зон региональных разломов. Мощность жил изменяется от 0,5–1 до 2–25 м. Вертикальный размах сподуменового оруденения 3–3,5 км. Вмещающими являются различные породы, метаморфизованные до кордиерит-амфиболитовой фации.

Пегматитовые рудные тела характеризуются чаще всего слабо зональным строением, при котором краевые зоны сложены мелко- или среднезернистым кварц-альбитовым или кварц-микроклиновым агрегатом. Размер выделений сподумена в центральной зоне резко увеличивается, достигая нередко 0,5–1,5 м, кристаллы сподумена чаще всего располагаются ориентированно – грубо перпендикулярно поверхностям контактов рудных тел, что следует учитывать при интерпретации опробования скважин. Содержание сподумена в рудах 15–25 %, Li2O 0,5–1,5 %. Попутными компонентами являются Ta2O5 (0,005–0,01 %), BeO (0,04–0,07 %), Sn (0,03–0,08 %) и полевой шпат.

Литий-цезий-танталовые месторождения в пегматитах обычно представлены пологозалегающими плито- или линзообразными рудными телами с зональным внутренним строением и характеризуются неравномерным распределением всех полезных компонентов, особенно поллуцита, обычно приуроченного к раздувам жил. Иногда в этих рудах основным минералом – концентратором лития и цезия является лепидолит (0,3–1,3 % Cs2O), образующий зачастую линзовидные практически мономинеральные скопления в осевых частях пегматитовых тел. Кроме сподумена и лепидолита литий концентрируется в петалите, эвкриптите, монтебразите, а также в литиевом мусковите. Тантал в этих месторождениях является основным полезным компонентом (0,01–0,04 % Ta2O5). Его основными минералами-концентраторами являются колумбит-танталит, воджинит, микролит. Попутные полезные компоненты – олово и бериллий – присутствуют в содержаниях: Sn 0,04–0,1 %, BeO 0,02–0,07 %.

Таблица 2


Промышленные и потенциально-промышленные типы месторождений лития и цезия


Промышленный тип

месторождений

Структурно-морфологический тип и комплекс вмещающих пород

Природный

(минеральный)

тип руд

Содержание основных компонентов

в руде, %

Попутные компоненты

Промышленный

(технологический)

тип руд*

Примеры

месторождений




1

2

3

4

5

6

7

Литиевый в

пегматитах

Плитообразный, жильный в габбро-анортозитах, амфиболитах, сланцах, известняках

Сподуменовый

Li2O 0,5–1,5

Ta, Be, Nb, Sn, полевой шпат

Технический тантал-ниобий-бериллий-литиевый (сортировочный, гравитационно-флотационно-гидрометаллургический)

Завитинское , Колмозерское, Тастыгское (Россия), Кингс-Маунтин (США)

Литий-цезий-танталовый в пегматитах

Линзо- и пластообразный, жильный в амфиболитах, кристаллических сланцах и гнейсах

Сподумен-берилл-танталитовый, поллуцит-сподумен-танталитовый, сподумен-воджинит-танталитовый

Ta2O5 0,01–0,04; Cs2O 0,1–0,8; Li2O 0,3–1,5;

BeO 0,02–0,07

Nb, Sn, Ga, полевой шпат

Технический бериллий-литий-цезий- танталовый (сортировочный, гравитационно-флотационно-гидрометаллургический)

Вишняковское, Вороньетун-дровское

(Россия),

Бакенное

(Казахстан),

Берник-Лейк

(Канада)

Литий-танталовый

в сподуменовых гранитах

Куполообразные залежи в апикальной части массивов сподуменовых гранитов

Танталит-сподуменовый

Li2O 0,5–1,0; Ta2O5 0,008–0,014

Nb, Rb, Cs

Технический литий-танталовый (сортировочный, гравитационно-флотационно-гидрометаллургический)

Алахинское

(Россия)

* В названии промышленного (технологического) типа отражено хозяйственное (промышленное) назначение конечных продуктов, важнейшая технологическая особенность руд и основные способы переработки.


Цезий-биотитовые околопегматитовые метасоматиты – значительно менее распространенный тип цезиевых руд – слагают межжильные пространства пегматитовых жильных серий (составляющих всего лишь порядка 10 % объема руд месторождения) и внешние экзоконтактовые зоны мощностью первые метры – 10–15 м. Главным рудным минералом – концентратором цезия в них является цезиевый биотит.

Рудные тела, оконтуриваемые по данным опробования, образуют, как правило, линейно вытянутые линзовидные, четковидные залежи.

Литий-танталовые месторождения в сподуменовых гранитах. К этому типу относится недавно выявленное Алахинское месторождение (Республика Алтай). Рудное тело, оконтуренное по бортовому содержанию 0,007 % Ta2O5, образует куполовидную залежь в апикальной части небольшого (площадь выхода 0,4 км2) массива сподуменовых гранитов. Литиевые минералы представлены в основном сподуменом, встречаются также петалит и монтебразит, а танталовые минералы – танталитом и микролитом. В небольшом количестве присутствует поллуцит. Среднее содержание LiO2 в рудах 0,71 %.

За рубежом одним из самых важных природных источников лития является гидроминеральное сырье, которое обеспечивает более 50 % мирового объема производства этого металла. Из четырех природных типов такого сырья на литий за рубежом промышленно освоены поверхностная и близповерхностная рапа саларов и соляных озер (CO3)-Cl-(K)-Mg-Na гидрохимического типа и рапа соляных озер (SO4)-Cl-(Mg)-Na типа. Два природных типа глубокозалегающих подземных хлоридных рассолов относят к потенциально-промышленным.
^

II. Группировка месторождений по сложности геологического строения для целей разведки



6. По размерам и форме рудных тел, изменчивости их мощности, внутреннего строения и особенностям распределения основных компонентов месторождения литиевых руд соответствуют в основном 2-й, а месторождения цезиевых руд 3-й и 4-й группам «Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых», утвержденной приказом МПР России от 11 декабря 2006 г. № 278.

Ко 2-й группе относятся месторождения (участки) сложного геологического строения, представленные линейно вытянутыми крутопадающими сериями жильных рудных тел большой протяженности (1–2 км), невыдержанной мощности, с неравномерным распределением оксида лития (Полмостундровское, Тастыгское месторождения) и крупными (n100×n100 м) куполообразными залежами в апикальной части массивов мусковит-сподуменовых гранитов (Алахинское месторождение).

К 3-й группе относятся месторождения (участки) очень сложного геологического строения с рудными телами, представленными жилами, жильными сериями или жило- и линзообразными метасоматическими залежами небольшой протяженности (50–100 до 500 м), изменчивой мощности, с весьма неравномерным распределением полезных компонентов (месторождение Гольцовое).

К 4-й группе относятся месторождения (участки) весьма сложного геологического строения, представленные мелкими жилами, линзами, телами поллуцитсодержащих пегматитов с чрезвычайно сложным прерывистым гнездообразным распределением рудных скоплений: участки с высокими содержаниями оксида цезия перемежаются с безрудными (месторождение Васин-Мыльк).

7. Принадлежность месторождения (участка) к той или иной группе устанавливается по степени сложности геологического строения основных рудных тел, заключающих не менее 70 % общих запасов месторождения.

8. При отнесении месторождения к той или иной группе в ряде случаев могут использоваться количественные характеристики изменчивости основных свойств оруденения (приложение к настоящим Методическим рекомендрациям).
^

III. Изучение геологического строения месторождений и
вещественного состава руд



9. По разведанному месторождению необходимо иметь топографическую основу, масштаб которой соответствовал бы его размерам, особенностям геологического строения и рельефу местности. Топографические карты и планы на месторождениях литиевых и цезиевых руд обычно составляются в масштабах 1:1000–1:10 000. Все разведочные и эксплуатационные выработки (канавы, шурфы, шахты, штольни, скважины), профили детальных геофизических наблюдений, а также естественные обнажения рудных тел и минерализованных зон должны быть инструментально привязаны. Подземные горные выработки и скважины наносятся на планы по данным маркшейдерской съемки. Маркшейдерские планы горизонтов горных работ обычно составляются в масштабах 1:200 – 1:500, сводные планы – в масштабе не мельче 1:1000. Для скважин должны быть вычислены координаты точек пересечения ими кровли и подошвы рудного тела и построены проложения их стволов на плоскости планов и разрезов.

10. Геологическое строение месторождения должно быть детально изучено и отображено на геологической карте масштаба 1:1000–1:10 000 до 1:25 000 (в зависимости от размеров и сложности месторождения), геологических разрезах, планах, проекциях, а в необходимых случаях – на блок-диаграммах и моделях. Геологические и геофизические материалы по месторождению должны давать представление о размерах и форме рудных тел, условиях их залегания, внутреннем строении и сплошности, характере выклинивания рудных тел, особенностях изменения вмещающих пород и взаимоотношениях рудных тел с вмещающими породами, складчатыми структурами и тектоническими нарушениями в степени, необходимой и достаточной для обоснования подсчета запасов. Следует также обосновать геологические границы месторождения и поисковые критерии, определяющие местоположение перспективных участков, в пределах которых оценены прогнозные ресурсы категории Р1.

11. Выходы на поверхность и приповерхностные части рудных тел должны быть изучены горными выработками и неглубокими скважинами с применением геофизических и геохимических методов и опробованы с детальностью, позволяющей установить морфологию и условия залегания рудных тел, глубину развития и строение коры выветривания (характер изменения рудных минералов, главным образом сподумена и поллуцита, в гипергенных условиях), особенности изменения вещественного состава, технологических свойств и содержаний основных компонентов и провести подсчет запасов раздельно по промышленным (технологическим) типам.

12. Разведка месторождений на глубину проводится скважинами в сочетании с горными выработками (месторождений очень сложного строения – горными выработками) с использованием геофизических методов исследований – наземных, в скважинах и в горных выработках.

Методика разведки – соотношение объемов горных работ и бурения, виды горных выработок и способы бурения, геометрия и плотность разведочной сети, методы и способы опробования – должна обеспечивать возможность подсчета запасов на разведанном месторождении по категориям, соответствующим группе сложности его геологического строения. Она определяется исходя из геологических особенностей рудных тел с учетом возможностей горных, буровых, геофизических средств разведки, а также опыта разведки и разработки месторождений аналогичного типа.

При выборе оптимального варианта разведки следует учитывать степень изменчивости содержаний лития и цезия, характер пространственного распределения литиевых и цезиевых минералов, текстурно-структурные особенности руд (главным образом наличие крупных выделений рудных минералов), а также возможное избирательное истирание керна при бурении и выкрашивание рудных минералов при опробовании в горных выработках. Следует учитывать также сравнительные технико-экономические показатели и сроки выполнения работ по различным вариантам разведки.

13. По скважинам колонкового бурения должен быть получен максимальный выход керна хорошей сохранности в объеме, позволяющем выяснить с необходимой полнотой особенности залегания рудных тел и вмещающих пород, их мощности, внутреннее строение рудных тел, характер околорудных изменений, распределение природных разновидностей руд, их текстуры и структуры и обеспечить представительность материала для опробования. Практикой геологоразведочных работ установлено, что выход керна для этих целей должен быть не менее 70 % по каждому рейсу бурения. Достоверность определения линейного выхода керна следует систематически контролировать весовым или объемным способом.

Величина представительного выхода керна для определения содержаний полезных компонентов и мощностей рудных интервалов (особенно для поллуцитовых руд) должна быть подтверждена исследованиями возможности его избирательного истирания, которое может иметь место и при высоком выходе керна. Для этого необходимо по основным типам руд сопоставить результаты опробования керна и шлама (по интервалам с их различным выходом) с данными опробования контрольных горных выработок, скважин ударного, пневмоударного и шарошечного бурения, а также колонковых скважин, пробуренных эжекторными и другими снарядами с призабойной циркуляцией промывочной жидкости. При низком выходе керна или избирательном его истирании, существенно искажающем результаты опробования, следует применять другие технические средства разведки. При существенном искажении содержания лития и цезия в керновых пробах необходимо обосновать величину поправочного коэффициента к результатам кернового опробования на основе данных контрольных выработок.

Для повышения достоверности и информативности бурения необходимо использовать методы геофизических исследований в скважинах, рациональный комплекс которых определяется исходя из поставленных задач, конкретных геолого-геофизических условий месторождения и современных возможностей геофизических методов. Комплекс каротажа, эффективный для выделения рудных интервалов и установления их параметров, должен выполняться во всех скважинах, пробуренных на месторождении.

В вертикальных скважинах глубиной более 100 м и во всех наклонных, включая подземные, не более чем через каждые 20 м должны быть определены и подтверждены контрольными замерами азимутальные и зенитные углы их стволов. Результаты этих измерений необходимо учитывать при построении геологических разрезов, погоризонтных планов и расчете мощностей рудных интервалов. При наличии подсечений стволов скважин горными выработками результаты замеров проверяются данными маркшейдерской привязки. Для скважин необходимо обеспечить пересечение ими рудных тел под углами не менее 30°.

Для пересечения крутопадающих рудных тел под большими углами целесообразно применять искусственное искривление скважин. С целью повышения эффективности разведки следует осуществлять бурение многозабойных скважин, а при наличии горизонтов горных работ – вееров подземных скважин. Бурение по руде целесообразно производить одним диаметром.

14. Горные выработки являются основным средством детального изучения условий залегания, морфологии, внутреннего строения рудных тел, их сплошности, вещественного состава руд, контроля данных бурения, геофизических исследований, а также отбора технологических проб.

Сплошность рудных тел и изменчивость оруденения по простиранию и падению должны быть изучены в достаточном объеме на представительных участках: по маломощным рудным телам – непрерывным прослеживанием штреками и восстающими, а по мощным рудным телам – сгущением сети ортов, квершлагов, подземных горизонтальных скважин.

Одно из важнейших назначений горных выработок – установление степени избирательного истирания керна при бурении скважин с целью выяснения возможности использования данных скважинного опробования и результатов геофизических исследований для геологических построений и подсчета запасов. Горные выработки следует проходить на участках детализации, а также на горизонтах месторождения, намеченных к первоочередной отработке.

15. Расположение разведочных выработок и расстояния между ними должны быть определены для каждого структурно-морфологического типа рудных тел с учетом их размеров, особенностей геологического строения и характера распределения полезных компонентов.

Приведенные в таблице 3 обобщенные сведения о плотности сетей, применявшихся при разведке месторождений литиевых и цезиевых руд в странах СНГ, могут учитываться при проектировании геологоразведочных работ, но их нельзя рассматривать как обязательные. Для каждого месторождения на основании изучения участков детализации и тщательного анализа всех имеющихся геологических, геофизических и эксплуатационных материалов по данному или аналогичным месторождениям обосновываются наиболее рациональные геометрия и плотность сети разведочных выработок.

Таблица 3

^ Сведения о плотности сетей разведочных выработок, применявшихся при разведке месторождений литиевых и цезиевых руд в странах СНГ


Группа месторождений

Характеристика рудных тел

Виды выработок

Расстояния между пересечениями рудных тел выработками (в м) для категорий запасов

В

С1

по простиранию

по падению

по простиранию

по падению




1

2

3

4

5

6

7

2-я



Линейно вытянутые крутопадающие жильные серии большой протяженности, непостоянной мощности, с неравномерным распределением оксида лития



Штреки

Непрерывное прослеживание

40–60





Орты

40–60







Восстающие

80–120

Непрерывное прослеживание





Скважины

100

50

100–200

50–100

3-я



Жильные серии или жило- и линзообразные метасоматические залежи небольшой протяженности, изменчивой мощности, с весьма неравномерным распределением полезных компонентов



Штреки





Непрерывное прослеживание

20–30

Орты





20–30




Восстающие





60–80

Непрерывное прослеживание

Скважины





40–50

40–50

4-я*



Мелкие жилы, линзы, тела поллуцитсодержащих пегматитов с чрезвычайно сложным прерывистым гнездообразным распределением рудных скоплений



Штреки





Непрерывное прослеживание

10–15

Орты





20



Восстающие





Не менее одного пересечения по каждому телу

Скважины





20–25

20–25

*Использованы сведения о плотности разведочной сети для мелких рудных тел, характеризующихся исключительно сложным строением и прерывистым распределением оксида цезия.

П р и м е ч а н и е. Плотность сети разведочных выработок категории С2 для оцененных месторождений принимается в 2–3 раза реже, чем для категории С1.

16. Для подтверждения достоверности подсчета запасов на разведанных месторождениях отдельные их участки должны быть исследованы более детально. Эти участки следует изучать и опробовать по более плотной разведочной сети, по сравнению с принятой на остальной части месторождения. На месторождениях 2-й группы запасы на таких участках должны быть разведаны по категории В, а на месторождениях 3-й группы сеть разведочных выработок на участках детализации целесообразно сгущать, как правило, не менее чем в 2 раза по сравнению с принятой для категории С1.

При использовании интерполяционных методов подсчета запасов (геостатистика, метод обратных расстояний и др.) на участках детализации необходимо обеспечить плотность разведочных пересечений, достаточную для обоснования оптимальных интерполяционных формул.

Участки детализации должны отражать особенности условий залегания и форму рудных тел, вмещающих основные запасы месторождения, а также преобладающее качество руд. По возможности они располагаются в контуре запасов, подлежащих первоочередной отработке. В тех случаях, когда участки, намеченные к первоочередной отработке, не характерны для всего месторождения по особенностям геологического строения, качеству руд и горно-геологическим условиям, должны быть детально изучены также участки, удовлетворяющие этому требованию. Число и размеры участков детализации на месторождениях определяются в каждом отдельном случае недропользователем.

Для месторождений с прерывистым оруденением, оценка запасов которых производится без геометризации конкретных рудных тел, в обобщенном контуре, с использованием коэффициентов рудоносности, на основании определения пространственного положения, типичных форм и размеров участков кондиционных руд, а также распределения запасов по мощности рудных интервалов должна быть оценена возможность их селективной выемки.

Полученная на участках детализации геологическая информация используется для обоснования группы сложности месторождения, подтверждения соответствия принятой методики и выбранных технических средств разведки особенностям его геологического строения, для оценки достоверности результатов опробования и подсчетных параметров, принятых при подсчете запасов на остальной части месторождения, а также условий разработки месторождений в целом. На разрабатываемых месторождениях для этих целей используются данные эксплуатационной разведки и разработки.

17. Все разведочные выработки и выходы рудных тел или зон на поверхность должны быть задокументированы. Результаты опробования выносятся на первичную документацию и сверяются с геологическим описанием.

Полнота и качество первичной документации, соответствие ее геологическим особенностям месторождения, правильность определения пространственного положения структурных элементов, составления зарисовок и их описаний должны систематически контролироваться сличением с натурой специально назначенными комиссиями. Следует также оценивать качество геологического и геофизического опробования (выдержанность сечения и массы проб, соответствие их положения особенностям геологического строения участка, полноту и непрерывность отбора проб, наличие и результаты контрольного опробования).

18. Для изучения качества полезного ископаемого, оконтуривания рудных тел и подсчета запасов все рудные интервалы, вскрытые разведочными выработками или установленные в естественных обнажениях, должны быть опробованы.

19. Выбор методов (геологических, геофизических) и способов опробования, а также применяемых технических средств разведки производится на ранних стадиях оценочных и разведочных работ, исходя из конкретных геологических особенностей месторождения, физических свойств полезного ископаемого и вмещающих пород, а также применяемых технических средств разведки.

На месторождениях литиевых и цезиевых руд, при соответствующем обосновании, целесообразно применение ядерно-геофизических методов в качестве рядового опробования. Применение геофизических методов опробования и использование их результатов при подсчете запасов регламентируется «Методическими рекомендациями по геофизическому опробованию при подсчете запасов месторождений металлов и нерудного сырья», утвержденными распоряжением МПР России № 37-р от 05.06.2007.

Принятые метод и способ опробования должны обеспечивать наибольшую достоверность результатов при достаточной производительности и экономичности. В случае применения нескольких способов опробования они должны быть сопоставлены по точности результатов и достоверности. При выборе геологических способов опробования (керновый, бороздовый, задирковый и др.), определении качества отбора и обработки проб, оценке достоверности методов опробования следует руководствоваться соответствующими нормативно-методическими документами.

Для сокращения нерациональных затрат труда и средств на отбор и обработку проб рекомендуется интервалы, подлежащие опробованию, предварительно наметить по данным каротажа или замерам ядерно-геофизическими, магнитным и другими методами.

20. Опробование разведочных сечений следует производить с соблюдением следующих условий:

сеть опробования должна быть выдержанной, плотность ее определяется геологическими особенностями изучаемых участков месторождения и обычно устанавливается исходя из опыта разведки месторождений-аналогов или обосновывается на новых объектах экспериментальным путем; пробы необходимо отбирать в направлении максимальной изменчивости оруденения; в случае пересечения рудных тел разведочными выработками (в особенности скважинами) под острым углом к направлению максимальной изменчивости (если при этом возникают сомнения в представительности опробования) контрольными работами или сопоставлением должна быть доказана возможность использования в подсчете запасов результатов опробования этих сечений;

опробование следует проводить непрерывно, на полную мощность рудного тела с выходом во вмещающие породы на величину, превышающую мощность пустого или некондиционного прослоя, включаемого в соответствии с кондициями в промышленный контур: для рудных тел без видимых геологических границ – во всех разведочных выработках, а для рудных тел с четкими геологическими границами – по разреженной сети выработок. В канавах, шурфах, траншеях кроме коренных выходов руд должны быть опробованы и продукты их выветривания;

природные разновидности руд и минерализованных пород должны быть опробованы раздельно – секциями; длина каждой секции (рядовой пробы) определяется внутренним строением рудного тела, изменчивостью вещественного состава, текстурно-структурных особенностей, физико-механических и других свойств руд, а в скважинах – также длиной рейса; она не должна превышать установленные кондициями минимальную мощность для выделения типов или сортов руд, а также максимальную мощность внутренних пустых и некондиционных прослоев, включенных в контуры руд.

Способ отбора проб в буровых скважинах (керновый, шламовый) зависит от используемого вида и качества бурения. При колонковом бурении должны быть установлены минимально допустимый для подсчета запасов выход керна, а величина линейного выхода керна – систематически контролироваться весовым (сравнением теоретической и фактической массы керна) или объемным способом. При этом интервалы с разным выходом керна опробуются раздельно, при наличии избирательного истирания керна опробованию подвергается как керн, так и измельченные продукты бурения (шлам, пыль и др.), мелкие продукты отбираются в самостоятельную пробу с того же интервала, что и керновая проба, обрабатываются и анализируются отдельно. При весьма неравномерном распределении рудных минералов деление керна при опробовании не производится.

В горных выработках, пересекающих рудное тело на всю мощность, и в восстающих опробование должно проводиться по двум стенкам, в выработках, пройденных по простиранию рудного тела, – в забоях. Расстояние между опробуемыми забоями в прослеживающих выработках обычно не превышает 1 м (увеличение шага опробования должно быть подтверждено экспериментальными данными). В горизонтальных горных выработках при крутом залегании рудных тел все пробы размещаются на постоянной, заранее определенной высоте. Принятые параметры проб необходимо обосновать экспериментальными работами. Должны быть проведены работы по изучению возможного выкрашивания рудных минералов (сподумена, лепидолита, поллуцита и др.) при принятом способе опробования.

Результаты геологического и геофизического опробования скважин и горных выработок следует использовать в качестве основы для оценки неравномерности оруденения в естественном залегании и прогнозирования показателей радиометрического обогащения, руководствуясь соответствующими методическими документами. При этом для прогнозирования результатов крупнопорционной сортировки целесообразно принять постоянным шаг опробования при длине каждой секции (рядовой пробы), кратной 1 м. Показатели радиометрической сепарации прогнозируются по результатам дифференциальной интерпретации геофизических данных при линейных размерах пробы, соответствующих куску максимальной крупности 100–200 мм.

21. Качество опробования по каждому методу и способу и по основным разновидностям руд необходимо систематически контролировать, оценивая точность и достоверность результатов. Следует своевременно проверять положение проб относительно элементов геологического строения, надежность оконтуривания рудных тел по мощности, выдержанность принятых параметров проб и соответствие фактической массы пробы расчетной, исходя из принятого сечения борозды или фактического диаметра и выхода керна (отклонения не должны превышать 10–20 % с учетом изменчивости плотности руды).

Точность бороздового опробования следует контролировать сопряженными бороздами того же сечения, кернового опробования – отбором проб из вторых половинок керна.

При геофизическом опробовании в естественном залегании контролируются стабильность работы аппаратуры и воспроизводимость метода при одинаковых условиях рядовых и контрольных измерений. Достоверность геофизического опробования определяется сопоставлением данных геологического и геофизического опробования при высоком выходе керна по опорным интервалам, для которых доказано отсутствие его избирательного истирания.

В случае выявления недостатков, влияющих на точность опробования, следует производить переопробование (или повторный каротаж) рудного интервала.

Достоверность принятых методов и способов опробования контролируется более представительным способом, как правило, валовым, руководствуясь соответствующими методическими документами. Для этой цели необходимо также использовать данные технологических проб, валовых проб, отобранных для определения объемной массы в целиках, и результаты отработки месторождения. Объем контрольного опробования должен быть достаточным для статистической обработки результатов и обоснованных выводов об отсутствии или наличии систематических ошибок, а в случае необходимости – и для введения поправочных коэффициентов.

22. Обработка проб производится по схемам, разработанным для каждого месторождения или принятым по аналогии с однотипными месторождениями. Основные и контрольные пробы обрабатываются по одной схеме.

Качество обработки должно систематически контролироваться по всем операциям в части обоснованности коэффициента К и соблюдения схемы обработки. При обработке проб с резко различающимися содержаниями рудных минералов необходимо регулярно контролировать чистоту поверхностей дробильного оборудования.

Обработка контрольных крупнообъемных проб производится по специально составленным программам.

23. Химический состав руд должен изучаться с полнотой, обеспечивающей выявление всех основных, попутных полезных компонентов и вредных примесей. Содержания их в руде определяются анализами проб химическими, спектральными, физическими или другими методами, установленными государственными стандартами или утвержденными Научным советом по аналитическим методам (НСАМ) и Научным советом по методам минералогических исследований (НСОММИ).

Изучение в рудах попутных компонентов производится в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке.

Все рядовые пробы анализируются на компоненты, содержание которых учитывается при оконтуривании рудных тел по мощности. Попутные полезные компоненты и вредные примеси определяются обычно по групповым пробам.

Порядок объединения рядовых проб в групповые, их размещение и общее количество должны обеспечивать равномерное опробование основных разновидностей руд на попутные компоненты и вредные примеси и выяснение закономерностей изменения их содержаний по простиранию и падению рудных тел.

Для выяснения степени изменения первичных руд и установления в зоне гипергенеза границы коры выветривания должны выполняться фазовые анализы.

24. Качество анализов проб необходимо систематически проверять, а результаты контроля своевременно обрабатывать в соответствии с методическими указаниями НСАМ, НСОММИ и руководствуясь ОСТ 41-08-272–04 «Управление качеством аналитических работ. Методы геологического контроля качества аналитических работ», утвержденным ВИМС (протокол № 88 от 16 ноября 2004 г.). Геологический контроль анализов проб следует осуществлять независимо от лабораторного контроля в течение всего периода разведки месторождения. Контролю подлежат результаты анализов на все основные, попутные компоненты и вредные примеси.

25. Для определения величин случайных погрешностей необходимо проводить внутренний контроль путем анализа зашифрованных контрольных проб, отобранных из дубликатов аналитических проб, в той же лаборатории, которая выполняет основные анализы, не позднее следующего квартала.

Для выявления и оценки возможных систематических погрешностей должен осуществляться внешний контроль в лаборатории, имеющей статус контрольной. На внешний контроль направляются дубликаты аналитических проб, хранящиеся в основной лаборатории и прошедшие внутренний контроль. При наличии стандартных образцов состава (СОС), аналогичных исследуемым пробам, внешний контроль следует осуществлять, включая их в зашифрованном виде в партию проб, которые сдаются на анализ в основную лабораторию.

Пробы, направляемые на внутренний и внешний контроль, должны характеризовать все разновидности руд месторождений и классы содержаний. В обязательном порядке на внутренний контроль направляются все пробы, показавшие аномально высокие содержания анализируемых компонентов.

26. Объем внутреннего и внешнего контроля должен обеспечить представительность выборки по каждому классу содержаний и периоду выполнения анализов (квартал, полугодие, год).

При выделении классов следует учитывать параметры кондиций для подсчета запасов – бортовое и минимальное промышленное содержания. В случае большого числа анализируемых проб (2000 и более в год) на контрольные анализы направляется 5 % от их общего количества, при меньшем числе проб по каждому выделенному классу содержаний должно быть выполнено не менее 30 контрольных анализов за контролируемый период.

27. Обработка данных внешнего и внутреннего контроля по каждому классу содержаний производится по периодам (квартал, полугодие, год), раздельно по каждому методу анализа и лаборатории, выполняющей основные анализы. Оценка систематических расхождений по результатам анализа СОС выполняется в соответствии с методическими указаниями НСАМ по статистической обработке аналитических данных.

Относительная среднеквадратическая погрешность, определенная по результатам внутреннего геологического контроля, не должна превышать значений, указанных в табл. 4. В противном случае результаты основных анализов для данного класса содержаний и периода работы лаборатории бракуются и все пробы подлежат повторному анализу с выполнением внутреннего геологического контроля. Одновременно основной лабораторией должны быть выяснены причины брака и приняты меры по его устранению.

28. При выявлении по данным внешнего контроля систематических расхождений между результатами анализов основной и контролирующей лабораторий проводится арбитражный контроль. Этот контроль выполняется в лаборатории, имеющей статус арбитражной. На арбитражный контроль направляются хранящиеся в лаборатории аналитические дубликаты рядовых проб (в исключительных случаях – остатки аналитических проб), по которым имеются результаты рядовых и внешних контрольных анализов. Контролю подлежат 30–40 проб по каждому классу содержаний, по которому выявлены систематические расхождения. При наличии СОС, аналогичных исследуемым пробам, их также следует включать в зашифрованном виде в партию проб, сдаваемых на арбитраж. Для каждого СОС должно быть получено 10–15 результатов контрольных анализов.
Таблица 4


^ Предельно допустимые относительные среднеквадратические
погрешности анализов по классам содержаний


Компонент

Класс

содержаний

компонентов

в руде*, %

Предельно допустимая

относительная среднеквадратическая погрешность, %

Компонент

Класс

содержаний

компонентов

в руде*, %

Предельно допустимая

относительная среднеквадратическая погрешность, %
  1   2   3   4   5



Скачать файл (370.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru