Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Программное обеспечение для микропроцессорных систем - файл 1.doc


Программное обеспечение для микропроцессорных систем
скачать (203 kb.)

Доступные файлы (1):

1.doc203kb.24.11.2011 11:13скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...



СОДЕРЖАНИЕ





ВВЕДЕНИЕ 3

1 Логическая структура микропроцессорной системы 4

1.1 Логическая структура развитой микропроцессорной системы 9

2 Интерфейс микропроцессоров 11

2.1 Информационные магистрали 12

2.2 Магистраль адресов 12

2.3 Магистраль данных 12

2.4 Магистраль управления 13

3 Классификация мп 15

Заключение 19

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 21


ВВЕДЕНИЕ



Развитие микроэлектроники в начале 1970-х г.г. привело к появлению микропроцессоров (МП) – новой разновидности больших интегральных схем (БИС), представляющих собой универсальные по назначению, функционально законченные устройства, по своим функциям и структуре напоминающие упрощённый вариант процессоров обычных ЭВМ, но имеющие несравнимо меньшие размеры. Первое сообщение о создании микропроцессора появилось в 1972 г. Микропроцессоры относятся к классу микросхем, особенностью которых является возможность программного управления работой БИС с помощью определённого набора команд.

Сфера применения МПБИС необычайно широка: от сложных высокопроизводительных вычислительных систем до простейших машин и механизмов.

МПБИС являются универсальными программируемыми элементами, из небольшого числа которых возможно построение микропроцессорных систем со структурой и функциями, аналогичными традиционным ЭВМ.

Однако при этом малая стоимость, простота и надежность микропроцессорных систем позволяют встраивать их в различную аппаратуру. Наличие небывало дешевой вычислительной мощности позволяет придать такой аппаратуре новые свойства, значительно расширить ее функциональные возможности. В ряде случаев эти свойства настолько необычны, что появилась тенденция характеризовать микропроцессорную аппаратуру словом “интеллектуальная”.
^

1 Логическая структура микропроцессорной системы



Микропроцессор – это функционально законченное универсальное программно-управляемое устройство, осуществляющее процесс обработки цифровой информации и управление им, выполненное на одной или нескольких БИС.

^ Микропроцессорная БИС (МП БИС) – интегральная микросхема, выполняющая функцию МП или его части. По существу, это БИС с процессорной организацией, разработанной для построения микропроцессорных систем.

^ Микропроцессорный комплект (МПК) – это совокупность МП и других БИС и СБИС, совместимых по конструкторско-технологическому исполнению и предназначенных для совместного применения при построении МП, микроЭВМ и других вычислительных средств. (чипсет).

Логическая структура (архитектура) микропроцессоров ориентирована на достижение универсальности применения, высокой производительности и технологичности. Универсальность МП определяется возможностью их разнообразного использования и обеспечивается программным управлением микропроцессором, позволяющим производить программную настройку МП на реализацию определённых функций, магистрально-модульным принципом построения, а также специальными аппаратно-логическими средствами: сверхоперативной регистровой памятью, многоуровневой системой прерываний, прямым доступом к памяти, программно-настраиваемыми схемами управления вводом-выводом и т.п.

Относительно высокая производительность МП достигается использованием для их построения быстродействующих БИС и СБИС и специальных архитектурных решений, таких, как стековая память, разнообразные способы адресации, гибкая система команд и др.

Технологичность микропроцессорных средств обеспечивается модульным принципом конструирования, который предполагает реализацию этих средств в виде набора функционально законченных БИС, легко объединяемых в соответствующие вычислительные устройства, машины, комплексы и системы.

Микропроцессоры при больших вычислительных и логических возможностях, высокой универсальности и гибкости характеризуется низкой стоимостью, уникально малыми размерами, высокой надёжностью. Благодаря указанным особенностям МП служат системными элементами, на основе которых создаются различные универсальные и специализированные микропроцессорные системы, микроЭВМ, программируемые микроконтроллеры, непосредственно встраиваемые в приборы, машины, технологические установки, и позволяющие достигнуть значительного повышения уровня автоматизации технологических процессов, экономии энергии, сырья, материалов, повышения производительности и качества труда.

Достоинством МП по сравнению с большими процессорами является то, что мощности последних разделяются между многими пользователями (задачами), в то время как МП предназначен для использования одним пользователем (задачей). В результате значительно упрощается программное обеспечение. В больших ЭВМ программные средства поддержки их функционирования (прежде всего операционная система) требуют больших накладных расходов в добавление к значительным затратам на аппаратные средства. Такого рода затраты значительно меньше или практически отсутствуют в микропроцессорных системах. Достоинства МП ещё больше возрастают по мере увеличения их разрядности и быстродействия. Существующие МП во многих отношениях превосходят процессоры обычных и мини-ЭВМ, которые выпускались 10 лет назад. Поэтому префикс “микро” следует интерпретировать с точки зрения размеров и стоимости МП и МП-систем, а не их возможностей.

Реальная электронная система на основе микропроцессора содержит значительное число функциональных устройств, одним из которых является микропроцессор. Все устройства системы имеют стандартный интерфейс и подключаются к единой информационной магистрали, как это показано на рисунке 1.1.

Микропроцессор выполняет в системе функции центрального устройства управления и устройства арифметическо-логического преобразования данных. В качестве устройства управления он генерирует последовательности синхронизирующих и логических сигналов, которые определяют последовательности срабатывания всех логических устройств системы. Микропроцессор задает и последовательно осуществляет микрооперации извлечения команд программы из памяти системы, их расшифровку и исполнение. Тип операций микропроцессора определяется кодом операции в команде. В соответствии с этими кодами микропроцессор выполняет арифметические, логические или иные операции над числами, представленными в двоичном или кодированном двоично-десятичном коде.

Числа, подвергающиеся операционным преобразованиям в арифметическо-логическом блоке микропроцессора, называют операндами. Операнд может быть одним из исходных чисел, результатом, константой или некоторым параметром. Операция в микропроцессоре производится над одним или двумя операндами.

Память микропроцессорной системы физически реализуется на основе различных ЗУ. Технико-экономическая целесообразность ведет к построению иерархической памяти на основе полупроводниковых постоянных и оперативных запоминающих устройств и магнитных внешних запоминающих устройств.


Рисунок 1.1 - Логическая структура микропроцессорной системы
Полупроводниковые постоянные запоминающие устройства ПЗУ позволяют в процессе работы системы осуществлять только чтение заранее записанных данных. Имеют высокую скорость работы и энергонезависимы, т.е. сохраняют информацию при выключении питания.

Полупроводниковые оперативные запоминающие устройства ОЗУ работают в режимах оперативной (совпадающей с темпом работы микропроцессора) записи и чтения данных. Недостаток ОЗУ – их энергозависимость, т.е. потеря записанной информации при выключении питания.

Память системы адресуема, т.е. каждое слово записывается в ячейке памяти со своим уникальным адресом. Слово – совокупность двоичных единиц (бит) – двоичных разрядов, интерпретируемых как отдельное число или несколько смысловых групп двоичных разрядов. Для получения числа из памяти или записи числа в память необходимо точно задать его адрес в памяти и осуществить операцию считывания данных из памяти.

Устройства ввода данных (УВв) – любые средства, предназначенные для передачи данных извне в регистры микропроцессора или в память (клавиатура пульта управления, ввод с перфолент и перфокарт, внешние запоминающие устройства на магнитных лентах, кассетах, дисках, дисплеи и т.д.).

Устройства вывода данных (УВвыв) – любые средства, способные воспринимать данные, передаваемые из регистров микропроцессора или ячеек памяти (дисплеи, печатающие устройства, внешние запоминающие устройства, пульт управления и т.д.).

Для подключения разнообразных устройств ввода или вывода данных (а также комбинированных устройств ввода-вывода) необходимо привести их все связи и сигналы к стандартному виду, т.е. провести согласование интерфейсов. Для этого используется специальный аппаратурный блок – информационный контроллер ИК, имеющий стандартный интерфейс со стороны подключения к информационной магистрали и нестандартный интерфейс со стороны устройств ввода-вывода, т.е. являющийся преобразователем интерфейсных сопряжений.

Микропроцессор МП, ОЗУ и ПЗУ вместе с УВвыв, предназначенными для операций с человеком или другой электронной системой, называется микро-ЭВМ. Микро-ЭВМ – это ЭВМ, центральная часть которой в составе процессора, ОЗУ, ПЗУ, информационного контроллера построена на основе БИС. Применение БИС в качестве основных элементных компонентов обеспечивают микро-ЭВМ такие преимущества перед другими типами ЭВМ, как компактность, надежность, малая материалоемкость, низкие мощность потребления и стоимость. Но магистральная структура микро-ЭВМ и скоростные ограничения микропроцессора определяют умеренные характеристики производительности микро-ЭВМ. Это относится к микро-ЭВМ на основе микропроцессоров на одном или нескольких кристаллах. В микро-ЭВМ на основе биполярных микропроцессорных секций можно получить высокое быстродействие за счет реализации конвейерной обработки данных и скоростного высокоэффективного управления вычислительным процессом даже при магистральной структуре.

Микро-ЭВМ становится центральной частью электронной системы контроля, управления и вычислений, когда она вводится в контур управления некоторого объекта (процесса). Для сопряжения с микро-ЭВМ объект (процесс) должен быть оснащен датчиками состояния и исполнительными механизмами. Датчики выступают как источники вводимой для микро-ЭВМ информации, а исполнительные механизмы – как приемники выводимой информации. Для согласования интерфейсов подключение датчиков и исполнительных механизмов в системе осуществляется через блоки сопряжения датчиков и исполнительных механизмов.

В зависимости от особенностей объекта (процесса) и возможностей микропроцессора сложность каждого устройства или блока устанавливается на этапе проектирования. Части системы могут развиваться или вырождаться, но должен быть обеспечен общий принцип построения и работы всех электронных систем управления. Вследствие прямой зависимости между функциями программных и аппаратурных средств можно при построении электронной системы развивать либо аппаратуру, либо усложнять программное обеспечение. Именно эти обстоятельства и определяют массовые возможности применения микропроцессорных систем управления практически во всех сферах.


^

1.1 Логическая структура развитой микропроцессорной системы



На рисунке 1.2 приведена обобщенная логическая структура микро-ЭВМ, в которой в качестве всех управляющих блоков устройств ЭВМ используются программируемые контроллеры, например контроллер системного пульта управления КСПУ. Он применяется для работы с системным пультом управления СПУ. Все аппараты ввода-вывода управляются контроллерами устройств ввода-вывода КУВВ или групповыми контроллерами устройств ввода-вывода ГрКУВВ.

Оперативное ОЗУ и постоянные запоминающие устройства ПЗУ управляются с помощью соответствующих контроллеров КОЗУ, КПЗУ. При такой организации ЭВМ центральный процессор ЦП обеспечивает программируемые контроллеры только управляющей информацией высокого уровня, детализируемой контроллером. Поэтому количество управляющей информации на информационной магистрали системы резко уменьшается, что позволяет увеличить скорость передачи данных.

По существу, в этой схеме приведена многопроцессорная вычислительная система, в которой в пределе контроллер имеет те же возможности, что и центральный процессор.

Низкая стоимость и высокая надежность БИС позволяют для достижения желаемых параметров ввести распределенную обработку во всех подсистемах вычислительной системы, что определяет новые способы организации вычислительных процессов в системах с децентрализованными управлением и обработкой информации.




Рисунок 1.2 - Обобщенная логическая структура микро-ЭВМ с микропроцессорными контроллерами


^

2 Интерфейс микропроцессоров



Для включения микропроцессора в любую микропроцессорную систему необходимо установить единые принципы и средства его сопряжения с остальными устройствами системы, т.е. унифицированный интерфейс.

Унифицированный интерфейс – совокупность правил, устанавливающих единые принципы взаимодействия устройств микропроцессорной системы. В состав интерфейса входят аппаратурные средства соединения устройств (разъем и связи), номенклатура и характер связей, программные средства, описывающие характер сигналов интерфейса и их временную диаграмму, а также описание электрофизических параметров сигналов.




Рисунок 2.1 - Обобщенная логическая структура микро-ЭВМ с микропроцессорными контроллерами
На рисунке 2.1 представлена общая схема взаимодействия микропроцессора МП с устройствами ввода – вывода УВВ и ОЗУ в микропроцессорной системе. Связь МП с УВВ требует пяти групп связи, обеспечиваемых через выводы корпуса. По группе шин 1 передается код выбора (адреса) устройства, по шине 2 – сигнал управления считыванием – записью, по шине 3 – сигнал запроса на прерывания, шины 4 и 5 используются для передачи данных от процессора к УВВ и от УВВ к МП. Связь МП с ОЗУ также содержит пять групп связей, которые необходимо обеспечить через выводы корпуса МП. По группе шин 6 передается адрес в ОЗУ, шина 7 нужна для управления чтением/записью, по сигналам на шине 8 принимаются команды в процессор, а шины 9 и 10 обеспечивают передачу данных из ОЗУ в МП и обратно.
^

2.1 Информационные магистрали



При проектировании БИС и устройств на их основе необходимо принимать во внимание сложность выполнения разветвленных связей между различными узлами (блоками) и устройствами. Поэтому практически реализованы и получили широкое распространение магистральные структуры связей, к которым подключены входы и выходы электронных узлов (блоков). Информационная магистраль (МИ) представляет собой совокупность проводников (шин) или кабелей, физические свойства которых обеспечивают передачу высокочастотных информационных сигналов. Электронные узлы (блоки), подключаемые к информационной магистрали, должны обладать определенными свойствами, иначе возможно образование короткозамкнутых связей и низкоомных нагрузок.
^

2.2 Магистраль адресов



В простой микропроцессорной системе только микропроцессор может вырабатывать адреса передаваемой в системе информации. Поэтому магистраль адресов (МА) – однонаправленная: микропроцессор генерирует сигналы кода адреса, а остальные устройства, подключенные к МА, только могут воспринимать их, выполняя непрерывно микрооперацию опознания кода адреса.

Количество шин магистрали адресов совпадает с разрядностью передаваемого кода адреса. Если используется 16-разрядный код, то в системе разрешается выработка =65536 адресов. Они могут все относиться к адресам ячеек памяти или к адресам ячеек памяти и адресам регистров данных устройств ввода-вывода.
^

2.3 Магистраль данных



Микропроцессор, а также ОЗУ, ВЗУ, дисплеи могут воспринимать или передавать данные. Другие устройства могут либо только принимать данные, например устройство печати, либо только выдавать их, например ПЗУ.

Чтобы обеспечить все возможности системы, магистраль данных является двунаправленной. Ее разрядность определяется разрядностью микропроцессора и равна 2, 4, 8, 16 и 32 бит. Если в микропроцессоре обрабатываются данные по программам двойной разрядности, то двойное слово пересылается за два цикла, т.е. имеет место временное мультиплексирование (оно также применялось в нескольких первых микропроцессорах, когда использовалась общая магистраль адресов и данных).
^

2.4 Магистраль управления



Микропроцессор и некоторые шины устройств ввода-вывода генерируют управляющие сигналы, предназначенные для синхронизации и определения операций устройств. Эти сигналы передаются по совокупности однонаправленных шин, в целом образующих магистраль сигналов управления (МУ). Все сигналы управления в электронной системе согласованы с системными сигналами синхронизации. Эти сигналы задают начало и последовательность срабатывания, как различных устройств системы, так и различных блоков и узлов внутри всех кристаллов БИС. Для задания главной последовательности синхронизирующих импульсов, как правило, применяется внешний кварц или генератор на его основе. Выдаваемые микропроцессором сигналы синхронизации бывают однофазными, реже двухфазными.

Каждый микропроцессор имеет уникальную систему сигналов управления. Поэтому конкретное описание всех шин МУ, так же как и цоколевки выводов корпуса, дается в технической документации на конкретный микропроцессор. Тем не менее, практически все микропроцессоры имеют общие сигналы. Среди них – сигнал “Сброс” – входной сигнал, вырабатываемый на пульте управления системы. Он приводит к сбросу всех внутренних регистров микропроцессора и загрузке счетчика команд – узла, определяющего последовательность выполнения команд программы, начальным значением адреса, где записана первая команда программы.

Важнейшая управляющая функция микропроцессора – определение потоков данных в системе. Микропроцессор вызывает слова команд из памяти в процессе их чтения, обращается в память за операндами или к внешним устройствам за новыми данными, может записать результат операции в память или, сформировав массив данных, определить необходимость их вывода на внешние устройства. Когда микропроцессор посылает данные какому-то устройству, происходит операция записи данных, а когда получает данные от какого-то устройства, то считывает данные из его информационного регистра и выполняет операцию чтения данных. Чтобы задать направление передачи данных по МД, микропроцессор генерирует сигналы “Чтение/запись”, передаваемые по одной из шин МУ.

Специфика устройств ввода-вывода данных такова, что информация может быть потеряна, если МП своевременно не осуществит операцию с устройством. Поэтому эти устройства генерируют сигналы “Запрос прерывания процессора”, обращающие внимание микропроцессора на состояние готовности (или неисправности). Микропроцессор имеет вход для приема, по крайней мере, одного сигнала “Запрос прерывания процессора”. Если же запрос принимается, то МП информирует систему, вырабатывая ответный сигнал “Запрос прерывания удовлетворен”.

Разная скорость работы устройства ввода-вывода и микропроцессора порождает необходимость приостановки процессора на время подготовки данных во внешнем устройстве. Поэтому режим работы ожидание микропроцессора определяется внешним сигналом “Данные подготовлены (данные не подготовлены)”. Всего в МУ передается до десятка (и более) разнообразных сигналов управления.


^

3 Классификация мп



МП характеризуется большим числом параметров, так как он, с одной стороны, функционально является сложным программно-управляемым цифровым процессором, т.е. устройством ЭВМ, а с другой – интегральной схемой или схемами с высокой степенью интеграции элементов, т.е. электронным прибором.

В общем случае МП могут быть классифицированы по различным характеристикам основными из которых являются:

1) тип микроэлектронной технологии, используемой при изготовлении МП БИС.

По технологической реализации различают:

р-МПД–технологии (первые виды МП), n-МДП–технологии, КМДП–технологии, TTL–технологии, ЭСЛ–технологии, И2Л–технологии. За исключением р-МПД–технологии и ограниченного применения TTL–технологии, все остальные эффективно применяются в настоящее время при изготовлении БИС и СБИС.

2) число кристаллов, образующих МП (однокристальные и многокристальные).

Однокристальные МП имеют фиксированную разрядность без возможности её наращивания, а также фиксированную систему команд, так как соответствующие командам микропрограммы “зашиты” внутри кристалла. Многокристальные МП имеют возможность наращивания разрядности за счёт последовательного соединения однотипных микропроцессорных элементов (секций), реализованных в виде отдельных БИС.

Отличительной особенностью многокристальных МП по сравнению с однокристальными является также то, что в них отсутствует фиксированная система команд. Пользователь имеет возможность создавать собственную систему команд.

Однако проектирование вычислительных устройств на основе многокристальных МП отличается большей сложностью.

3) тип корпуса (их порядка двух десятков);

4) разрядность. Разрядность МП показывает, сколько бит данных он может

принять и обработать в своих регистрах за один раз (за один такт).

Разрядность МП во многом определяет уровень сложности задач, которые могут решаться с помощью конкретного комплекта МП.

Малоразрядные МП применяются в устройствах с двоично-десятичной системой счисления и невысоким быстродействием обработки данных (калькуляторах, кассовых аппаратах, измерителях параметров и т.д.).

Восьми- и шестнадцати разрядные МП обладают существенными вычислительными возможностями и находят применение при обработке алфавитно-цифровой информации, в системах связи, станках с ЧПУ и др.

Микропроцессоры высокой разрядности (32 и выше) позволяют создавать более компактные программы с минимумом команд, что резко снижает стоимость отладки программ, которая может достигать 50…70% стоимости всех технических средств микропроцессорного комплекса.

5) быстродействие (тактовая частота, время выполнения команд). Исполнение каждой команды занимает определенное количество тактов. Чем выше частота тактов, тем больше команд может исполнить МП в единицу времени, тем выше его производительность.

Производительность МП определяется временем решения ряда тестовых задач и зависит от быстродействия выполнения простых операций, разрядности, числа регистров общего назначения, структуры схем ввода-вывода и других факторов.

6) ёмкость адресуемой памяти. (объём).

Она характеризует информационные возможности МП-комплекса (к настоящему времени достигает десятков Гбайт) и с учётом широкой номенклатуры периферийных устройств, подключаемых к МП в составе комплекса (блоки ОЗУ большой ёмкости, накопители на гибких магнитных дисках, CD, принтеры, сканеры и т.д.), организация адресации памяти является одной из важнейших проблем проектирования МП-комплекса.

7) тип управляющего устройства;

8) система команд (число команд, способы адресации).

В процессе работы МП обслуживает данные, находящиеся в его регистрах (внутренних ячейках), в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора. Часть данных он интерпретирует непосредственно как данные, часть данных – как адресные данные, а часть – как команды. Совокупность всех возможных команд, которые может выполнить МП над данными, образует так называемую систему команд МП. МП, относящиеся к одному семейству, имеют одинаковые или близкие системы команд. МП, относящиеся к разным семействам, различаются по системам команд и невзаимозаменяемые.

Различают МП с расширенной и сокращенной системой команд. Чем шире набор системных команд МП, тем длиннее формальная запись команды (в байтах), тем выше средняя продолжительность исполнения одной команды, измеренная в тактах работы МП. Так, например, система команд процессоров Intel Pentium в настоящее время насчитывает более тысячи различных команд. Такие процессоры называют процессорами с раширенной системой команд – CISC-процессорами (CISC – Complex Instruction Set Computer).

В противоположность CISC-процессорам в середине 80-х годов появились процессоры архитектуры RISC (Reduced Instruction Set Computer) – процессоры с сокращенной системой команд.

При такой архитектуре количество команд в системе намного меньше, и каждая из них выполняется намного быстрее.

CISC-процессоры используют в универсальных вычислительных системах.

RISC-процессоры используют в специализированных вычислительных системах или устройствах, ориентированных на выполнение единообразных операций.

Компания AMD выпускает МП семейства AMD–K6, в основе которых лежит внутренне ядро, выполненное по RISC-архитектуре, и внешняя структура выполненная по архитектуре CISC. Таким образом, появились МП совместимые с МП х86, но имеющие гибридную архитектуру.

Система команд МП, как правило, содержит следующие типы команд:

  1. команды вычислений (арифметических и логических);

  2. команды пересылки данных;

  3. команды управления (условных и безусловных переходов);

  4. команды ввода-вывода;

  5. команды обращения к подпрограммам;

  6. вспомогательные команды;

В соответствии с адресной частью команды может осуществляться обращение к памяти, регистру или устройству ввода-вывода.

Кстати, МП х86 имеют самую сложную в мире систему команд.

9) число уровней прерывания;

10) возможность прямого доступа к памяти;

11) число и уровни питающих напряжений;

По мере развития МП происходит постепенное понижение питающего напряжения. Ранние модели процессоров х86 имели питающее напряжение 5В. С переходом к процессорам Intel Pentium оно было понижено до 3,3В, а в настоящее время оно составляет менее 3В. Причём ядро МП питается пониженным напряжением 2,2В. Понижение рабочего напряжения позволяет уменьшить расстояние между структурными элементами в кристалле МП до десяти тысячных долей миллиметра не опасаясь электрического пробоя.

12) уровни сигналов;

13) потребляемая мощность;

В настоящее время она составляет от 10…20 мВт до 1…3 Вт у современных МП в зависимости от выполняемой работы.

14) температурный диапазон;

15) помехоустойчивость;

16) нагрузочная способность;

17) надёжность и т.д.;

На протяжении последних 20 лет технология, архитектура и схемотехника МП развивалась очень быстро. Это развитие ознаменовалось соревнованием МДП и биполярной технологий микроэлектроники.

Заключение



Микропроцессоры находят широкое распространение в тестовых и контрольно-измерительных системах; системах управления технологическими процессами; программного управления станками; контроля состояний линий связи; подсистемах первичной обработки информации и управляющих системах промышленного назначения и системах автоматизации научного эксперимента; подсистемах управления периферийным оборудованием вычислительных систем и комплексов; специализированных вычислительных устройствах.

Дешевые микропроцессоры применяют в часах, калькуляторах, кино- и фотокамерах, радиоприемниках и телевизорах. Микропроцессоры (например, однокристальные микропроцессоры серии К580) ставятся в замки и звонки, домашние приборы и устройства.

Более дорогие микропроцессоры успешно конкурируют с механическими и электромеханическими блоками управления “жесткой”, или “аппаратурной”, логики.

Возьмем, например, обычный и широко распространненый механический инструмент – электрическую дрель. Встроенный в нее микропроцессор позволяет учитывать сопротивление сверлению и автоматически изменять частоту вращения в зависимости от твердости обрабатываемого материала. При использовании дрели для завинчивания винтов и гаек микропроцессор выключает питание электромотора до окончания операции, завершаемой за счет инерции.

Бурно развивается производство электронных игр с использованием микропроцессоров и микроконтроллеров. Оно порождает не только интересные средства развлечения, но и дает возможность проверить и развить приемы логических заключений, ловкость и скорость реакции. Игры с телевизионным индикатором или без него обеспечивают выполнение сложных функций вследствие применения логически более мощных, но доступных по стоимости микропроцессоров.

Микропроцессоры эффективно встраиваются в дисплеи, экранные пульты и терминалы, где на них возложены функции редактирования данных, управления,

генерации символов и хранения и воспроизведения изображений.

Микропроцессоры берут на себя функции предварительной обработки информации внешних устройств, преобразования форматов данных, контроллеров электромеханических внешних устройств. Для этих целей применяют микропроцессоры серий К580, К536, К1803.

Микропроцессоры в аппаратуре связи дают возможность производить контроль ошибок, кодирование – декодирование информации и управлять приемопередающими устройствами. Применение микропроцессоров позволит в несколько раз сократить необходимую ширину телевизионного и телефонного каналов, создать новое поколение оборудования связи.

Микропроцессорные средства решают сложную техническую проблему разработки различных систем сбора и обработки информации, где общие функции сводятся к передаче множества сигналов в один центр для оценки и принятия решения. Например, в медицине для круглосуточного контроля состояния тяжелобольных необходимо периодически замерять кровяное давление, частоту биения сердца и дыхания, параметры электрокардиограмм и т.д. Централизованная система на основе большой или мини-ЭВМ для этих целей получается громоздкой и достаточно дорогой. Распределенная диагностическая система на основе микропроцессора имеет высокую живучесть, проста по организации и позволяет получить хорошие экономические показатели.

Обобщая рассмотренные примеры внедрения микропроцессорной техники можно поставить вопрос так: научно-технический прогресс не возможен без перехода от применяемых ранее эволюционных методов (совершенствование действующих технологий, частичная модернизация машин и оборудования и др.) к революционным сдвигам, к принципиально новым технологическим системам, дающим наивысшую эффективность.

Это требует перевооружения всей промышленности на основе современных достижений науки и техники. В решении этой задачи важная роль принадлежит микропроцессорным системам.

^

БИБЛИОГРАФИЧЕСКИЙ СПИСОК





  1. Новиков Ю.В. [Текст] Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования.—М.: 2001.

  2. Новиков Ю.В., Скоробогатов П.К. [Текст] Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003.

  3. Пухальский Г.И., Новосельцева Т.Я. [Текст] Цифровые устройства: Учеб. пособие для ВТУЗов. — СПб.: 2006.

  4. Букреев И.Н., Горячев В.И., Мансуров Б.М. [Текст] Микроэлектронные схемы цифровых устройств. —М.: Радио и связь, 2000.




Изм.

Лист

№ докум.

Подпись

Дата

Лист

Литера

Листов

Разраб.

Провер.

Программное обеспечение для микропроцессорных систем.

Провер.

Утверд

Н. контр.

У

2




Скачать файл (203 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru