Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Реферат - Имитационное моделирование систем управления - файл 1.doc


Реферат - Имитационное моделирование систем управления
скачать (628 kb.)

Доступные файлы (1):

1.doc628kb.24.11.2011 09:38скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
УФИМСКИЙ ГОСУДАРСТВЕННЫЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ
Кафедра автоматизированных технологических систем

РЕФЕРАТ
по дисциплине
«Имитационное моделирование систем управления»
Выполнил: __________ ст. гр. АУ – 618 Федин А.В. (подпись)
Принял: __________ к.т.н Гончарова С.Г..

(подпись)

УФА 2006

Содержание


Содержание 2

Введение 3

Определение понятия «имитационное моделирование». 4

Процесс конструирования модели 6

Существующие подходы к имитационному моделированию сложных динамических систем 8

Процедура имитационного моделирования. 11

Определение метода имитационного моделирования. 11

Имитация функционирования системы. 12

Имитационное моделированию систем и языки программирования. 15

Метод Монте-Карло как разновидность имитационного моделирования. 18

Заключение 20

Список использованной литературы 21

Введение



Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.

В настоящее время, когда компьютерная промышленность, предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования.
^

Определение понятия «имитационное моделирование».



В современной литературе не существует единой точки зрения по

вопросу о том, что понимать под имитационным моделированием. Так

существуют различные трактовки:

- в первой – под имитационной моделью понимается математическая модель в

классическом смысле;

- во второй – этот термин сохраняется лишь за теми моделями, в которых тем

или иным способом разыгрываются (имитируются) случайные воздействия;

- в третьей – предполагают, что имитационная модель отличается от обычной

математической более детальным описанием , но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится;

Имитационное моделированием применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или иные решения, подобно тому, как шахматист глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки, в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее текущее решение принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучиваться принимать правильные решения – если не оптимальные, то почти оптимальные.

Попробуем проиллюстрировать процесс имитационного моделирования через сравнение с классической математической моделью.

Этапы процесса построения математической модели сложной системы:

1. Формулируются основные вопросы о поведении системы, ответы на которые мы

хотим получить с помощью модели.

2. Из множества законов, управляющих поведением системы, выбираются те,

влияние которых существенно при поиске ответов на поставленные вопросы.

3. В пополнение к этим законам, если необходимо, для системы в целом или

отдельных ее частей формулируются определенные гипотезы о

функционировании. Критерием адекватности модели служит практика.
Трудности при построении математической модели сложной системы:

- Если модель содержит много связей между элементами, разнообразные

нелинейные ограничения, большое число параметров и т. д.

- Реальные системы зачастую подвержены влиянию случайных различных

факторов, учет которых аналитическим путем представляет весьма большие

трудности, зачастую непреодолимые при большом их числе;

- Возможность сопоставления модели и оригинала при таком подходе имеется

лишь в начале.
Эти трудности и обуславливают применение имитационного моделирования. Оно реализуется по следующим этапам:

1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.

2. Осуществляется декомпозиция системы на более простые части-блоки.

3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.

4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.

5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.

6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.

^

Процесс конструирования модели



При конструировании модели любого физического объекта в начале разрабатывается его физическая модель, в которой описывается принцип действия. Затем разрабатывается математическая модель, в которой устанавливаются количественные зависимости между входными и выходными параметрами объекта. На основе математической модели разрабатывается вычислительная модель, представляющая собой программу для ЭВМ. Имея вычислительную модель, можно проводить вычислительный эксперимент - исследование характеристик объекта путём многократного выполнения программы вычислительной модели при разных исходных данных.

Если движение и преобразование информации в рамках вычислительной модели имитирует физические процессы в объекте моделирования, то вычислительный эксперимент называется имитационным моделированием.



Итерационный процесс разработки моделирования отражён на рисунке. Если результаты вычислительного эксперимента радикально не согласуются с результатами физического эксперимента, то выдвигается новая гипотеза физической модели. Если результаты вычислительного эксперимента согласуются с результатами физического эксперимента, но погрешность превышает допустимые нормы, то корректируется математическая модель. Если же процесс моделирования недостаточно робастный и требует от пользователя много трудовых затрат, а от ЭВМ - больших ресурсов, то требуется корректировка вычислительной модели.

При работе с моделью проектировщик задает как входные воздействия, так и внутренние параметры системы, определяющие преобразовательные свойства последней.

Процесс анализа некоторой системы с помощью вычислительной модели показан на рисунке.

Математически этот процесс можно представить в виде выражения: Y =F{X}

где Х - вектор входных воздействий, т. е. набор числовых значений различных параметров сигналов, поступающих на вход системы;

Y - вектор отклика системы, т.е. набор числовых значений, характеризующих реакцию системы на заданные входные воздействия;

F - обобщённый оператор, характеризующий процессы преобразования информации в модели.


^

Существующие подходы к имитационному моделированию сложных динамических систем



В настоящее время существует великое множество визуальных средств моделирования. Договоримся не рассматривать в этой работе пакеты, ориентированные на узкие прикладные области (электроника, электромеханика и т.д.), поскольку, как отмечалось выше, элементы сложных систем относятся, как правило, к различным прикладным областям. Среди оставшихся универсальных пакетов (ориентированных на определенную математическую модель), мы не будем обращать внимание на пакеты, ориентированные на математические модели, отличные от простой динамической системы (уравнения в частных производных, статистические модели), а также на чисто дискретные и чисто непрерывные. Таким образом, предметом рассмотрения будут универсальные пакеты, позволяющие моделировать структурно-сложные гибридные системы.

Их можно условно разделить на три группы:

1) пакеты "блочного моделирования":

2) пакеты "физического моделирования":

3) пакеты, ориентированные на схему гибридного автомата.

Это деление является условным прежде всего потому, что все эти пакеты имеют много общего: позволяют строить многоуровневые иерархические функциональные схемы, поддерживают в той или иной степени технологию ООМ, предоставляют сходные возможности визуализации и анимации. Отличия обусловлены тем, какой из аспектов сложной динамической системы сочтен наиболее важным.

Пакеты "блочного моделирования" ориентированы на графический язык иерархических блок схем. Элементарные блоки являются либо предопределенными, либо могут конструироваться с помощью некоторого специального вспомогательного языка более низкого уровня. Новый блок можно собрать из имеющихся блоков с использованием ориентированных связей и параметрической настройки. В число предопределенных элементарных блоков входят чисто непрерывные, чисто дискретные и гибридные блоки.

К достоинствами этого подхода следует отнести, прежде всего, чрезвычайную простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Другими словами, этот подход работает хорошо, когда есть подходящие стандартные блоки.

Наиболее известными представителями пакетами "блочного моделирования" являются:

- подсистема SIMULINK пакета MATLAB (MathWorks, Inc.);

- EASY5 (Boeing)

- подсистема SystemBuild пакета  MATRIXX   (Integrated Systems, Inc. );

- VisSim (Visual Solution).

Пакеты "физического моделирования" позволяют использовать неориентированные и потоковые связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. Дискретная составляющая задается описанием дискретных событий (события задаются логическим условием или являются периодическими), при возникновении которых могут выполняться мгновенные присваивания переменным новых значений. Дискретные события могут распространяться по специальным связям. Изменение структуры уравнений возможно только косвенно через коэффициенты в правых частях (это обусловлено необходимостью символьных преобразований при переходе к эквивалентной системе).

Подход очень удобен и естественен для описания типовых блоков физических систем. Недостатками являются необходимость символьных преобразований, что резко сужает возможности описания гибридного поведения, а также необходимость численного решения большого числа алгебраических уравнений, что значительно усложняет задачу автоматического получения достоверного решения.

К пакетам "физического моделирования" следует отнести:

"20-SIM" (Controllab Products B.V);

- Dymola (Dymasim);

- Omola, OmSim (Lund University);

Как обобщение опыта развития систем этого направления междунородной группой ученых разработан язык Modelica (The Modelica Design Group), предлагаемый в качестве стандарта при обмене описаниями моделей между различными пакетами.

Пакеты, основанные на использовании схемы гибридного автомата, позволяют очень наглядно и естественно описывать гибридные системы со сложной логикой переключений. Необходимость определения эквивалентной системы при каждом переключении заставляет использовать только ориентированные связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. К недостаткам следует также отнести избыточность описания при моделировании чисто непрерывных систем.

К этому направлению относится пакет Shift (California PATH), а также отечественный пакет Model Vision Studium . Пакет Shift в большей стпени ориентирован на описание сложных динамических структур, а пакет MVS – на описание сложных поведений.

Заметим, что между вторым и третьим направлениями нет непреодолимой пропасти. В конце концов, невозможность из совместного использования обусловлена лишь сегодняшними вычислительными возможностями. В то же время, общая идеология построения моделей практически совпадает. В принципе, возможен комбинированный подход, когда в структуре модели должны выделяться составные блоки, элементы которых имеют чисто непрерывное поведение, и однократно преобразовываться к эквивалентному элементарному. Далее уже совокупное поведение этого эквивалентного блока должно использоваться при анализе гибридной системы.
^

Процедура имитационного моделирования.

Определение метода имитационного моделирования.



Метод ИМ заключается в создании логико-аналитической (математической модели системы и внешних воздействий), имитации функционирования системы, т.е. в определении временных изменений состояния системы под влиянием внешних воздействий и в поучении выборок значений выходных параметров, по которым определяются их основные вероятностные характеристики. Данное определение справедливо для стохастических систем.

При исследовании детерминированных систем отпадает необходимость изучения выборок значений выходных параметров.

Модель системы со структурным принципом управления представляет собой совокупность моделей элементов и их функциональные взаимосвязи. Модель элемента (агрегата, обслуживающего прибора) - это, в первую очередь, набор правил (алгоритмов) поведения устройства по отношению к выходным воздействиям (заявкам) и правил изменений состояний элемента. Элемент отображает функциональное устройство на том или ином уровне детализации. В простейшем случае устройство может находится в работоспособном состоянии или в состоянии отказа. В работоспособном состоянии устройство может быть занято, например, выполнение операции по обслуживанию заявки или быть свободным. К правилам поведения устройства относятся правила выборки заявок из очереди; реакция устройства на поступление заявки, когда устройство занято или к нему имеется очередь заявок; реакция устройства на возникновение отказа в процессе обслуживания заявки и некоторые другие.

Имитационное моделирование (ИМ) — это метод исследования, который основан на том, что анализируемая динамическая система заменяется имитатором и с ним производятся эксперименты для получения об изучаемой системе. Роль имитатора зачастую выполняет программа ЭВМ.

Основная идея метода ИМ состоит в следующем. Пусть необходимо определить функцию распределения случайной величины y. Допустим, что искомая величина y может быть представлена в виде зависимости: y=f( где  случайные величины с известными функциями распределения.

Для решения задач такого вида применяется следующий алгоритм:

  1. по каждой из величин  производится случайное испытание, в результате каждого определяется некоторое конкретное значение случайной величины iii;

  2. используя найденные величины, определяется одно частное значение y­­­­i по выше приведённой зависимости;

  3. предыдущие операции повторяются N раз, в результате чего определяется N значений случайной величины y;

  4. на основании N значений величины находится её эмпирическая функция распределения.
^

Имитация функционирования системы.




Предположим, исследуется вычислительная система (ВС), состоящая из процессора 1 с основной памятью, устройство вода, АЦПУ 2 и дисплея 3.



Упрощённая схема моделируемой системы.

Через устройство 4 поступает поток заданий Х1. Процессор обрабатывает задания и результаты выдаёт на АЦПУ 2. Одновременно с этим ВС используется, например, как информационно-справочная система. Оператор-пользователь, работающий за дисплеем, посылает в систему запросы Х2, которые обрабатываются процессором и ответы выводятся на экран дисплея. Процессор работает в 2-х программном режиме: в одном разделе обрабатываются задания Х1, в другом, с более высоким относительным приоритетом запросы Х2. Представим данную ВС в упрощённом варианте в виде стохастической сети из 4-х СМО. Потоки заданий и запросы будем называть потоками заявок. Считаем потоки Х1 и Х2 независимыми. Известны ф.р. периодов следования заявок 1 и 2 и длительность обслуживания Т, T заявок в к-ом устройстве. Требуется определить времена загрузки каждого устройства и времена реакции по каждому из потоков.

Вначале определяется момент поступления в систему 1-ой заявки потока Х1 по результатам случайного испытания в соответствии с ф.р. периода следования заявок.



Временная диаграмма функционирования ВС.

На рис. 2 это момент времени t1=0+11 (здесь и далее верхний индекс обозначает порядковый номер заявки данного потока). То же самое делается для потока Х2. На рис.2 момент поступления 1-ой заявки потока Х2 t2=0+21. Затем находится минимальное время, т.е. наиболее раннее событие. В примере это время t1. Для 1-ой заявки потока Х1определяется время обслуживания устройством ввода перфокарт Т114 методом случайного испытания и отмечается момент окончания обслуживания t4=t1+ Т114. На рис. показан переход устройства 4 в состояние "занято". Одновременно определяется момент поступления следующей заявки потока Х1: t12=t1+12. Следующее минимальное время это момент поступления заявки потока Х2 - t2. Для этой заявки находится время обслуживания на дисплее Т123 и отслеживается время окончания обслуживания t3=t2+ Т123 . Определяется момент поступления второй заявки потока Х2: t7=t2+22 . Снова выбирается минимальное время — это t3. В этот момент заявка потока Х2 начинает обрабатываться процессором. По результату случайного испытания определяется время её обслуживания T121 и отмечается момент t5=t3+ T121 окончания обслуживания. Следующее минимальное время t4 - момент завершения обслуживания заявки потока Х1 устройством 4. С этого момента заявка может начать обрабатываться процессором, но он занят обслуживанием потока Х2. Тогда заявка потока Х1 переходит в состояние ожидания, становиться в очередь. В следующий момент времени t5 освобождается процессор. С этого момента процессор начинает обрабатывать заявку потока Х1, а заявка потока Х2 переходит на обслуживание дисплеем, т.е. ответ на запрос пользователя передаётся из основной памяти в буферный накопитель дисплея. Далее определяются соответствующие времена обслуживания: T111 и T123 и отмечаются моменты времени t9=t5+ T111 и t6=t5+ T123. В момент t6 полностью завершается обработка первой заявки потока Х2. По разности времени t6 и t2 вычисляется время реакции по этой заявке u12= t6- t2. Следующий минимальный момент t7 - это наступление 2-ой заявки потока Х2. Определяет время поступления очередной заявки этого потока t15= t7+23. Затем вычисляется время обслуживания 2-ой заявки на дисплее T223 и отмечается момент t8=t7+ T223, после чего заявка становится в очередь, т.к. процессор занят. Эта заявка поступит на обслуживание в процессор только после его освобождения в момент t9 . В этот момент заявка потока Х1 начинает обслуживаться в АЦПУ. Определяются времена обслуживания Т221 и Т112 по результатам случайных испытаний и отмечаются моменты окончания обслуживания t11= t9223 и t10= t9112. В момент времени t10 завершается полное обслуживание 1-ой заявки потока Х1. Разность между этим моментом и моментом времени t1 даёт 1-ое значение времени реакции по потоку Х1 u11= t10- t1.

Указанные процедуры выполняются до истечения времени моделирования. В результате получается некоторое количество (выборка) случайных значений времени реакции (u1) и (u2) по 1-ому и 2-ому потокам. По этим значениям могут быть определены эмпирические функции распределения и вычислены количественные вероятностные характеристики времени реакции. В процессе моделирования можно суммировать продолжительности занятости каждого устройства обслуживанием всех потоков. Например, на рис. 2 занятость процессора 1 выделена заштрихованными ступеньками. Если результаты суммирования разделить на время моделирования, то получатся коэффициенты загрузки устройств.

Можно определить время ожидания заявок в очереди, обслуженных системой, среднюю и максимальную длину очереди заявок к каждому устройству, требуемая ёмкость памяти и др.

Имитация даёт возможность учесть надёжностные характеристики ВС. В частности, если известны времена наработки на отказ и восстановления всех входящих в систему устройств, то определяются моменты возникновения отказов устройств в период моделирования и моменты восстановления. Если устройство отказало, то возможны решения:

  • снятие заявки без возврата;

  • помещение заявки в очередь и дообслуживание после восстановления;

  • поступление на повторное обслуживание из очереди;
^

Имитационное моделированию систем и языки программирования.



Большое значение при реализации модели на ЭВМ имеет вопрос правильного выбора языка программирования.

Язык программирования должен отражать внутреннюю структуру понятий при описании широкого круга понятий. Высокий уровень языка моделирования значительно упрощает программирование моделей. Основными моментами при выборе ЯМ является:

  • проблемная ориентация;

  • возможности сбора, обработки, вывода результатов;

  • быстродействие;

  • простота отладки;

  • доступность восприятия.

Этими свойствами обладают процедурные языки высокого уровня. Для моделирования могут быть использованы языки Имитационного моделирования (ЯИМ) и общего назначения (ЯОМ).

Более удобными являются ЯИМ. Они обеспечивают:

  • удобство программирования модели системы;

  • проблемная ориентация.

Недостатки ЯИМ:

  • неэффективность рабочих программ;

  • сложность отладки;

  • недостаток документации.

Основные функции языка программирования:

  • управление процессами (согласование системного и машинного времени);

  • управление ресурсами (выбор и распределение ограниченных средств описываемой системы).

Как специализированные языки, ЯИМ обладают некоторыми программными свойствами и понятиями, которые не встречаются в ЯОН. К ним относятся:

Совмещение. Параллельно протекающие в реальных системах S процессы представляются с помощью последовательно работающей ЭВМ. ЯИМ позволяют обойти эту трудность путём введения понятий системного времени.

Размер. ЯИМ используют динамическое распределение памяти (компоненты модели системы М появляются в ОЗУ и исчезают в зависимости от текущего состояния. Эффективность моделирования достигается так же использованием блочных конструкций: блоков, подблоков и т.д.

Изменения. ЯИМ предусматривают обработку списков, отражающих изменения состояний процесса функционирования моделируемой системы на системном уровне.

Взаимосвязь. Для отражения большого количества между компонентами модели в статике и динамике ЯИМ включаем системно организованные логические возможности и реализации теории множеств.

Стохастичность. ЯИМ используют специальные программные генерации последовательностей случайных чисел, программы преобразования в соответствующие законы распределения.

Анализ. ЯИМ предусматривают системные способы статистической обработки и анализа результатов моделирования.

Наиболее известными языками моделирования являются SIMULA, SIMSCRIPT, GPSS, SOL, CSL.

Для языков, используемых в задачах моделирования, можно составить классификацию следующего вида. (см. рис. 9.1.)



Рис. 9.1. Классификация языков моделирования.

Язык DYNAMO используется для решения разностных уравнений.

Представление системы S в виде типовой схемы, в которой участвуют как дискретные, так и непрерывные величины, называются комбинированными. Предполагается, что в системе могут наступать события двух видов: 1) события, от состоянии Zi; 2) события, зависящие от времени t. При использовании языка GAPS на пользователь возлагается работа по составлению на яз. FORTRAN подпрограмм, в которых описываются условия наступления событий, законы изменения непрерывной величины, правил перехода из одного состояния в другое. SIMSCRIPT - язык событий, созданный на базе языка FORNRAN. Каждая модель Mj состоит из элементов, с которыми происходят события, представляющие собой последовательность формул, изменяющих состояние моделируемой системы с течением времени. Работа со списками, определяемые пользователем, последовательность событий в системном времени, работа с множествами. FORSIT - пакет ПП на языке FORNRAN позволяет оперировать только фиксированными массивами данных, описывающих объекты моделируемой системы. Удобен для описания систем с большим числом разнообразных ресурсов. Полное описание динамики модели можно получить с помощью ПП.

SIMULA - расширение языка ALGOL. Блочное представление моделируемой системы. Функционирование процесса разбивается на этапы, происходящие в системном времени. Главная роль в языке SIMULA отводится понятию параллельного оперирования с процессами в системном времени, универсальной обработки списков с процессами в роли компонент.

GPSS- интегрирующая языковая система, применяющаяся для описания пространственного движения объектов. Такие динамические объекты в языке GPSS называются транзактами и представляют собой элементы потока. Транзакты "создаются" и "уничтожаются". Функцию каждого из них можно представить как движение через модель М с поочерёдным воздействием на её блоки. Функциональный аппарат языка образуют блоки, описывающие логику модели, сообщая транзактам, куда двигаться и что делать дальше. Данные для ЭВМ подготавливаются в виде пакета управляющих и определяющих карт, которым составляется по схеме модели, набранной из стандартных символов. Созданная программа GPSS, работая в режиме интерпретации, генерирует и передаёт транзакты из блока в блок. Каждый переход транзакта приписывается к определенному моменту системного времени.

При моделировании предпочтение отдают языку, который более знаком, универсален. Вместе с увеличением числа команд возрастают трудности использования ЯИМ. Получены экспертные оценки ЯИМ по степени их эффективности.

Баллы

Возможности

Простота применения

Предпочтение пользователя

5

SIMULA

GPSS

SIMSCRIPT

4

SIMSCRIPT

SIMSCRIPT

GPSS

3

GPSS

SIMULA

SIMULA

Суммарный бал:

^ SIMULA -11

SIMSCRIPT -13

GPSS -12

Если предпочтение отдаётся блочной конструкции модели при наличии минимального опыта в моделировании, то следует выбрать язык GPSS, но при этом следует помнить, что он негибок, требует большого объёма памяти и затрат машинного времени для счёта.
^

Метод Монте-Карло как разновидность имитационного моделирования.



Датой рождения метода Монте-Карло принято считать 1949 г., когда

появилась статья под названием «The Monte Carlo method». Создателями

этого метода считают американских математиков Дж. Неймана и С. Улама. В

СССР первые статьи о методе Монте-Карло были опубликованы в 1955—1956гг. Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную—очень трудоемкая работа. Таким образом, возникновение метода Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.

Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата

(дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас». Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй,

метод статистического моделирования, как правило, оказывается проще

аналитического (а нередко бывает и единственно возможным).

В сущности, методом Монте-Карло может быть решена любая

вероятностная задача, но оправданным он становится только тогда, когда

процедура розыгрыша проще, а не сложнее аналитического расчета.

Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием. Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб—за попадание, решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.

Метод Монте-Карло- это численный метод решения задач имитационного моделирования при помощи моделирования случайных величин.

Заключение



Одним из главных достоинств систем имитационного моделирования является то, что они позволяют пользователю не заботится о программной реализации модели, как о последовательности исполняемых операторов, и тем самым создают на компьютере некоторую чрезвычайно удобную среду, в которой можно создавать виртуальные, "квазиаппаратные" параллельно функционирующие системы и проводить эксперименты с ними. Графическая среда становится похожей на физический испытательный стенд, только вместо тяжелых металлических ящиков, кабелей и реальных измерительных приборов, осциллографов и самописцев пользователь имеет дело с их образами на экране дисплея. Образы можно перемещать, соединять и разъединять с помощью мыши. Кроме того, пользователь может видеть и оценивать результаты моделирования по ходу эксперимента и, при необходимости, активно в него вмешиваться.

Программная реализация виртуального стенда скрыта от пользователя. Для проведения экспериментов не требуется никаких особых знаний о компьютере, операционной системе и математическом обеспечении. Можно сказать, что виртуальный стенд превращает цифровую вычислительную машину в невиданно точную и удобную аналоговую. Таким образом, прогресс средств автоматизации моделирования приводит нас на следующем витке спирали развития к истокам вычислительной техники.
^

Список использованной литературы



1. Бусленко В. Н. Автоматизация имитационного моделирования сложных систем. - М,: Наука, 1987. - 238 с.

2. Соболь И.М. «Метод Монте-Карло», Москва «Наука»,1995г.

3. Попов Е. П. теория автоматического регулирования и управления: Учеб. Пособие для втузов. – 4-е изд., перераб. и доп. – М.: наука. Гл. ред. физ.-мат. лит., 1993. – 304с.


Скачать файл (628 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru