Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Ответы к Экзамену по архитектуре ЭВМ для ССУЗов - файл 1.doc


Ответы к Экзамену по архитектуре ЭВМ для ССУЗов
скачать (369 kb.)

Доступные файлы (1):

1.doc369kb.16.11.2011 03:15скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7   8
Реклама MarketGid:
Загрузка...
^

Общая характеристика архитектуры и системы команд процессора i8086


Intel 8086 — первый 16-битный микропроцессор компании Intel, выпущенный 8 июня 1978 года. Процессор имел набор команд, который применяется и в современных процессорах, именно от этого процессора берёт своё начало известная на сегодня архитектура x86.

Конкурентами микропроцессора i8086 являлись такие разработки, как NEC V30, который был на 5 % производительнее i8086, но при этом был полностью с ним совместим. Советским аналогом являлся микропроцессор К1810ВМ86, входивший в серию микросхем К1810.

Рынок 8-разрядных микропроцессоров в конце 1970-х был переполнен, и Intel оставляет попытки на нём закрепиться и выпускает первый 16-битный процессор. Процессор i8086 представляет собой модернизированный процессор i8080 и, хотя, разработчики не ставили перед собой цель достичь полной совместимости на программном уровне, большинство программ написанных для i8080 способны выполняться и на i8086 после перекомпиляции. Новый процессор несёт в себе множество изменений, которые позволили значительно (в 10 раз) увеличить производительность по сравнению с предыдущим поколением процессоров.

Всего в процессоре i8086 было 14 16-разрядных регистров: 4 регистра общего назначения (AX, BX, CX, DX), 2 индексных регистра (SI, DI), 2 указательных (BP, SP), 4 сегментных регистра (CS, SS, DS, ES), программный счётчик или указатель команды (IP) и регистр флагов (FLAGS, включает в себя 9 флагов). При этом регистры данных (AX, BX, CX, DX) допускали адресацию не только целых регистров, но и их младшей половины (регистры AL, BL, CL, DL) и старшей половины (регистры AH, BH, CH, DH), что позволяло использовать не только новое 16-разрядное ПО, но сохраняло совместимость и со старыми программами (правда, их необходимо было, по крайней мере, перекомпилировать).

Размер шины адреса был увеличен с 16 бит до 20 бит, что позволило адресовать 1 Мбайт (220 байт) памяти. Шина данных была 16-разрядной. Однако в микропроцессоре шина данных и шина адреса использовали одни и те же контакты на корпусе. Это привело к тому, что нельзя одновременно подавать на системную шину адреса и данные. Мультиплексирование адресов и данных во времени сокращает число контактов корпуса до 40, но и замедляет скорость передачи данных.

Для того чтобы адресовать больший, чем i8080, объём памяти, потребовалось изменить способ адресации памяти. Ведь если использовать старые методы, когда адрес к ячейке памяти содержался в указательных регистрах, то пришлось бы увеличивать размер этих самых регистров, чтобы иметь возможность обращаться к большему объёму памяти. Поэтому для адресации 1 Мбайт памяти применили следующую схему. На шину адреса подавался физический адрес размером 20 бит, который формировался путём сложения содержимого одного из сегментных регистров (16 бит), умноженного на 16, с содержимым указательного регистра: таким образом, адресация ячейки памяти производилась по номеру сегмента и эффективному адресу ячейки в сегменте (называемому также смещением). Если результат сложения оказывался больше, чем 220 -1, то 21-й бит отбрасывался; такая процедура называется «заворачиванием» адреса (англ. address wraparound). Этот метод впоследствии (после появления защищённого режима) назвали реальным режимом адресации процессора, такой режим позволяет адресовать до 1 Мбайт памяти.

Таким образом, память разделяется на сегменты, размером 64 Кбайт каждый и начинающиеся с адреса, кратного 16 (граница параграфа); память в 1 Мбайт разделялась, таким образом, на 16 сегментов. Эти 16 сегментов называют страницами памяти. В компьютере, подобном IBM PC, последние 6 страниц (A, B, C, D, E, F) памяти (т. н. верхняя память — англ. upper memory) использовались для видеопамяти и BIOS-а, это ограничивало память, доступную пользователю, объёмом в 640 Кбайт (т. н. обычная память — англ. conventional memory; страницы 0~9).

На то время такой режим адресации обеспечивал множество преимуществ: ёмкость памяти могла составлять до 1 Мбайт, хотя команды оперировали 16-битными адресами; упрощалось использование отдельных областей памяти для программы, её данных и стека; упрощалась разработка устройств, совместимых друг с другом.

Система команд процессора i8086 состоит из 98 команд (и более 3800 их вариаций): 19 команд передачи данных, 38 команд их обработки, 24 команды перехода и 17 команд управления процессором. Микропроцессор не содержал команды для работы с числами с плавающей запятой. Данная возможность реализовывалась отдельной микросхемой, называемой математический сопроцессор, который устанавливался на материнской плате. Сопроцессор, вовсе не обязательно должен был быть произвёден Intel (модель i8087), к примеру, некоторые производители микросхем, такие, как Weitek, выпускали более производительные сопроцессоры, чем Intel.

В микропроцессоре i8086 была использована примитивная форма конвейерной обработки. Блок интерфейса с шиной подавал поток команд к исполнительному устройству через 6-байтовую очередь команд. Таким образом, выборка и выполнение новых команд могли происходить одновременно. Это значительно увеличивало пропускную способность процессора и лишало необходимости считывать команды из медленной памяти.

В персональных компьютерах процессор i8086 практически не использовался из-за дороговизны специализированных микросхем, которые были необходимы для работы процессора. Это поняли и в Intel, в 1979 году она выпускает процессор i8088, у которого шина данных была 8-битной.


  1. ^

    Вычислительные системы. Классификация вычислительных систем по Флинну


Вычислительная система (ВС) - это взаимосвязанная совокупность аппаратных средств вычислительной техники и программного обеспечения, предназначенная для обработки информации.

Иногда под ВС понимают совокупность технических средств ЭВМ, в которую входит не менее двух процессоров, связанных общностью управления и использования общесистемных ресурсов (память, периферийные устройства, программное обеспечение и т.п.).

Ресурсы вычислительной системы

К ресурсам вычислительной системы относят такие средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный квант времени. Основными ресурсами ВС являются процессоры, области оперативной памяти, наборы данных, периферийные устройства, программы.

Виды вычислительных систем

В зависимости от ряда признаков различают следующие вычислительные системы (ВС):

  • однопрограммные и многопрограммные (в зависимости от количества программ, одновременно находящихся в оперативной памяти);

  • индивидуального и коллективного пользования (в зависимости от числа пользователей, которые одновременно могут использовать ресурсы ВС);

  • с пакетной обработкой и разделением времени (в зависимости от организации и обработки заданий);

  • однопроцессорные, многопроцессорные и многомашинные (в зависимости от числа процессоров);

  • сосредоточенные, распределенные (вычислительные сети) и ВС с теледоступом (в зависимости от территориального расположения и взаимодействия технических средств);

  • работающие или не работающие в режиме реального времени (в зависимости от соотношения скоростей поступления задач в ВС и их решения);

  • универсальные, специализированные и проблемно-ориентированные (в зависимости от назначения).


^ Режимы работы вычислительных систем

Мультипрограммирование

Мультипрограммирование - это режим обработки данных, при котором ресурсы вычислительной системы предоставляются каждому процессу из группы процессов обработки данных, находящихся в ВС, на интервалы времени, длительность и очередность предоставления которых определяется управляющей программой этой системы с целью обеспечения одновременной работы в интерактивном режиме.

^ Режим реального времени

Режим реального времени - режим обработки данных, при котором обеспечивается взаимодействие вычислительной системы с внешними по отношению к ней процессами в темпе, соизмеримом со скоростью протекания этих процессов.

Этот режим обработки данных широко используется в системах управления и информационно-поисковых системах.

^ Однопрограммный режим работы вычислительной системы (ВС)

Аппаратные средства ЭВМ совместно с программным обеспечением образуют ВС. В зависимости от класса ЭВМ и вида операционной системы ВС могут работать в режимах однопрограммном и мультипрограммном.

В однопрограммном режиме работы в памяти ЭВМ находится и выполняется только одна программ. Такой режим обычно характерен для микро-ЭВМ и персональных ЭВМ, то есть для ЭВМ индивидуального пользования.

^ Мультипрограммный (многопрограммном) режим работы вычислительной системы (ВС)

В мультипрограммном (многопрограммном) режиме работы в памяти ЭВМ находится несколько программ, которые выполняются частично или полностью между переходами процессора от одной задачи к другой в зависимости от ситуации, складывающейся в системе.

В мультипрограммном режиме более эффективно используются машинное время и оперативная память, так как при возникновении каких-либо ситуаций в выполняемой задаче, требующих перехода процессора в режим ожидания, процессор переключается на другую задачу и выполняет ее до тех пор, пока в ней не возникает подобная ситуация, и т.д.

При реализации мультипрограммного режима требуется определять очередность переключения задач и выбирать моменты переключения, чтобы эффективность использования машинного времени и памяти была максимальной.

Мультипрограммный режим обеспечивается аппаратными средствами ЭВМ и средствами операционной системы. Он характерен для сложных ЭВМ, где стоимость машинного времени значительно выше, чем у микро-ЭВМ. Разработаны также мультипрограммные ОС, позволяющие одновременно следить за решением нескольких задач и повышать эффективность работы пользователя.

^ Режим пакетной обработки

В зависимости от того, в каком порядке при мультипрограммном режиме выполняются программы пользователей, различают режимы пакетной обработки задач и коллективного доступа.

В режиме пакетной обработки задачи выстраиваются в одну или несколько очередей и последовательно выбираются для их выполнения.

^ Режим коллективного доступа

В режиме коллективного доступа каждый пользователь ставит свою задачу на выполнение в любой момент времени, то есть для каждого пользователя в такой ВС реализуется режим индивидуального пользования. Это осуществляется обычно с помощью квантования машинного времени, когда каждой задаче, находящейся в оперативной памяти ЭВМ, выделяется квант времени. После окончания кванта времени процессор переключается на другую задачу или продолжает выполнение прерванной в зависимости от ситуации в ВС. Вычислительные системы, обеспечивающие коллективный доступ пользователей с квантованием машинного времени, называют ВС с разделением времени.


^ Классификация Флинна


По-видимому, самой ранней и наиболее известной является классификация архитектур вычислительных систем, предложенная в 1966 году М.Флинном [1,2]. Классификация базируется на понятии потока, под которым понимается последовательность элементов, команд или данных, обрабатываемая процессором. На основе числа потоков команд и потоков данных Флинн выделяет четыре класса архитектур: ОКОД(SISD),МКОД(MISD),ОКМД(SIMD),МКМД(MIMD).

ОКОД(SISD) (single instruction stream / single data stream) - одиночный поток команд и одиночный поток данных. К этому классу относятся, прежде всего, классические последовательные машины, или иначе, машины фон-неймановского типа, например, PDP-11 или VAX 11/780. В таких машинах есть только один поток команд, все команды обрабатываются последовательно друг за другом и каждая команда инициирует одну операцию с одним потоком данных. Не имеет значения тот факт, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка - как машина CDC 6600 со скалярными функциональными устройствами, так и CDC 7600 с конвейерными попадают в этот класс.

ОКМД(SIMD) (single instruction stream / multiple data stream) - одиночный поток команд и множественный поток данных. В архитектурах подобного рода сохраняется один поток команд, включающий, в отличие от предыдущего класса, векторные команды. Это позволяет выполнять одну арифметическую операцию сразу над многими данными - элементами вектора. Способ выполнения векторных операций не оговаривается, поэтому обработка элементов вектора может производится либо процессорной матрицей, как в ILLIAC IV, либо с помощью конвейера, как, например, в машине CRAY-1.

МКОД(MISD) (multiple instruction stream / single data stream) - множественный поток команд и одиночный поток данных. Определение подразумевает наличие в архитектуре многих процессоров, обрабатывающих один и тот же поток данных. Однако ни Флинн, ни другие специалисты в области архитектуры компьютеров до сих пор не смогли представить убедительный пример реально существующей вычислительной системы, построенной на данном принципе. Ряд исследователей [3,4,5] относят конвейерные машины к данному классу, однако это не нашло окончательного признания в научном сообществе. Будем считать, что пока данный класс пуст.



МКМД(MIMD) (multiple instruction stream / multiple data stream) - множественный поток команд и множественный поток данных. Этот класс предполагает, что в вычислительной системе есть несколько устройств обработки команд, объединенных в единый комплекс и работающих каждое со своим потоком команд и данных.
1   2   3   4   5   6   7   8



Скачать файл (369 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru