Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по гидравлике - файл 1.doc


Лекции по гидравлике
скачать (6080 kb.)

Доступные файлы (1):

1.doc6080kb.24.11.2011 10:37скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7   8   9   10   11
Реклама MarketGid:
Загрузка...

Задачи


  1. Определить величину и направление силы F, приложенной к штоку поршня для удержания его на месте. Справа от поршня находится воздух, слева от поршня и в резервуаре, куда опущен открытый конец трубы, – жидкость Ж (рис. 1.1).

Показание пружинного манометра – PM.



Рис. 1.1.

  1. Паровой прямодействующий насос подает жидкость Ж на высоту Н (рис. 1.2). Каково абсолютное давление пара, если диаметр парового цилин­дра D, а насосного цилиндра d? Потерями на трение пренебречь.



Рис. 1.2.

  1. Определить силу прессования F, развиваемую гидравлическим прес­сом, у которого диаметр большего плунжера D, диаметр меньшего



Рис. 1.3.

плун­жера d. Больший плунжер расположен выше меньшего на величину Н, ра­бочая жидкость Ж, усилие, приложенное к рукоятке, R
(рис. 1.3).

  1. Замкнутый резервуар разделен на две части плоской перегородкой, имеющей квадратное отверстие со стороной а, закрытое крышкой (рис. 1.4). Давление над жидкостью Ж в левой части резервуара определяется пока­заниями манометра PM, давление воздуха в правой части – показаниями мановакуумметра. Определить величину и точку приложения результи­рующей силы давления на крышку.



Рис. 1.4.


  1. Шар диаметром D наполнен жидкостью Ж. Уровень жидкости в пьезометре, присоединенном к шару, установился на высоте Н от оси ша­ра. Определить силу давления на боковую половину внутренней поверхности шара (рис. 1.5). Показать на чертеже вертикальную и горизонтальную составляющие, а также полную силу давления.


Рис. 1.5.

  1. Определить силу давления на коническую крышку горизонтального цилиндрического сосуда диаметром D, заполненного жидкостью Ж
    (рис. 1.6). Показание манометра в точке его присоединения – PM. Показать на чер­теже вертикальную и горизонтальную составляющие, а также полную си­лу давления.



Рис. 1.6.


  1. При истечении жидкости из резервуара в атмосферу по горизонтальной трубе диаметра d и длиной 2l уровень в пьезометре, уста­новленном посередине длины трубы, равен h (рис. 1.7). Определить расход Q и коэффициент гидравлического трения трубы , если статический на­пор в баке постоянен и равен Н. Построить пьезометрическую и напорную линии. Сопротивлением входа в трубу пренебречь.




Рис. 1.7.


  1. Жидкость Ж подается в открытый верхний бак по вертикальной тру­бе длиной l и диаметром d за счет давления воздуха в нижнем замкнутом резервуаре (рис. 1.8). Определить давление P воздуха, при котором расход будет равен Q. Принять коэффициенты сопротивления вентиля в = 8,0; входа в трубу вх = 0,5; выхода в бак вых = 1,0. Эквивалентная шероховатость стенок трубы kЭ = 0,2 мм.



Рис. 1.8.

  1. Поршень диаметром D движется равномерно вниз в цилиндре, пода­вая жидкость Ж в открытый резервуар с постоянным уровнем (рис. 1.9). Диаметр трубопровода d, его длина l. Когда поршень находится ниже уровня жидкости в резервуаре на Н = 0,5 м, потребная для его перемещения сила равна F. Определить скорость поршня и расход жидко­сти в трубопроводе. Построить напорную и пьезометрическую линии для трубопровода. Коэффициент гидравлического трения трубы принять = 0,03. Коэффициент сопротивления входа в трубу вх = 0,5. Коэффициент сопротивления выхода в резервуар вых = 1,0.



Рис. 1.9.

  1. Определить диаметр трубопровода, по которому подается жидкость Ж с расходом Q из условия получения в нем максимально возможной скорости при сохранении ламинарного режима. Температура жидкости t = 20 °С.

  2. При ламинарном режиме движения жидкости по горизонтальному трубопроводу диаметром d = 30 см расход равнялся Q, а падение пьезо­метрической высоты на участке данной l составило Н. Определить кине­матический и динамический коэффициенты вязкости перекачиваемой жидкости.

  3. По трубопроводу диаметром d и длиной l движется жидкость Ж
    (рис. 1.10). Чему равен напор Н, при котором происходит смена ламинарно­го режима турбулентным? Местные потери напора не учитывать. Темпе­ратура жидкости t = 20 °С.

У к а з а н и е. Воспользоваться формулой для потерь на трение при лами­нарном режиме (формула Пуазейля).



Рис. 1.10.


  1. На поршень диаметром D действует сила F (рис. 1.11). Определить скорость движения поршня, если в цилиндре находится вода, диаметр отверстия в поршне d, толщина поршня а. Силой трения поршня о цилиндр пренебречь, давление жидкости на верхнюю плоскость поршня не учиты­вать.


Рис. 1.11.


  1. Определить длину трубы l, при которой расход жидкости из бака будет в два раза меньше, чем через отверстие того же диаметра d. Напор над отверстием равен Н. Коэффициент гидравлического трения в трубе принять = 0,025 (рис. 1.12).


Рис. 1.12.

  1. Определить длину трубы l, при которой опорожнение цилиндри­ческого бака диаметром D на глубину Н будет происходить в два раза медленнее, чем через отверстие того же диаметра d. Коэффициент гид­равлического трения в трубе принять = 0,025 (рис. 1.12).

У к а з а н и е. В формуле для определения времени опорожнения бака ко­эффициент расхода выпускного устройства определяется его конструк­цией. Для трубы

,

где - суммарный коэффициент местных сопротивлений.

  1. Определить диаметр d горизонтального стального трубопровода длиной l = 20 м, необходимый для пропуска по нему воды в количестве Q, если располагаемый напор равен Н. Эквивалентная шероховатость стенок трубы k = 0,15 мм.

У к а з а н и е. Для ряда значений d и заданного Q определяется ряд значений потребного напора HП. Затем строится график НП = f(d) и по заданному Н определяется d.


  1. Из бака А, в котором поддерживается постоянный уровень, вода протекает по цилиндрическому насадку диаметром d в бак В, из которого сливается в атмосферу по короткой трубе диаметром D, снабженной кра­ном (рис. 1.13). Определить наибольшее значение коэффициента сопротив­ления крана , при котором истечение из насадка будет осуществляться в атмосферу. Потери на трение в трубе не учитывать.



Рис. 1.13.


  1. При внезапном расширении трубопровода скорость жидкости в трубе большего диаметра равна v. Отношение диаметров труб D/d = 2
    (рис. 1.14). Определить Н – разность показаний пьезометров.



Рис. 1.14.


  1. Горизонтальная труба служит для отвода жидкости Ж в количестве Q из большого открытого бака (рис. 1.15). Свободный конец трубы снабжен краном.



Рис. 1.15.
Определить ударное повышение давления в трубе перед краном, если диаметр трубы d, длина l, толщина стенки , материал стенки - сталь. Кран закрывается за время tзак по закону, обеспечивающему линейное уменьшение скорости жидкости в трубе перед краном в функции времени.


  1. Вода в количестве Q перекачивается по чугунной трубе диаметром d, длиной l с толщиной стенки . Свободный конец трубы снабжен затво­ром. Определить время закрытия затвора при условии, чтобы повышение давления в трубе вследствие гидравлического удара не превышало P = 1 МПа. Как повысится давление при мгновенном закрытии затвора?




  1. Определить время закрытия задвижки, установленной на сво­бодном конце стального водопровода диаметром d, длиной l с толщиной стенки , при условии, чтобы максимальное повышение давления в водо­проводе было в три раза меньше, чем при мгновенном закрытии задвижки. Через сколько времени после мгновенного закрытия задвижки повышение давления распространится до сечения, находящегося на расстоянии 0,7 l от задвижки?

Приложения к задачам варианта 1
^ Таблица 1.3.

  1. Удельный вес  и плотность  жидкостей при t = 20 C.



1   2   3   4   5   6   7   8   9   10   11



Скачать файл (6080 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru