Logo GenDocs.ru


Поиск по сайту:  


Ответы по компьютерному моделированию - файл 1.doc


Ответы по компьютерному моделированию
скачать (320 kb.)

Доступные файлы (1):

1.doc320kb.24.11.2011 09:39скачать

содержание

1.doc

1   2   3
Реклама MarketGid:
^

Классификация математических моделей.


Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы. Один из таких подходов связан с характером моделируемого процесса, когда выделяют детерминированные и вероятностные модели. Наряду с такой широко распространенной классификацией математических моделей существуют и другие.

Классификация математических моделей на основе особенностей применяемого математического аппарата. В ней можно выделить следующие их разновидности.
^

Математические модели с сосредоточенными параметрами.


Обычно с помощью таких моделей описывают динамику систем, состоящих из дискретных элементов. С математической стороны - это системы обыкновенных линейных или нелинейных дифференциальных уравнений.

Математические модели с сосредоточенными параметрами широко применяются для описания систем, состоящих из дискретных объектов или совокупностей идентичных объектов. Например, широко используется динамическая модель полупроводникового лазера. В этой модели фигурируют две динамические переменные - концентрации неосновных носителей заряда и фотонов в активной зоне лазера.
^

Математические модели с распределенными параметрами.


Моделями этого типа описываются процессы диффузии, теплопроводности, распространения волн различной природы и т. п. Эти процессы могут быть не только физической природы. Математические модели с распределенными параметрами широко распространены в биологии, физиологии и других науках. Чаще всего в качестве основы математической модели применяют уравнения математической физики, в том числе и нелинейные.
^

Математические модели, основанные на экстремальных принципах.


Общеизвестна основополагающая роль принципа наибольшего действия в физике. Например, все известные системы уравнений, описывающие физические процессы, могут быть выведены из экстремальных принципов. Однако и в других науках экстремальные принципы играют существенную роль.
^

Основной принцип классификации математических моделей


В качестве основного принципа классификации математических моделей часто используют области их применения. При таком подходе выделяются следующие области применения:

физические процессы;

технические приложения, в том числе управляемые системы, искусственный интеллект;

жизненные процессы (биология, физиология, медицина);

большие системы, связанные с взаимодействием людей (социальные, экономические, экологические);

гуманитарные науки (языкознание, искусство).

(Области применения указаны в порядке, соответствующем убыванию уровня адекватности моделей).

Виды математических моделей: детерминированные и вероятностные, теоретические и экспериментальные факторные. Линейные и нелинейные, динамические и статические. непрерывные и дискретные, функциональные и структурные.

По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования.

^ Классификация математических моделей (ТО - технический объект)



^ Виды математических моделей технических объектов

По форме представления ММ




По характеру отображаемых свойств ТО




По степени абстрагирования




По способу получения ММ






















Инвариантные




Функциональные




ММ микроуровня

(с распределенными параметрами)




Теоретические






















Алгоритмические




Структурные




ММ макроуровня (со средоточенными параметрами)




Экспериментальные факторные






















Аналитические










ММ метауровня




























Графические (схемные)




















К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы.

По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования.

В инвариантной форме математическая модель представляется системой уравнений вне связи с методом решения этих уравнений.

В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений. Среди алгоритмических моделей выделяют имитационные , модели предназначенные для имитации физических и информационных процессов, протекающих в объекте при его функционировании под воздействием различных факторов внешней среды.

Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров). Такие модели получают на основе физических законов, либо в результате прямого интегрирования исходных дифференциальных уравнений. Аналитические математические модели позволяют легко и просто решать задачи определения оптимальных параметров. Поэтому, если представляется возможность получения модели в таком виде, ее всегда целесообразно реализовать, даже если при этом придется выполнить ряд вспомогательных процедур, Такие модели обычно получают методом планирования эксперимента (вычислительного или физического).

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т.п. Для использования графических моделей должно существовать правило однозначного соответствия условных изображений элементов графической и компонентов инвариантной математических моделей.

Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.

Структурные модели отображают только структуру объектов и используются только при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Эти параметры называют морфологическими перемененными. Структурные модели имеют форму таблиц, матриц и графов. Наиболее перспективно применение древовидных графов типа И-ИЛИ-дерева. Такие модели широко используют на метауровне при выборе технического решения.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства объекта и позволяют решать задачи как параметрического, так и структурного синтеза. Их широко используют на всех уровнях проектирования. На метауровне функциональные задачи позволяют решать задачи прогнозирования, на макроуровне - выбора структуры и оптимизации внутренних параметров технического объекта, на микроуровне - оптимизации параметров базовых элементов.

16.Моделирование стохастических систем. Датчик случайных чисел. Критерии достоверности датчика случайных чисел.

^ СТОХАСТИЧЕСКАЯ МОДЕЛЬ - математическая модель процесса, учитывающая факторы случайной природы. Также носит название «вероятностная» модель.

Модель, которая в отличие от детерминированной модели содержит случайные элементы. Таким образом, при задании на входе модели некоторой совокупности значений, на ее выходе могут получаться различающиеся между собой результаты в зависимости от действия случайного фактора.

Нередко при моделировании стохастических систем применяют датчик случайных чисел - устройство для выработки случайных чисел, равномерно распределённых в заданном диапазоне чисел. Основной блок датчика случайных чисел — генератор случайных равновероятных цифр (ГРЦ), наиболее часто двоичных, из которых затем формируются необходимые многоразрядные сочетания (числа).

Генераторы (датчики) случайных чисел используются для моделирования случайных данных в соответствии с заданной функцией распределения. Последовательности случайных чисел применяют в вычислительных алгоритмах, компьютерном моделировании, кодировании информации. Имея случайную последовательность с заданным распределением, можно моделировать ошибки измерений, вариации природных факторов, таких как плотность атмосферы или солнечная активность и другие явления
18. Примеры математических моделей в различных отраслях знаний.

Примеры применения:

В физике: задача о движении снаряда

Снаряд пущен с Земли с начальной скоростью v0 = 30 м/с под углом  = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Пренебрегая размерами снаряда, будем считать его материальной точкой. Введем систему координат xOy, совместив ее начало O с исходной точкой, из которой пущен снаряд, ось x направим горизонтально, а ось y — вертикально (рис. 1).



Рис. 1

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:



где t — время, g = 10 м/с2 — ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:



Эта кривая (парабола) пересекает ось x в двух точках: x1 = 0 (начало траектории) и (место падения снаряда).

В химии: Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

yэ(3) = – 42°, yэ(4) = 0°, yэ(5) = 28°, yэ(6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y an + b,

где a, b — константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42  3a + b, 0  4a + b, 28  5a + b, 69  6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b  – 42 – 3a, b  – 4a, b  28 – 5a, b  69 – 6a.

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b  16 – 4,5a. Подставим в исходную систему уравнений это значение b и, вычисляя a, получим для a следующие значения: a37, a28, a28, a36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a34. Итак, искомое уравнение имеет вид

y  34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

yр(3) = – 37°, yр(4) = – 3°, yр(5) = 31°, yр(6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.
19. Имитационное моделирование. Этапы имитационного моделирования. Отличительные признаки методов математического и имитационного моделирования. Имитационные эксперименты.

Имитационное моделирование - техника численных экспериментов, с помощью которых можно получить эмпирические оценки степени влияния различных факторов - исходных величин, которые точно не определены, на зависящие от них результаты - показатели.

Целью имитационного моделирования является построение вероятностных распределений для возможных значений выходной стохастической переменной при случайном изменении входных стохастических переменных {xi, }.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы во времени. Имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени [42].

Основным преимуществом имитационных моделей по сравнению с аналитическими является возможность решения более сложных задач. Имитационные модели позволяют легко учитывать наличие дискретных или непрерывных элементов, нелинейные характеристики, случайные воздействия и др.  Поэтому этот метод широко применяется на этапе проектирования сложных систем. Основным средством реализации имитационного моделирования служит ЭВМ, позволяющая осуществлять цифровое моделирование систем и сигналов.

При имитационном моделировании используемая ММ воспроизводит алгоритм («логику») функционирования исследуемой системы во времени при различных сочетаниях значений параметров системы и внешней среды. Примером простейшей аналитической модели может служить уравнение прямолинейного равномерного движения. При исследовании такого процесса с помощью имитационной.

Имитационные модели не только по свойствам, но и по структуре соответствуют моделируемому объекту. При этом имеется однозначное и явное соответствие между процессами, получаемыми на модели, и процессами, протекающими на объекте. Недостатком имитационного моделирования является большое время решения задачи для получения хорошей точности.
1   2   3

Реклама:





Скачать файл (320 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru