Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Ответы к Экзамену по архитектуре ЭВМ для ССУЗов - файл 1.doc


Ответы к Экзамену по архитектуре ЭВМ для ССУЗов
скачать (369 kb.)

Доступные файлы (1):

1.doc369kb.16.11.2011 03:15скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7   8
Реклама MarketGid:
Загрузка...
^

Алгебраическое представление чисел. Прямой, обратный и дополнительный код


Целые числа являются простейшими числовыми данными, с которыми оперирует ЭВМ. Для целых чисел существуют два представления: беззнаковое (только для неотрицательных целых чисел) и со знаком. Очевидно, что отрицательные числа можно представлять только в знаковом виде. Целые числа в компьютере хранятся в формате с фиксированной запятой.

^ Представление целых чисел в беззнаковых целых типах.

Для беззнакового представления все разряды ячейки отводятся под представление самого числа. Например, в байте (8 бит) можно представить беззнаковые числа от 0 до 255. Поэтому, если известно, что числовая величина является неотрицательной, то выгоднее рассматривать её как беззнаковую.

Представление целых чисел в знаковых целых типах.

Для представления со знаком самый старший (левый) бит отводится под знак числа, остальные разряды - под само число. Если число положительное, то в знаковый разряд помещается 0, если отрицательное - 1. Например, в байте можно представить знаковые числа от -128 до 127.

^ Прямой код числа.

Представление числа в привычной форме "знак"-"величина", при которой старший разряд ячейки отводится под знак, а остальные - под запись числа в двоичной системе, называется прямым кодом двоичного числа. Например, прямой код двоичных чисел 1001 и -1001 для 8-разрядной ячейки равен 00001001 и 10001001 соответственно.

Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода, для их представления используется так называемый дополнительный код.

Обратный код отрицательного числа образуется из прямого кода, заменой его цифр на их дополнения до величины q-1. Код знака сохраняется без изменения

^ Дополнительный код числа.

Дополнительный код положительного числа равен прямому коду этого числа. Дополнительный код отрицательного числа m равен 2k-|m|, где k - количество разрядов в ячейке.

Как уже было сказано, при представлении неотрицательных чисел в беззнаковом формате все разряды ячейки отводятся под само число. Например, запись числа 243=11110011 в одном байте при беззнаковом представлении будет выглядеть следующим образом:

1 1 1 1 0 0 1 1

При представлении целых чисел со знаком старший (левый) разряд отводится под знак числа, и под собственно число остаётся на один разряд меньше. Поэтому, если приведённое выше состояние ячейки рассматривать как запись целого числа со знаком, то для компьютера в этой ячейке записано число -13 (243+13=256=28).

Но если это же отрицательное число записать в ячейку из 16-ти разрядов, то содержимое ячейки будет следующим:

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1


Знаковый разряд

Возникает вопрос: с какой целью отрицательные числа записываются в виде дополнительного кода и как получить дополнительный код отрицательного числа?

Дополнительный код используется для упрощения выполнения арифметических операций. Если бы вычислительная машина работала с прямыми кодами положительных и отрицательных чисел, то при выполнении арифметических операций следовало бы выполнять ряд дополнительных действий. Например, при сложении нужно было бы проверять знаки обоих операндов и определять знак результата. Если знаки одинаковые, то вычисляется сумма операндов и ей присваивается тот же знак. Если знаки разные, то из большего по абсолютной величине числа вычитается меньшее и результату присваивается знак большего числа. То есть при таком представлении чисел (в виде только прямого кода) операция сложения реализуется через достаточно сложный алгоритм. Если же отрицательные числа представлять в виде дополнительного кода, то операция сложения, в том числе и разного знака, сводится к из поразрядному сложению.

Для компьютерного представления целых чисел обычно используется один, два или четыре байта, то есть ячейка памяти будет состоять из восьми, шестнадцати или тридцати двух разрядов соответственно.

^ Алгоритм получения дополнительного кода отрицательного числа.

Для получения дополнительного k-разрядного кода отрицательного числа необходимо

  • модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

  • значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, получается k-разрядный обратный код исходного числа);

  • к полученному обратному коду прибавить единицу.

Пример:

Получим 8-разрядный дополнительный код числа -52:

00110100 - число |-52|=52 в прямом коде

11001011 - число -52 в обратном коде

11001100 - число -52 в дополнительном коде

Можно заметить, что представление целого числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

1100 1100

С С


  1. ^

    Физическая и функциональная структура ЦП. Устройство управления: устройство и принцип работы


Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины для выполнения арифметических и логических операций над информацией. Конструктивно представляет собой неболь­шую микросхему, находящуюся внутри системного блока и установленную на материнской плате, связанную с материнской платой интерфейсом процессорного разъема (Socket).

В состав микропроцессора входят:

  • устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;

  • арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ поключается дополнительный математический сопроцессор);

  • микропроцессорная память (МПП) — служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры — быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);

  • интерфейсная система микропроцессора — реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) — совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O — Input/Output port) — аппаратура сопряжения, позволяющая под­ключить к микропроцессору другое устройство ПК.

Процессоры классифицируются по базовому типу, называющемуся семейством. С целью преемственности программного обеспечения последующие модели и модификации процессоров, как правило, содержат всю систему команд своих предшественников. Существует большое количество различных семейств процессоров, среди которых можно выделить семейство Intel и совместимых с ними AMD и Cyrix, на которых базируется значительная часть ПК. Фирмой Intel был создан процессор Pentium и его модификации Pentium Pro, Pentium II, Pentium III, Pentium IV. Процессоры фирмы Motorola, применяемые в компьютерах фирмы Apple, относятся к другому семейству.

Основными характеристиками процессора являются:

  • быстродействие — количество операций, производимых в 1 секунду, измеряется в бит/сек. Каждая последующая модель имеет более высокую производительность по сравнению с предыдущей. Современные процессоры обладают расширением ММХ (MultiMedia eXtention — расширение мультимедиа);

  • тактовая частота — количество тактов, производимых про­цессором за 1 секунду. Операции, производимые процессо­ром, не являются непрерывными, они разделены на такты. Эта характеристика определяет скорость выполнения опера­ций и непосредственно влияет на производительность про­цессора. Процессор Pentium и его модификации имеют тактовые частоты от 60 МГц до 1,5 ГГц (1,5 миллиарда операций в секунду);

  • разрядность — количество двоичных разрядов, которые процессор обрабатывает за один такт. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита.


Логика управления организует взаимодействие всех узлов процессора, перенаправляет данные, синхронизирует работу процессора с внешними сигналами, а также реализует процедуры ввода и вывода информации.

Таким образом, в ходе работы процессора схема выборки команд выбирает последовательно команды из памяти, затем эти команды выполняются, причем в случае необходимости обработки данных подключается АЛУ. На входы АЛУ могут подаваться обрабатываемые данные из памяти или из внутренних регистров. Во внутренних регистрах хранятся также коды адресов обрабатываемых данных, расположенных в памяти. Результат обработки в АЛУ изменяет состояние регистра признаков и записывается во внутренний регистр или в память (как источник, так и приемник данных указывается в составе кода команды). При необходимости информация может переписываться из памяти (или из устройства ввода/вывода) во внутренний регистр или из внутреннего регистра в память (или в устройство ввода/вывода).

Внутренние регистры любого микропроцессора обязательно выполняют две служебные функции:

  • определяют адрес в памяти, где находится выполняемая в данный момент команда (функция счетчика команд или указателя команд);

  • определяют текущий адрес стека (функция указателя стека).

В разных процессорах для каждой из этих функций может отводиться один или два внутренних регистра. Эти два указателя отличаются от других не только своим специфическим, служебным, системным назначением, но и особым способом изменения содержимого. Их содержимое программы могут менять только в случае крайней необходимости, так как любая ошибка при этом грозит нарушением работы компьютера, зависанием и порчей содержимого памяти.

Содержимое указателя (счетчика) команд изменяется следующим образом. В начале работы системы (при включении питания) в него заносится раз и навсегда установленное значение. Это первый адрес программы начального запуска. Затем после выборки из памяти каждой следующей команды значение указателя команд автоматически увеличивается (инкрементируется) на единицу (или на два в зависимости от формата команд и типа процессора). То есть следующая команда будет выбираться из следующего по порядку адреса памяти. При выполнении команд перехода, нарушающих последовательный перебор адресов памяти, в указатель команд принудительно записывается новое значение — новый адрес в памяти, начиная с которого адреса команд опять же будут перебираться последовательно. Такая же смена содержимого указателя команд производится при вызове подпрограммы и возврате из нее или при начале обработки прерывания и после его окончания.

  1. 1   2   3   4   5   6   7   8



    Скачать файл (369 kb.)

    Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru