Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Конспекты лекции по курсу Электротехника и электроника - файл Лекция 10Режимы работы трансформаторов.doc


Конспекты лекции по курсу Электротехника и электроника
скачать (1927.2 kb.)

Доступные файлы (17):

Лекция 10Режимы работы трансформаторов.doc244kb.21.02.2003 16:44скачать
Лекция 11Основы промышленной электроники.doc304kb.14.03.2003 10:05скачать
Лекция 12Электронные устройства.doc336kb.14.03.2003 10:24скачать
Лекция 13Усилители.doc498kb.14.03.2003 12:32скачать
Лекция 14Эл.импульсных устройств.doc194kb.14.03.2003 12:37скачать
Лекция 15 Генераторы сигналов.doc492kb.14.03.2003 12:48скачать
Лекция 17Цифровые устройства.doc786kb.14.03.2003 12:50скачать
Лекция 18Триггеры и др..doc489kb.09.04.2002 13:51скачать
Лекция 1Элементы эл.цепей.doc287kb.09.08.2005 12:54скачать
Лекция 2Синусоидальный ток.doc232kb.11.02.2003 10:14скачать
Лекция 3 Комплексное представление.doc129kb.11.02.2003 10:49скачать
Лекция 4Энергетические характеристики пер. тока.doc279kb.10.02.2003 14:46скачать
Лекция 5 Резонансы.doc277kb.21.02.2003 11:03скачать
Лекция 6Трехфазные цепи.doc347kb.17.02.2003 14:44скачать
Лекция 7 Магнитные цепи и аппараты.doc250kb.21.02.2003 11:13скачать
Лекция 8Эл-магн.устройства.doc184kb.21.02.2003 11:56скачать
Лекция 9Трансформаторы.doc275kb.30.05.2007 20:08скачать

содержание
Загрузка...

Лекция 10Режимы работы трансформаторов.doc

Реклама MarketGid:
Загрузка...
Лекция 10. Режим работы трансформаторов
Различают несколько режимов работы трансформаторов:

  1. Номинальный режим, т.е. режим при номинальных значениях напряжения и тока первичной обработки трансформатора


.


  1. Рабочий режим, при котором напряжение первичной обмотки близко к номинальному или равно ему, а ток определяется нагрузкой трансформатора.

  2. Режим холостого хода, т.е. режим ненагруженного трансформатора, при котором цепь вторичной обмотки разомкнута ( или подключена к нагрузке с очень большим сопротивлением (например, вольтметр).

  3. Режим короткого замыкания трансформатора, при котором его вторичная обмотка замкнута накоротко ( или подключена к нагрузке с очень малым сопротивлением (например, амперметр).

Режим холостого хода и короткого замыкания возникают при авариях. Эти режимы могут создаваться специально для испытания трансформаторов на заводах изготовителях в опытах холостого хода и короткого замыкания.

^ 1.Опыт холостого хода трансформатора
Опытом холостого хода называют испытание трансформатора при разомкнутой цепи вторичной обмотки и номинальном напряжении на первичной обмотке. Схема для проведения опыта холостого хода приведена на рис.11.1. Полагая, что измерительные приборы не вносят в режим работы трансформатора сколько-нибудь ощутимых изменений, получаем возможность измерить ряд его параметров, а затем дополнить это ряд расчетами.

Так, показания амперметра при определяют номинальное значение тока холостого хода - . Учитывая, что этот ток составляет 3 10% от номинального тока первичной обмотки для мощных трансформаторов и до 40% для маломощных, можем рассчитать значение номинального тока первичной обмотки
. (11.1)

Кроме этого, при разомкнутой цепи вторичной обмотки всегда . Это значит что

.
Измерив вольтметрами и легко определить коэффициент трансформации

. (11.2)
Мощность потерь в трансформаторе при холостом ходе складывается из мощности потерь в магнитопроводе - Рс и в проводах - Рпр. Мощность потерь в магнитопроводе пропорциональна квадрату магнитной индукции - В2, а значит и квадрату напряжения первичной обмотки - . Так как , то и потери в магнитопроводе соответствуют номинальному значению.

Потери в проводах вторичной обмотки отсутствуют, так как . Потери в проводах первичной обмотки пропорциональны квадрату тока холостого хода

(). Но ток холостого хода пренебрежимо мал в сравнении с номинальным, поэтому и мощность потерь в проводах ничтожна по сравнению с мощностью потерь в магнитопроводе. Отсюда следует, что показания ваттметра в опыте холостого хода определяют только потери в магнитопроводе - Рс.

Следует учитывать, что потери Рс складываются из потерь на гистерезис и дополнительных потерь на вихревые токи, потерь в деталях конструкции и потерь из-за вибрации листов стали магнитопровода. Однако, эти дополнительные потери не превышают 20% от общих.

В ряде случаев важно знать, как изменится ток холостого хода трансформатора при изменении напряжения на первичной обмотке. Зависимость приведена на рис. 11.2. Она называется характеристикой холостого хода трансформатора.







При малых значениях значение магнитной индукции мало. Магнитопровод не насыщен, поэтому увеличивается пропорционально напряжению. При увеличении начинает сказываться насыщение магнитопровода и приращение тока холостого хода увеличивается. Поэтому магнитопровод трансформатора проектируют так, чтобы при значение магнитной индукции находилось в пределах 1,6 1,7 Тл. При таком значении магнитной индукции увеличение до 1,2 не приводит к критическому увеличению тока холостого хода и допустимо в течение длительного времени.
^ 2. Опыт короткого замыкания трансформатора
Опытом короткого замыкания называется испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе первичной обмотки. Схема для проведения опыта короткого замыкания приведена на рис. 11.3. Опыт проводится для определения номинального значения тока вторичной обмотки, мощности потерь в проводах и падения напряжения на внутреннем сопротивлении трансформатора.



При коротком замыкании цепи вторичной обмотки, ток в ней ограничивается только малым внутренним сопротивлением этой обмотки. Поэтому, даже при относительно небольших значениях ЭДС Е2, ток I2 может достигнуть опасных величин, вызвать перегрев обмоток, разрушение изоляции и выход трансформатора из строя. Учитывая это, опыт начинают при нулевом напряжении на входе трансформатора, т.е. при . Затем постепенно увеличивают напряжение первичной обмотки до значения , при котором ток первичной обмотки достигает номинального значения. При этом ток вторичной обмотки, измеренный по амперметру А2 , принимают равным номинальному. Напряжение называют напряжением короткого замыкания.

Величина напряжения первичной обмотки в опыте короткого замыкания мала и составляет 5  10% от номинального. Поэтому и действующее значение ЭДС вторичной обмотки Е2 составляет 2  5%. Пропорционально значению ЭДС уменьшается магнитный поток, а значит и мощность потерь в магнитопроводе - Рс . Отсюда следует, что показания ваттметра в опыте короткого замыкания, практически определяют только потери в проводах Рпр, причем:
. (11.3)
Выразим ток I через приведенный ток :
.
Учтем, что , а также что .

Тогда выражение (11.3) перепишем в виде:
, (11.4)
где RК - активное сопротивление трансформатора в режиме короткого замыкания, причем:
. (11.5)
Значение активного сопротивления трансформатора позволяет рассчитать его индуктивное сопротивление:


.
При точном расчете нужно учитывать, что RК зависит от температуры. Поэтому полное сопротивление трансформатора определяют приведенным к температуре 750С, т.е.:


.

Теперь легко определить падение напряжения на внутреннем сопротивлении трансформатора - :
.
На практике пользуются приведенным значением UК, в процентах, обозначая его звездочкой, т.е.:
. (11.6)
Это значение приводят на паспортном щитке трансформатора.

Знание внутреннего сопротивления трансформатора позволяет представить его схему замещения в виде рис.11.4. Векторная диаграмма, соответствующая этой схеме приведена на рис. 11.5.

Векторная диаграмма позволяет определить уменьшение напряжения на выходе трансформатора  U за счет падения напряжения на его комплексном сопротивлении. Величина  U определяется как расстояние между прямыми, выходящими из точек начала и конца вектора и параллельными оси абсцисс. Из диаграммы видно, что эта величина складывается из катетов двух прямоугольных треугольников, гипотенузы которых и , а острые углы равны 2.



Поэтому:
.
На практике пользуются относительной величиной U, в процентах, обозначенной звездочкой, т.е.:




. (11.7)
Для мощных трансформаторов (SH 1000 ВА) опыт короткого замыкания может служить для контроля коэффициента трансформации. Для таких трансформаторов в режиме короткого замыкания током холостого хода можно пренебречь, считая:
.

Поэтому:
. (11.8)

Последнее выражение тем точнее, чем больше мощность трансформатора. Однако оно не приемлемо для маломощных трансформаторов.
^ 3.Внешняя характеристика трансформатора
Внешняя характеристика трансформатора определяет зависимость напряжения вторичной обмотки U2 от тока вторичной обмотки I2 при постоянном коэффициенте мощности cos 2 = const и номинальном напряжении первичной обмотки U1. Часто для определения внешней характеристики пользуются относительными единицами (рис.11.6).


где - ток нагрузки при номинальном токе первичной обмотки;

- коэффициент загрузки трансформатора,

а также:

Так как , то:
,
где определяется по (11.7).

Таким образом, ордината внешней характеристики определяется выражением:
(11.9)
где .

Выражение (11.9) показывает, что напряжение на выходе трансформатора зависит от его внутреннего сопротивления (RК, Xк), коэффициента мощности cos 2 и коэффициент загрузки, т.е. график представляет наклонную линию. Трансформаторы проектируют так, чтобы при номинальном токе вторичной обмотки снижение выходного напряжения не превышало 5 10% от номинального.


^ 4.Коэффициент полезного действия трансформатора
Коэффициент полезного действия (КПД) трансформатора определяется отношением активной мощности Р2 на выходе трансформатора к активной мощности Р1 на его входе

.
Мощные современные трансформаторы могут иметь КПД больше 99%. В таких случаях мощности Р2 и Р1 настолько близки, что не существует измерительных приборов, способных их отличить. Поэтому КПД определяют косвенным методом, основанном на прямом измерении мощности Р2 и мощности потерь Р.

Так как:
,

то:
(11.10)
Мощность потерь в трансформаторе равна сумме мощностей потерь в магнитопроводе - РС и в проводах Рпр. Потери в магнитопроводе пропорциональны напряжению первичной обмотки U1. Обычно трансформаторы работают при номинальном напряжении первичной обмотки. Поэтому считают РС= const. Их определяют в опыте холостого хода.

Потери в проводах обмоток определяются токами обмоток, которые в свою очередь зависят от характера нагрузки. Так как нагрузка силовых трансформаторов часто изменяется, то и потери в проводах переменные. Найдем выражение, удобное для их учета.

Для этого вспомним, что ток холостого хода трансформатора пренебрежимо мал, в сравнении с номинальным. Поэтому будем полагать, что в рабочем режиме:

.
Воспользовавшись понятием коэффициентом загрузки трансформатора, можем записать:

.
Теперь выражение (11.4) можно записать в виде:
(11.11)
где - мощность потерь в проводах обмоток при номинальных токах, определяется в опыте короткого замыкания.

Мощность на выходе трансформатора определяется известным выражением
(11.12)
Так как , то и . Тогда, применяя коэффициент загрузки трансформатора, перепишем (3.36) в виде:
, (11.13)
где SH - номинальная полная мощность трансформатора.

Подставляя (11.11) и (11.13) в (11.10) получаем окончательное выражение для КПД:

Выражение показывает, что КПД трансформатора зависит от значений коэффициента мощности нагрузки - cos 2 и от коэффициента загрузки - КЗ .

На практике максимум КПД достигается при средней нагрузке, когда КЗ = 0,7 0,5, а







Скачать файл (1927.2 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru