Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Шпаргалки к экзамену по информатике - файл 1.doc


Шпаргалки к экзамену по информатике
скачать (996.5 kb.)

Доступные файлы (1):

1.doc997kb.16.11.2011 04:02скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7   8   9
Реклама MarketGid:
Загрузка...

1. История становления информатики, как науки, ее связь с другими науками.

История информатики – достаточно интересная, хотя и мало изученная область. Итак, проследим предысторию и этапы развития информатики - как науки о знаниях и информатики - как науки о технологиях. Начнём с этапа добумажной информатики.


Этап иероглифической символики. Изначально носителем информации была речь. К самым ранним знаковым системам относятся: приметы, гадания, знаменья, язык, изобразительное искусство, музыка, графика, пластика, танец, пантомима, архитектурные сооружения, костюм, народные ремесла, обряды. Первые примеры информационной символики были предоставлены в каменном веке в виде пиктографического письма (рисунков) на камне.

^ Этап абстрактной символики. В Средиземноморье же были предпосылки совершенствования письма: различные языковые формы, развитые межнациональные торговые связи, относительно нестабильная политическая обстановка в государствах и миграция населения. Поэтому здесь за короткий исторический период завершился переход к абстрактной и более удобной для чтения системы клинописи на сырых глиняных табличках (III-II в. до н.э.). Новым этапом явилось создание в X-IX в. до н.э. финикийского алфавита. Этап перехода к алфавитной системе завершился в VIII в. до н.э. созданием на основе финикийского письма греческого алфавита, который впоследствии стал основой всех западных письменных систем. В период Возрождения древнегреческие и латинские языки послужили основой для создания терминологических систем в различных областях знаний. В период технической революции терминологические системы значительно расширяются по объему и упорядочиваются за счет фундаментальных законов природы и общества, а также вследствие взаимопроникновения терминов различных наук. Математическая символика продолжает качественно развиваться благодаря фундаментальным открытиям математики таким, как, например, создание совершенной алгебраической символики (XIV-XVII в.), введение знаков операций (XV в.), введения знаков равенства, бесконечности (XVII в.), появления знаков степени, дифференциала, интеграла, производной (XVII в.) и др.

^ Этап картографии, технической графики и информационной визуализации и аудирования. Особая форма представления, визуализации знаний - карты, отображающие явления природы и общества в виде информативных образов и знаков. В эпоху Возрождения предпринимаются попытки не только визуализации, на и аудирования, искусственного создания звуков (озвучивания информации). Появились модели говорящих машин.. В 1876 г. Александр Грейам Белл получил американский патент на устройство, названное телефоном.

^ Этап "каменописи", "глинописи", "древописи", "пергаментописи". Добумажная информационная технология характеризуется переходом ко все более совершенным носителям.. На этапе создания первых государств, глиняные и деревянные таблички хранились в закрытом помещении, а пользоваться ими могла только аристократия, поэтому появилась потребность в обучении. Появились централизованные хранилища этой информации

Рассмотрим теперь этап бумажной информатики и его основные этапы.

^ Бумажный этап развития информатики можно отсчитывать, видимо, с X в., когда бумага стала производиться на предприятиях в странах Европы. Эпоха Возрождения сыграла исключительную роль в развитии не только литературы и искусства, но и информатики, особенно, её гуманитарных основ и приложений.

^ Этап книгопечатания. Книгопечатание было изобретено в Германии в XV в. как массовая деятельность и стало началом нового научного этапа в естествознании (станок Гуттенберга, 1440-1450). Главным качественным достижением того времени стало возникновение систем научно-технической терминологии в основных отраслях знаний, появились журналы, газеты, энциклопедии, географические карты.

^ Этап технической (индустриальной) революции 19 в. Знания стали доступны многим, в том числе и территориально удаленным друг от друга, а также удаленным по времени участникам трудового процесса (усиливаются пространственно-временные свойства информации). Начала раскручиваться спираль технической цивилизации: текущее знание – текущее общественное производство – новое знание – новое общественное производство. Печатный станок резко повысил пропускную способность социального канала обмена знаниями. Новый этап в развитии информатики, связанный с технической революцией 19 в., ассоциируется с началом создания регулярной почтовой связи, как формы стабильных международных коммуникаций. Затем возникли фотография (1839 г.), телеграф (1832 г.), телефон (1876 г.), радио (1895 г.), кинематограф (1905 г.), беспроволочная передача изображения (1911 г.), промышленное телевидение (1920 г.), цифровые фотография и телевидение, сотовая связь, IP-телефония (конец XX-го века).

^ Этап математизации и формализации знаний. С развитием промышленной революции становится все более острой потребность в создании системы описания и использования профессиональных знаний, введения фундаментальных и профессиональных понятий, формирования основных элементов технологии формализации профессиональных знаний. В отраслях науки формируются специфические языковые системы, среди которых особенно важен язык математики, как информационная основа системы знаний в точных, естественных науках. Свои языки имеют химия (язык структурных химических формул, например), физика (язык описания атомных связей, например), биология (язык генетических связей и кодов) и т.д. Нынешний этап развития информатики характерен созданием и становлением языка информатики.

^ Этап информатизации, информационно - логического представления знаний. С появлением ЭВМ впервые в человеческой истории стал возможен способ записи и долговременного хранения профессиональных знаний, ранее формализованных математическими методами (алгоритмов, программ, баз данных, эвристик и т.д.). Эти знания, а также опыт, навыки, интуиция могли уже использоваться широко и без промежуточного воздействия на человека влиять на режим работы производственного оборудования. Процесс записи ранее формализованных профессиональных знаний в форме, готовой для воздействия на механизмы (автоматы), получил изначально название программирование

^ Этап автоформализации знаний. Этот этап тесно связан с развитием когнитологии, персональных компьютеров и вычислений, делающих возможным формальное описание (а, следовательно, актуализацию, передачу, хранение, сжатие) исследователями накопленного знания, опыта, профессиональных умений и навыков.. Этот этап очень важен для информатики, ибо он стал позволять решать межпредметные задачи, как правило, плохо структурируемые и формализуемые, а также позволил использовать типовые инструментальные системы. Используется когнитивная графика – графика, порождающая новые решения, а также “виртуальный мир” – искусственное трехмерное пространство (одну из осей координат можно условно считать “пространственной”, другую - “временной”, третью - “информационной”) и визуальные среды (например, Visual-среды).

^ Этап развитой безбумажной информатики и глобальных систем связи (Интернет), этап информационного общества. Переход к безбумажной информатике, электронным информационным технологиям и использованию сетей Интернет, информационному производству товаров и услуг характерен для всех стран вступивших в стадию построения информационного общества. Основные атрибуты общества безбумажной информатики: безбумажные (электронные) документооборот и делопроизводство, их государственная поддержка и целенаправленное развитие; информационная (компьютерная, сетевая) грамотность населения и её государственная поддержка и развитие; превращение информации в товар (со всеми атрибутами товара); развитая (интеллектуальная) и доступная система баз данных и знаний, доступа к сетям и информации Интернет; информатизация и информационная безопасность основных систем общества;

Информатика завершает этап спонтанного, возможно, несколько хаотичного развития и накопила достаточный опыт и знания для её систематизации, осмысления, структурирования, теоретизации, превращения в фундаментальную науку.

Информатика - наука, изучающая информационные аспекты системных процессов и системные аспекты информационных процессов. Это определение можно считать системным определением информатики.

Информатика тесно связана и с философией. Философия дает общие методы содержательного анализа, а информатика даёт общие методы формального анализа предметных областей (особенно, теоретическая, математическая информатика).

Можно дать философское определение информатики: информатика - это наука, изучающая общие свойства и процессы отражения материи, порядок в материи, ее структурированность и отражение в сознании человека, общества.

Дадим математическое определение информатики (определение математической информатики): информатика - наука, изучающая вопросы построения и исследования математических методов и моделей, алгоритмов, формальных систем для описания и актуализации различных информационных систем и процессов, различных классов операционных пространств. Эта – наука, математически (формальным языком) описывающая и исследующая их инварианты, абстрагируясь при этом от материальной основы информационных процессов. Фундаментальность информатике придаёт не только широкое и глубокое использование математики, формальных методов и средств, а общность и фундаментальность её результатов, их универсальная методологическая направленность в производстве знаний. В этом смысле математическая информатика аналогична математической физике, математической биологии, математической экономике и др.

Информатика, как и математика, является наукой для описания и исследования проблем других наук. Она предоставляет свои общие и/или частные методы исследования другим наукам, помогает прокладывать и усиливать междисциплинарные связи, исследовать проблемы различных наук, цементирует их своими идеями, методами, технологиями и, особенно, своими результатами.


^ 2. Виды и свойства информации, формы ее существования.

Несмотря на то что с понятием информации мы сталкиваемся ежедневно, строгого и общепризнанного ее определения до сих пор не существует, поэтому вместо определения обычно используют понятие об информации. Для информатики как технической науки понятие информации не может основываться на таких антропоцентрических понятиях, как знание, и не может опираться только на объективность фактов и свидетельств. Средства вычислительной техники обладают способностью обрабатывать информацию автоматически, без участия человека, и ни о каком знании или незнании здесь речь идти не может. Эти средства могут работать с искусственной, абстрактной и даже с ложной информацией, не имеющей объективного отражения ни в природе, ни в обществе.

^ Информация — это продукт взаимодействия данных и адекватных им методов.

Итак, информация является динамическим объектом, образующимся в момент взаимодействия объективных данных и субъективных методов. Как и всякий объект, она обладает свойствами (объекты различимы по своим свойствам). Характерной особенностью информации, отличающей ее от других объектов природы и общества, является отмеченный выше дуализм: на свойства информации влияют как свойства данных, составляющих ее содержательную часть, так и свойства методов, взаимодействующих с данными в ходе информационного процесса. По окончании процесса свойства информации переносятся на свойства новых данных, то есть свойства методов могут переходить на свойства данных.

Можно привести немало разнообразных свойств информации. Каждая научная дисциплина рассматривает те свойства, которые ей наиболее важны. С точки зрения информатики наиболее важными представляются следующие свойства: объективность, полнота, достоверность, адекватность, доступность и актуальность информации.

^ Объективность и субъективность информации. Понятие объективности информации является относительным. Более объективной принято считать ту информацию, в которую методы вносят меньший субъективный элемент. В ходе информационного процесса степень объективности информации всегда понижается.

^ Полнота информации. Полнота информации во многом характеризует качество информации и определяет достаточность данных для принятия решений или для создания новых данных на основе имеющихся.

^ Достоверность информации. Данные возникают в момент регистрации сигналов, но не все сигналы являются «полезными» — всегда присутствует какой-то уровень посторонних сигналов, в результате чего полезные данные сопровождаются определенным уровнем «информационного шума».

^ Адекватность информации — это степень соответствия реальному объективному состоянию дела. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако и полные, и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.

^ Доступность информации — мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Отсутствие доступа к данным или отсутствие адекватных методов обработки данных приводят к одинаковому результату: информация оказывается недоступной. Отсутствие адекватных методов для работы с данными во многих случаях приводит к применению неадекватных методов, в результате чего образуется неполная, неадекватная или недостоверная информация.

^ Актуальность информации — это степень соответствия информации текущему моменту времени. Нередко с актуальностью, как и с полнотой, связывают коммерческую ценность информации. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска (или разработки) адекватного метода для работы с данными может приводить к такой задержке в получении информации, что она становится неактуальной и ненужной. На этом, в частности, основаны многие современные системы шифрования данных с открытым ключом. Лица, не владеющие ключом (методом) для чтения данных, могут заняться поиском ключа, поскольку алгоритм его работы доступен, но продолжительность этого поиска столь велика, что за время работы информация теряет актуальность и, соответственно, связанную с ней практическую ценность.


^ 3. Информационный процесс, понятие, структура.


Информационные процессы (сбор, обработка и передача информации) всегда играли важную роль в науке, технике и жизни общества. В ходе эволюции человечества просматривается устойчивая тенденция к автоматизации этих процессов, хотя их внутреннее содержание по существу осталось неизменным.

Информация не существует сама по себе, она проявляется в информационных процессах. Человек живет в мире информации и на протяжении всей жизни участвует во всевозможных информационных процессах.

Основными информационными процессами являются: поиск, сбор, хранение, передача, обработка, использование и защита информации.

Действия, выполняемые с информацией, называются информационными процессами.

Процессы, связанные с получением, хранением, обработкой и передачей информации, называются информационными.

Информационный процесс - совокупность последовательных действий (операций), производимых над информацией (в виде данных, сведений, фактов, идей, гипотез, теорий и пр), для получения какого-либо результата (достижения цели).

^ Поиск информации - извлечение хранимой информации. Существуют ручной и автоматизированный методы поиска информации в хранилищах. Основными методами поиска информации являются:

непосредственное наблюдение;

общение со специалистами по интересующему вопросу;

чтение соответствующей литературы;

просмотр теле-, видеопрограмм,

прослушивание радиопередач и аудиокассет;

работа в библиотеках, архивах, информационных системам и другие методы.

Для того чтобы собрать наиболее полную информацию и повысить вероятность принятия правильного решения, необходимо использовать разнообразные методы поиска информации. Поиск информации может быть эффективным и неэффективным. Успех будет в большой степени будет зависеть от того, как вы организовали поиск информации.

В процессе поиска информации может встретиться самая разная информация, как полезная, так и Подлинный переворот в службе хранения, отбора информации произвели автоматизированные информационно-поисковые системы (ИПС). Использование ИПС позволяет сэкономить время и усилия, затрачиваемые на просмотр ящиков, заполненных карточками. Кроме того, библиотеки получают возможность существенно сократить пространство, отводимое для хранения каталогов.

^ Сбор информации - это деятельность субъекта, в ходе которой он получает сведения об интересующем его объекте. Сбор информации может производиться или человеком, или с помощью технических средств и систем - аппаратно.

^ Хранение информации. процесс поддержания исходной информации в виде, обеспечивающем выдачу данных по запросам конечных пользователей в установленные сроки . Хранение информации - процесс такой же древний, как жизнь человеческой цивилизации. Хранение информации происходит или в памяти человека, или на внешних носителях. Информацию, хранимую на внешних носителях (листе бумаги, диске, пластинке и т.д.), называют внешней. Она может быть переведена в разряд оперативной, если будет "прочитана" человеком. Внешние носители выполняют роль “дополнительной” памяти человека. На них могут храниться звук, тексты, изображения. Устройства, на которых хранится информация, называются информационными носителями. ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.

^ Передача информации может осуществляться в письменной, устной формах или с помощью жестов.

В передаче участвуют две стороны: источник - тот, кто передает информацию,

приемник - тот, кто ее получает.

Очень часто при передаче информации возникают помехи. И тогда информация от источника к приемнику поступает в искаженном виде. Ошибки, возникающие при передаче информации, бывают 3-х видов:

часть правильной информации заменяется на неправильную;

к передаваемой информации добавляются лишние, посторонние сообщения;

часть информации при передаче пропадает.

Информация передаётся в виде сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением. Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю. Кодирующее устройство - устройство, предназначенное для кодирования (преобразования исходного сообщения источника информации к виду, удобному для передачи информации) информации.

Декодирующее устройство - устройство для преобразования полученного сообщения в исходное.

^ Обработка информации. Обработка информации - получение одних информационных объектов из других информационных объектов путем выполнения некоторых алгоритмов.

Обработка является одной из основных операций, выполняемых над информацией, и главным средством увеличения объёма и разнообразия информации. Средства обработки информации - это всевозможные устройства и системы, созданные человечеством, и в первую очередь, компьютер - универсальная машина для обработки информации. Компьютеры обрабатывают информацию путем выполнения некоторых алгоритмов. Живые организмы и растения обрабатывают информацию с помощью своих органов и систем.


Информацию, которую обрабатывают, называют исходной. После обработки исходной информации получается новая информация.

^ Обмен информацией. Обмен информацией - это процесс, в ходе которого источник информации ее передает, а получатель - принимает. Если в передаваемых сообщениях обнаружены ошибки, то организуется повторная передача этой информации. В результате обмена информацией между источником и получателем устанавливается своеобразный «информационный баланс», при котором в идеальном случае получатель будет располагать той я информацией, что и источник.

Принятую информацию получатель может использовать неоднократно. С этой целью он должен зафиксировать ее на материальном носителе (магнитном, фото, кино др.). Процесс формирования исходного, несистематизированного массива информации называется накоплением информации. Среди записанных сигналов могут быть такие, которые отражают ценную или часто используемую информацию. Часть информации данный момент времени особой ценности может не представлять, хотя, возможно, не требуется в дальнейшем.

^ Защита информации. Человеку свойственно ошибаться. Ошибка может произойти при выполнении любого информационного процесса: при кодировании информации, при ее обработке и передачи. Чем больше информации обрабатывается, тем труднее избежать ошибок.

^ Качество информации Возможность и эффективность использования информации обусловливаются такими основными ее потребительскими показателями качества, как репрезентативность, содержательность, достаточность, доступность, актуальность, своевременность, точность, достоверность, устойчивость. Репрезентативность информации связано с правильностью ее отбора и формирования в целях адекватного отражения свойств объекта. Важнейшее значение имеют: правильность концепции, на базе которой сформулировано исходное понятие и обоснованность отбора существенных признаков и связей отображаемого явления.


  1. ^ Способы передачи информации, способы восприятия информации.


Деятельность человека всегда была связана с передачей информации. Древний способ передачи - письмо, отправленное с гонцом. Разговаривая, мы передаем друг другу информацию. Человечество придумало много устройств для быстрой передачи информации: телеграф, радио, телефон, телевизор. К числу устройств, передающих информацию с большой скоростью, относятся электронные вычислительные машины, хотя правильнее было бы сказать телекоммуникационные сети.

В передаче участвуют две стороны:

источник - тот, кто передает информацию,

приемник - тот, кто ее получает.

Очень часто при передаче информации возникают помехи. И тогда информация от источника к приемнику поступает в искаженном виде. Ошибки, возникающие при передаче информации, бывают 3-х видов:

часть правильной информации заменяется на неправильную;

к передаваемой информации добавляются лишние, посторонние сообщения;

часть информации при передаче пропадает.

Информация передаётся в виде сообщений от некоторого источника информации к её приёмнику посредством канала связи между ними. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал. Этот сигнал посылается по каналу связи. В результате в приёмнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

В процессе передачи информация может теряться, искажаться: искажение звука в телефоне, атмосферные помехи по радио, искажение или затемнение изображения в телевидении, ошибки при передаче в телеграфе. Эти помехи (шумы) искажают информацию. К счастью, существует наука, разрабатывающая способы защиты информации, - криптология.

На протяжении ХХ века сменялось множество способов обмена информацией. Если в XIX веке носителем информации была бумага, а средством передачи была почтовая служба, то в ХХ веке информация стала передаваться гораздо быстрее с помощью телеграфа, в голосовой форме обмениваться информацией можно по телефону, радио и телевидение призваны только для получения человеком информации. В наши дни есть огромное количество способов передачи информации, причем в любой форме. Телефонные линии до сих пор остаются самым удобным средством передачи информации, но теперь ими обслуживаются не только телефоны, но и самое большое достижение процесса информатизации – Internet, содержащий большую часть информации со всей планеты.

Компьютер – это самое популярное средство для обработки, хранения и передачи информации и по сей день, но так как в наши дни информации становится все больше, то и компьютеры претерпевают значительные изменения. Для удобства пользователей стали выпускаться, переносные и карманные компьютеры, подключенные к глобальной информационной сети Internet, чтобы пользователь мог получить необходимую информацию в любом месте, в удобное для него время.

Но так как потоки информации только увеличиваются то для ее создания, обработки, хранения и передачи необходимо разрабатывать все новые и новые средства и приспособления. Существует множество компаний и корпораций, специализирующихся на разработках программного обеспечения, операционных систем, усовершенствовании и разработке новых более совершенных компьютеров, приспособлений для ввода и вывода информации, аксессуаров для удобства обращения с компьютером и ускорения обработки информации.

Что касается самой информации, то до сих пор одним из наиболее важных способов ее передачи между людьми служит документ. Информация, содержащаяся в документе, может быть предоставлена в различных формах, большая часть из которых отображается на различных носителях. Текст, графика, видео, аудио – все может быть передано, показано, распространено и обработано в виде цифрового файла документа.

Есть виды весьма важных бумажных документов, у которых может не быть электронного двойника.

  1. это архивная информация.

  2. чертежи выпускаемых изделий, разработанные без применения средств автоматизации

  3. документы ваших партнеров по бизнесу.


Перенос большей части производственного процесса, в котором появляются новые разработки, идеи, требующие разработки на специальных программах, которые в свою очередь тоже совершенствуются и занимают в компьютере все больше дискового пространства, ставит задачу – увеличение того самого дискового пространства, оперативной памяти, нового программного обеспечения. Это подталкивает компьютерные корпорации на все новые разработки, например, в области обмена большим количеством данных между компьютерами, не подключенными к сети.

Во всех этих случаях идет одностороннее получение информации, то есть пользователь получает необходимую информацию, считывая ее с носителя. А можно ли обмениваться электронной информацией (текстовыми документами, чертежами, рисунками, аудио- и видеодокументами) в двустороннем порядке? Конечно, можно, если ваш компьютер подключен к глобальной сети Internet и имеет необходимое оборудование и программное обеспечение.

Видеоконференции Internet – очень экономичная альтернатива традиционным фирменным системам, но для их проведения нужны каналы связи с более высокой пропускной способностью, нежели для телефонных переговоров в Internet, поэтому они привлекают внимание, прежде всего, пользователей из делового мира.

В изделиях для совместной работы через Internet реализовано множество интерактивных технологий, которые позволяют организовать тесное взаимодействие и обмен информацией между членами импровизированных рабочих групп. Несколько пользователей могут совместно работать с одной прикладной программой, обсуждать возникающие идеи, дискутировать и обмениваться файлами.

Но, несмотря на то – большая ли это корпорация или маленькая фирма, появилась новая проблема – проблема безопасности сети.

За последние годы тысячи компаний обзавелись узлами Web, а их служащие получили доступ к электронной почте и программам просмотра Internet. В результате у любого постороннего лица с элементарными познаниями в области сетевых технологий и недобрыми намерениями появился способ для проникновения во внутренние системы и сетевые устройства компании: через канал связи Internet. Попав внутрь, «взломщик» найдет способ получить интересующую его информацию; разрушить, изменить или похитить данные. Даже самая широко используемая служба Internet, электронная почта, изначально уязвимы: любой человек, имеющий анализатор протоколов, доступ к маршрутизаторам и другим сетевым устройствам, участвующим в обработке электронной почты на пути ее следования из одной сети в другую через Internet, может прочитать, изменить и стереть информацию вашего сообщения, если не приняты специальные меры обеспечения безопасности.

Изготовители сетевых средств защиты информации быстро откликнулись на потребности Internet, адаптировав существующие технологии аутентификации и шифрования для каналов связи Internet и разработав новые защитные продукты.



  1. ^ Информационные технологии и их место и роль в структуре финансово-экономических органов МВД России.

Современный период развития органов внутренних дел характеризуется расширением использования современных информационных технологий в их деятельности.

Цель их применения состоит в достижении более высокого качества, изменении содержания и характера труда сотрудников. Благодаря автоматизации целого ряда информационных процессов работники органов внутренних дел освобождаются от рутинных, трудоемких операций и могут основное время посвятить анализу актуальных проблем и выработке действенных мер их решения.

В то же время, несмотря на положительные примеры использования современных информационных технологий в органах внутренних дел, практика показывает, что многие теоретические, методологические, организационные, правовые и технические вопросы еще требуют своего разрешения.

Наиболее актуальными являются проблемы правового регулирования процессов информатизации и обеспечения информационной безопасности в правоохранительной сфере.

Необходимо признать, что информатизация органов внутренних дел, насыщение их современными информационными технологиями в настоящее время не обеспечены законодательной базой в достаточной степени. Несмотря на принятие ряда ведомственных нормативных правовых актов, затрагивающих отдельные аспекты данной проблемы, детально проработанной нормативной правовой базы информатизации, которая отвечала бы современным условиям, до сих пор не создано.

Настоящее состояние правового обеспечения информационной безопасности органов внутренних дел также характеризуется фрагментарностью, недостаточной согласованностью используемых правовых механизмов и противоречивостью правовых норм.

Остро стоит проблема отставания ведомственной нормативной базы МВД России от норм общегосударственной системы обеспечения информационной безопасности, в частности, руководящих документов Гоетехкомис-сии России и Федерального агентства правительственной связи и информации при Президенте Российской Федерации,

Ситуация осложняется возникновением и стремительным развитием такого опасного явления, как информационное противоборство в правоохранительной сфере, которое до настоящего времени не нашло должного отражения в правовых актах.

Не решены принципиальные для формирования единой нормативной правовой базы теоретические вопросы, относящиеся к раскрытию юридически значимого содержания таких базовых понятий, как «информатизация органов внутренних дел» и «информационная сфера органов внутренних дел». Во многом это связано с отсутствием системного правового взгляда на более общие понятия: «информационное право», «информационное противоборство в правоохранительной сфере», «современные информационные технологии», «правовой режим конфиденциальной информации», «информация как объект права», «право собственности на информацию».

Следует отметить, что изучению вопросов отмеченных проблем уделялось определенное внимание. Об этом свидетельствует ряд принятых законодательных и иных, в том числе ведомственных, нормативных актов.


^ 6. Понятие финансово-экономической информациии ее обработки.

С экономической информацией осуществляется много операций, которые по признаку однородности и целевых функций объединяются в ин. процедуры.

^ Стадия сбора. Включает первоначальное восприятие и прием информации, возникающие в результате действия источников информации. Примером таких источников служат подразделения производственно-хозяйственной деятельности, а также деятельность директивных органов управления. При первоначальном сборе ставится задача уловить объективно информацию, и соотв. образом ее представить. Поэтому первоначальный сбор сопровождается представлением. Экономическая информация при первоначальном сборе прежде всего регистрируется.

^ Прием регистрация данных. Он является разновидностью сбора информации. Эта процедура сопровождается обычно оформлением поступившей информации и определение ее дальнейшего использования. При сборе данных ставится гл. цель – получить точное, своевременное, достоверное и полное отображение явлений эк. жизни, директивных и иных заданий. Собранная или полученная информация включается в стадию преобразования.

Информация изменяется в пространстве, времени, с формально содержательной стороны. В соответствии с этим выделяют три информационные процедуры:

передача,

хранение,

обработка.

Передаваемая информация изменяется в пространстве. Различают несколько вариантов процедуры в зависимости от вида передачи – физическое перемещение носителей и дистанционная передача данных по телеграфным каналам.

При дистанционной передаче по каналам могут передаваться исходные данные задач, подлежащих автоматизированному решению и результаты решений. Такая разновидность информационной передачи называется двусторонней. Если передаются только исходные данные, то связь – односторонняя.

^ Процедура хранения информации реализуется в нескольких вариантах, в зависимости от формы представления информации. Например, хранение в запоминающем устройстве ЭВМ, длительное архивное хранение. Процедура хранения информации обычно завершается поиском ее соответствующих единиц для дальнейшего использования.

^ Поиск органически связан с хранением. В процессе хранения информация может утрачивать свою ценность под влиянием фактора времени или в силу возникших обстоятельств. Иногда это влечет за собой изъятие единиц информации, их уничтожение, но знач. чаще единицам присваивают новое значение – актуализация данных. Посредством ее значения определенных единиц поддерживаются на заданном уровне.

^ Обработка информации необходима для изменения ее единиц по форме и значению и заключается в получении результативной информации. Достигается это посредством использования значительного числа арифметических и логических операций. Обработке подлежит не только информация, но и ее структурное преобразование и информационные отношения. Вычислительная обработка занимает ведущее место как по объему, так и по значимости в АСОД и АСУ.

^ Стадия потребления информации включает получение готового продукта (выходной информации) и ее использование. Оно выходит за рамки компетенции АСОД. Выходная информация предназначена для принятия управленческих решений, их формирования, а также для директив вышестоящих органов управления. Поскольку потребление информации состоит и в новом включении информации в процедуру сбора и преобразования, то уместно говорить о кругообороте эк. информации. Это следующие процедуры:

представление,

кодирование,

размножение,

идентификация.

Рассмотрение стадий информационных процедур может конкретизироваться в процессе реализации разных управленческих работ на предприятии. Например, в бухгалтерской работе выделяют первичный учет и непосредственный учетный процесс, включающий стадии обработки данных и потребления информации. В АХД можно выделить формирование информации для эк. анализа и аналитические расчеты и далее выработку управленческих решений.

Терминам «специальный математический аппарат» объединяется ряд математических разделов прикладного содержания. К ним относятся математические методы, пригодные для рационального решения задач на ЭВМ и эк-мат. модели, ориентированные на решение экономических задач.

Мат. методы в экономике:

математическое программирование,

математическая логика,

теория игр,

теория множеств и др.

Эк-мат модели составляют особый класс моделей. Распространено определение понятия модели как условного отображения некоторого объекта. Специфика класса заключается в том, что эти модели представляют экономические объекты абстрактно, а не в физическом образе. Они связаны с математикой, мат. выражениями, использованием соответствующих информационных языков для отображения объектов народного хозяйства.

Иногда мат моделями называют все модели независимо от возможности расчета числовых величин. Но известен другой подход – когда математическими считаются лишь модели, содержащие формальные отношения. В этом случае модели для расчета конкретных числовых величин относятся к числовым моделям.

По технике реализации модели бывают ручные и машинные. Применение ЭВМ значительно расширило границы использования моделей, так как часть моделей не поддается вообще ручной реализации.

С позиции связей моделей с определенными уровнями и звеньями народного хозяйства подразделяются:

на макро,

и микроэкономические.



^ 7. История развития средств вычислительной техники. Поколения ЭВМ. Классификация ЭВМ.

Попытки автоматизировать вычислительные процессы предпринимались на всех этапах развития человеческой цивилизации.

VI в. до н. э. - Пифагор ввел понятие числа как основу всего сущего на земле.

V в. до н. э. - остров Саламин - первый прибор для счета «абак».

IV в. до н. э. - Аристотель разработал дидуктивную логику.

III в. до н. э. - Диофант Александрийский написал «Арифметику» в 13 книгах.

IX в. - Аль-Хорезми обобщил достижение арабской математики и ввел понятие алгебры.

XV в. - Леонардо да Винчи разработал проект счетной машины для выполнения действий над 12- разрядными числами.

XVI в. - изобретены русские счеты с 10-чной системой счисления.

XVII в. - Англия - логарифмические линнейки.

1642 г. - Паскаль разработал модель вычислительной машины для выполнения арифметических действий (построена в 1845 г. и имела название «Паскалево колесо»).

1801-1804 гг. - Жаккар использовал перфокарты для управления ткацким станком.

1820 г. - Карл Томас изобрел арифмометр.

1823 г. - Чарлз Бэбидж разработал проект вычислительной машины из 3 частей (программно управляемая машина):

- склад (хранение чисел)

- фабрика (выполнение операций над числами)

- устройство управления с помощью перфокарт

1826 г. - введено понятие о полупроводниках.

1834 г. - впервые использован термин кибернетика для обозначения макета управления государством.

XIX в. 30-40 гг. - Морзе изобрел систему кодирования информации.

1864 г. - Максвелл - теория электромагнитного поля.

1885 г. - Берроуз разработал машину, печатающую исходные данные и результат.

1886 г. - Холлерн (США) изобрел табулятор на перфокартах (начало существования фирмы IBM).

1928 г. - теория фон Неймана.

1929 г. - Волков изобрел цветное телевидение.

1931 г. - использование в вычислительных машинах двоичной системы счисления.

1940 г. - Нейман создает первый компьютер «MANIAC».

1945 г .- Нейман изобрел машину где числа и программы хранились в памяти.

1946 г. - первая ЭВМ в США (сложение за 0,2 с.).

1948 г. - изобретение транзистора.

1951 г. - изобретена в СССР МЭСМ.

1952-1953 гг. - изобретена в СССР БЭСМ.

1952 г. - Англия - Даммер выдвинул идею интегральных схем.

1953 г. - операторный метод программирования. Разработаны и изготовлены ЭВМ «УРАЛ», «МИНСК», «КИЕВ».

1957 г. - разработаны языки «Фортран» и «Алгол».

1960 г. - язики «Кобол», «Лого».

1970 г. - язык «Паскаль».

1971 г. - выпущен первый микропроцессор (США).

1976 г. - изготовлен синтезатор речи для ЭВМ.

1981 г. - первый персональный компьютер фирмы IBM, проект ЭВМ пятого поколения в Японии.

1981-87 г. - IBM PC XT; PC AT.

1993 г. - первый процессор класса Pentium.

^ Классификация и развитие вычислительной техники.

ЭВМ - это электронное устройство, способное автоматически принимать перерабатывать, хранить, накапливать, обновлять и выдавать информацию.

Первой электронной вычислительной машиной принято считать машину ENIAC (США, 1946 г.) Первой вычислительной машиной в СССР была МЭСМ, построенная под руководством академика Лебедева в 1951 г.

Первой серийно выпускавшейся ЭВМ в США стала IBM – 701(1951 г.), в СССР ЭВМ БЭСМ – 1 (1952 г.)

Развитие вычислительной техники обычно принято привязывать к изменению элементной базы, на которой она строится, в связи с этим можно выделить несколько поколений ЭВМ:

1. Поколение начало 50-х годов. Элементная база – электронные лампы. Техника этого поколения характеризовалась низкой надежностью, большими габаритами, высоким энергопотреблением, программированием в кодах.

2. Поколение конец 50-х начало 60-х. Элементная база – полупроводники. Повысилась надежность работы, уменьшилось энергопотребление были разработаны первые алгоритмические языки.

3. Поколение 60-е первая половина 70-х годов. Элементная база первые интегральные микросхемы, многослойный печатный монтаж. Резкое уменьшение габаритов вычислительной техники, дальнейшее повышение надежности, быстродействия. ЭВМ применяются в промышленных масштабах, организован доступ с удаленных терминалов.

4. Поколение конец 70-х начало 80-х годов. Элементная база – микропроцессоры, большие и сверх большие интегральные микросхемы. Дальнейшее уменьшение размеров, повышение быстродействия ЭВМ их надежности. Начало выпуска персональных компьютеров.

5. Поколение наши дни. Ведутся исследования в области оптоэлектроники и построению на ее базе ЭВМ, разрабатываются новые поколения интеллектуальных систем, развивается концепция сетевых вычислений.

По своим параметрам вычислительную технику принято разделять на:

¨ СуперЭВМ: производительность – 1000-100000 MIPS, оперативная память – 2000-10000 Мб, разрядность 128 бит.

¨ Большие ЭВМ: производительность – 2000-10000 MIPS, оперативная память – 256-10000 Мб, разрядность 32-64 бит.

¨ Мини ЭВМ: производительность – 1-100 MIPS, оперативная память – 16-512 Мб, разрядность 16-64 бит.

¨ Микро ЭВМ: производительность – 1-100 MIPS, оперативная память – 4-256 Мб, разрядность 16-64 бит.

MIPS – миллион операций в секунду над числами с фиксированной запятой.

В начале 80-х годов начался период массового использования ПК. Главная их особенность - ориентация на постоянное обучение пользователя и надежную защиту ПК от ошибочных действий.

ПК - называется диалоговая система индивидуального пользования, реализуемая на базе микропроцессорных средств, малогабаритных внешних запоминающих устройств и устройств регистрации данных, обеспечивающая доступ ко всем ресурсам ЭВМ посредством развитой системы программирования на базе языков высокого уровня.

Согласно спецификации PC99 персональные компьютеры разделены на пять подвидов.

1. Потребительские - процессор 300 МГц, ОЗУ 32 Мб.

2. Деловые ПК, бизнес ПК - процессор 300 МГц один или несколько, ОЗУ 32-64 Мб.

3. Развлекательные - процессор 300 МГц один или несколько, ОЗУ 64 Мб.

4. Рабочие станции - процессор 400-450 МГц один или несколько, ОЗУ 128 Мб контроль ошибок.

5. Мобильные ПК - процессор 233 МГц, ОЗУ 32 Мб.



^ 8. Архитектура, структура, элементная база ЭВМ.

С середины 60-х годов очень сильно изменился подход к созданию вычислительных машин. Вместо разработки аппаратуры и средств математического обеспечения стала проектироваться система, состоящая из синтеза аппаратных (hardware) и программных (software) средств. При этом на главный план выдвинулась концепция взаимодействия. Так возникло новое понятие -- архитектура ЭВМ.

Под архитектурой ЭВМ принято понимать совокупность общих принципов организации аппаратно-программных средств и их основных характеристик, определяющая функциональные возможности вычислительной машины при решении соответствующих типов задач.

Архитектура ЭВМ охватывает значительный круг проблем, связанных с созданием комплекса аппаратных и программных средств и учитывающих большое количество определяющих факторов. Среди этих факторов основными являются: стоимость, сфера применения, функциональные возможности, удобство в эксплуатации, а одним из основных компонентов архитектуры считаются аппаратные средства.

Архитектуру вычислительного средства необходимо отличать от структуры ВС. Структура вычислительного средства определяет его текущий состав на определенном уровне детализации и описывает связи внутри средства. Архитектура же определяет основные правила взаимодействия составных элементов вычислительного средства, описание которых выполняется в той мере, в какой необходимо для формирования правил взаимодействия. Она устанавливает не все связи, а только наиболее необходимые, которые должны быть известны для более грамотного использования применяемого средства.

Архитектура ЭВМ включает в себя как структуру, отражающую состав ПК, так и программно - математическое обеспечение. Структура ЭВМ - совокупность элементов и связей между ними. Основным принципом построения всех современных ЭВМ является программное управление.

Основы учения об архитектуре вычислительных машин были заложены Джон фон Нейманом. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ.

Современную архитектуру компьютера определяют следующие принципы:

Принцип программного управления.

Принцип программы, сохраняемой в памяти.

Принцип произвольного доступа к памяти..

На основании этих принципов можно утверждать, что современный компьютер - техническое устройство, которое после ввода в память начальных данных в виде цифровых кодов и программы их обработки, выраженной тоже цифровыми кодами, способно автоматически осуществить вычислительный процесс, заданный программой, и выдать готовые результаты решения задачи в форме, пригодной для восприятия человеком.

Реальная структура компьютера значительно сложнее, чем рассмотренная выше (ее можно назвать логической структурой). В современных компьютерах, в частности персональных, все чаще происходит отход от традиционной архитектуры фон Неймана, обусловленный стремлением разработчиков и пользователей к повышению качества и производительности компьютеров. Качество ЭВМ характеризуется многими показателями. Это и набор команд, которые компьютер способный понимать, и скорость работы (быстродействие) центрального процессора, количество периферийных устройств ввода-вывода, присоединяемых к компьютеру одновременно и т.д. Главным показателем является быстродействие - количество операций, какую процессор способен выполнить за единицу времени. На практике пользователя больше интересует производительность компьютера - показатель его эффективного быстродействия, то есть способности не просто быстро функционировать, а быстро решать конкретные поставленные задачи.

Как результат, все эти и прочие факторы способствуют принципиальному и конструктивному усовершенствованию элементной базы компьютеров, то есть созданию новых, более быстрых, надежных и удобных в работе процессоров, запоминающих устройств, устройств ввода-вывода и т.д. Тем не менее, следует учитывать, что скорость работы элементов невозможно увеличивать беспредельно (существуют современные технологические ограничения и ограничения, обусловленные физическими законами). Поэтому разработчики компьютерной техники ищут решения этой проблемы усовершенствованием архитектуры ЭВМ.

Так, появились компьютеры с многопроцессорной архитектурой, в которой несколько процессоров работают одновременно, а это означает, что производительность такого компьютера равняется сумме производительностей процессоров. В мощных компьютерах, предназначенных для сложных инженерных расчетов и систем автоматизированного проектирования (САПР), часто устанавливают два или четыре процессора. В сверхмощных ЭВМ (такие машины могут, например, моделировать ядерные реакции в режиме реального времени, прогнозировать погоду в глобальном масштабе) количество процессоров достигает нескольких десятков.

Скорость работы компьютера существенным образом зависит от быстродействия оперативной памяти. Поэтому, постоянно ведутся поиски элементов для оперативной памяти, затрачивающих меньше времени на операции чтения-записи. Но вместе с быстродействием возрастает стоимость элементов памяти, поэтому наращивание быстродействующей оперативной памяти нужной емкости не всегда приемлемо экономически.

В истории развития вычислительной техники принято выделять поколения ЭВМ. Переход от одного поколения к другому связан со сменой элементной базы на которой построен компьютер. Выделяют следующие четыре поколения ЭВМ:

первое поколение: 1946-1957 годы; элементная база – электронные вакуумные лампы; оперативное запоминающее устройство (ОЗУ) – до 100 байт; быстродействие — до 10000 операций в секунду;

второе поколение: 1958-1964 годы; элементная база – транзисторы; ОЗУ — до 1000 байт; быстродействие — до 1 млн. операций в секунду;

третье поколение: 1965-1975 годы; элементная база – малые интегральные схемы; ОЗУ — до 10 Кбайт; быстродействие – до 10 млн. операций в секунду;

четвертое поколение: 1976 год; элементная база — большие (БИС) и сверхбольшие (СБИС) интегральные схемы; ОЗУ — от 100 Кбайт и выше; быстродействие — свыше 10 млн. операций в секунду.

Следует заметить, что граница между третьим и четвертым поколениями ЭВМ по признаку элементной базы достаточно условна: произошло, скорее количественное изменение параметров элементной базы.

Кроме того, единица измерения быстродействия компьютера "операции в секунду" устарела. Она не достаточно правильно отражает быстродействие. Для компьютеров первых поколений под "операцией" часто понимали сложение двух целых чисел определенной длины. Операция умножения выполнялась в десятки раз медленнее, чем сложение. Поэтому для современных компьютеров чаще используется характеристика — тактовая частота. Тактовая частота – это количество импульсов в секунду (герц), генерируемых тактовым генератором компьютера. Тактовая частота — более мелкая единица измерения, чем операции в секунду. Фирмы — производители компьютеров стремятся к тому, чтобы уменьшить количество тактов, необходимых для выполнения базовых операций, и, тем самым, повысить быстродействие компьютеров.



^ 9. Принцип программного управления ЭВМ.

Название «электронная вычислительная машина» соответствует изначальной области применения ЭВМ — выполнению научно-технических расчетов. Однако для современных ЭВМ больше соответствует определение программно управляемая искусственная (инженерная) система, предназначенная для восприятия, хранения, обработки и передачи информации.

Такое определение подчеркивает, что в основу ЭВМ положен принцип программного управления. Один из способов его реализации был предложен в 1945 г. американским математиком Дж. фон Нейманом, и с тех пор неймановский принцип программного управления используется в качестве основного принципа построения ЭВМ. Этот принцип состоит в следующем:

- информация кодируется в двоичной форме и разделяется на единицы (элементы) информации — слова;

- разнотипные слова информации различаются по способу использования, но не способами кодирования;

- слова информации размещаются в ячейках памяти машины и идентифицируются номерами ячеек, которые называются адресами слов;

- алгоритм представляется в форме последовательности управляющих слов — команд, которые определяют наименование операции и слова информации, участвующие в операции. Алгоритм, представленный в терминах машинных команд, называется программой;

- выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой. Первой выполняется команда, заданная пусковым адресом программы. Обычно это адрес первой команды программы. Адрес следующей команды однозначно определяется в процессе выполнения текущей команды и может быть либо адресом следующей по порядку команды, либо адресом любой другой команды. Процесс вычислений продолжается до тех пор, пока не будет выполнена команда, предписывающая прекращение вычислений.

Неймановский принцип программного управления не лишен недостатков. Во-первых, представление информации в двоичной форме (нетрадиционной для человека) существенно затрудняет «общение» человека с машиной. ЭВМ с развитой системой интерпретации обеспечивают восприятие алгоритмов, записанных на языках высокого уровня — в виде знаков операций, наименований величин и данных, представляемых в естественной форме, причем указанные возможности реализуются за счет введения в ЭВМ нетрадиционных средств адресации и операций над информацией. Во-вторых, неймановский принцип предполагает, что коды слов информации не зависят от типа информации. Это приводит к тому, что программист сам обязан следить за тем, чтобы для обработки информации определенного типа, например целых или действительных чисел, использовались соответствующие операции, чтобы был запрограммирован перевод чисел из одной формы представления в другую и пр. Если эти правила не соблюдаются, то в программе появляются ошибки, а результат может получиться непредсказуемым. В-третьих, память неймановской машины сугубо линейна, так как идентифицируется последовательностью адресов, например от 0 до М. И какой бы ни была структура данных, т. е. из каких бы элементов (скаляров, векторов, матриц) ни состояли данные и как бы они ни были взаимосвязаны, программист должен эти данные спроецировать на линейную цепочку адресов О, 1, ..., М. Затем при составлении программы ему приходится определять способ выделения адресов, соответствующих отдельным структурным элементам данных. Процедуры размещения информации в. памяти и выделения элементов информации оказываются весьма сложными.



^ 10. Арифметические и логические основы построения ЭВМ.

В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0,1,2,…8,9. В первом (младшем) разряде указывается число единиц, во втором – десятков, в третьем – сотен и т. д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз.

В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1.

Например, двоичное число 101011 эквивалентно десятичному числу 43:

В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т. д. Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, – старшим.

Байт определяет 8-разрядную единицу информацию, 1байт=23 бит, например, 10110011 или 01010111 и т. д.,

Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления.

Основанием шестнадцатеричной системы счисления является число 16=, в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы А,B,C,D,E,F. Для перевода двоичного числа в шестнадцатеричное достаточно двоичное число разделить на четырёх – битовые группы: целую часть справа налево, дробную – слева направо от запятой. Крайние группы могут быть неполными.

Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5С39.

Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично – десятичный код.

Двоично – десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде . Например, число 15 представляется как 00010101 BCD (Binary Coded Decimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично–десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу.

  1   2   3   4   5   6   7   8   9



Скачать файл (996.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru