Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых - файл 1.doc


Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых
скачать (427.5 kb.)

Доступные файлы (1):

1.doc428kb.25.11.2011 21:55скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...


МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению Классификации запасов

месторождений и прогнозных ресурсов

твердых полезных ископаемых

Никелевые и кобальтовые руды
Москва, 2007

Разработаны Федеральным государственным учреждением «Госу­дарственная комиссия по запасам полезных ископаемых» (ФГУ ГКЗ) по заказу Министерства природных ресурсов Российской Федерации и за счет средств федерального бюджета.
Утверждены распоряжением МПР России от 05.06.2007 г. № 37-р.
Методические рекомендации по применению Классификации запа­сов месторождений и прогнозных ресурсов твердых полезных иско­паемых. Никелевые и кобальтовые руды.
Предназначены для работников предприятий и организаций, осу­ществляющих свою деятельность в сфере недропользования, неза­висимо от их ведомственной принадлежности и форм собственно­сти. Применение настоящих Методических рекомендаций обеспе­чит получение геологоразведочной информации, полнота и каче­ство которой достаточны для принятия решений о проведении дальнейших разведочных работ или о вовлечении запасов разведан­ных месторождений в промышленное освоение, а также о проекти­ровании новых или реконструкции существующих предприятий по добыче и переработке полезных ископаемых.
  1. ^

    Общие сведения



1. Настоящие Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых (никелевых и кобальтовых руд) (далее – Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. № 370 (Собрание законодательства Российской Федерации, 2004, № 31, ст.3260; 2004, № 32, ст. 3347, 2005, № 52 (3ч.), ст. 5759; 2006, № 52 (3ч.), ст. 5597), Положением о Федеральном агентстве по недропользованию, утвержденным постановлением Правительства Российской Федерации от 17 июня 2004 г. № 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669; 2006, №25, ст.2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 11 декабря 2006 г. № 278, и содержат рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых в отношении никелевых и кобальтовых руд.

2. Методические рекомендации направлены на оказание практической помощи недропользователям и организациям, осуществляющим подготовку материалов по подсчету запасов полезных ископаемых и представляющих их на государственную экспертизу.

3. Н и к е л ь — серебристо-белый металл, имеющий плотность 8,35–8,90 г/см3, температуру плавления 1452 °С; обладает ферромагнитностью, сильным блеском, хорошо полируется, поддается прокатке, ковке и сварке, легко вытягивается в проволоку.

К о б а л ь т — металл белого цвета с красноватым оттенком, имеющий плотность 8,7–8,9 г/см3, температуру плавления 1493 °С; отличается сильной и устойчивой ферромагнитностью, ковкостью и тягучестью.

4. Среднее содержание никеля в земной коре (кларк) 0,0058 %, кобальта – 0,0036 %. Наиболее высокие содержания обоих элементов отмечаются в ультраосновных горных породах.

Известно более 40 никелевых и около 30 кобальтовых минералов, большинство из которых представляют собой простые или сложные сульфидные, арсенидные и сульфоарсенидные соединения. До 10 минералов никеля являются водными силикатами. В более чем 100 минералах никель и кобальт содержатся как изоморфная примесь или находятся в адсорбированной форме. Главнейшие минералы никеля и кобальта приведены в табл. 1.

Таблица 1

^ Важнейшие промышленные минералы никеля и кобальта

Название минерала и химическая формула

Содержание, %

никеля

кобальта




1

2

3

I Сульфиды

Пентландит (Fe, Ni)9S8

22–42

1–3

Никелистый пирротин FeS

0,4–0,7



Миллерит NiS

61–64

0,1–0,5

Линнеит Co3S4



40–53

Кобальтпирит (Fe, Co)S2



0,05–3

II. Арсениды, сульфоарсениды и арсенаты

Скуттерудит CoAs3

0–9

11–20

Саффлорит (Со, Fe)As2

0–0,3

10–30

Шмальтин – хлоантит (Cо, Ni)As2

1–21

4–24

Кобальтин CoAsS

0,5–2

26–34

Эритрин Co3(AsO4)2 · 8H2O

0–6

20–30

III. Силикаты, гидросиликаты и гидроксиды

Гарниерит (Ni, Mg)4[Si4O10] (OH)4 · 4H2O

16–35

0–0,1

Ревдинскит (Ni, Mg)8[Si4O10] (ОН)8

16–35

0,0–0,1

Никелевый керолит (Mg, Ni)4[Si4O10] (ОН)4 · 4Н2О

10–15

Следы

Нонтронит m{Mg3[Si4O10](OH)2} · p{(Al, Fe)2 · [Si4O10] (ОН)2}

0,5–2,0

Следы

Никелевый серпофит (Mg, Ni, Fe)6[Si4O10] (ОН)8

4–5

Следы

Никелевый гидрохлорит (Mg, Al, Fe)6 [(Si, Аl)4O10] · (ОН)8. · nН2О

2–6

0,03–1,2

Асболаны и псиломеланвады m(Co, Ni)O · MnO2 · nН2О

0,8–20

0,8–32

Гетерогенит СоО · 2Со2О3 · 6Н2О



10–20

5. Основная часть получаемого никеля (65 %) расходуется на производство жаропрочных, конструкционных, инструментальных и нержавеющих сталей, где никель применяется в качестве легирующего элемента. До 20 % никеля используется в производстве сплавов и суперсплавов совместно с железом, хромом, медью, цинком и другими металлами. Кроме того, значительное количество никеля (до 7 %) расходуется на электролитическое покрытие поверхностей других металлов и сплавов. Никель также применяется в качестве катализатора при многих химических процессах и при производстве аккумуляторов.
Кобальт (до 40 %) в виде металла или оксида применяется в жаропрочных и жаростойких сплавах и сталях, где служит легирующей добавкой к другим металлам. До 20 % кобальта идет на изготовление магнитных сплавов, обладающих большей магнитной энергией на единицу объема, чем магниты из других сплавов. В большом количестве (16 %) кобальт применяется для изготовления твердых сплавов, среди которых различаются литые (стеллиты) и металлокерамические сплавы (керметы), в состав которых кроме кобальта входят хром, вольфрам, титан, молибден и углерод. В химической и керамической промышленности потребляется до 20 % кобальта в качестве катализатора или для изготовления красок и эмалей. В последнее время кобальт широко применяется в производстве литиево-кобальтовых аккумуляторов и элементов питания. Радиоактивный изотоп 60Со применяется в медицине, дефектоскопии и сельском хозяйстве.

6. Основными геолого-промышленными типами месторождений никеля и кобальта являются магматические сульфидные медно-никелевые, гипергенные силикатные никелевые коры выветривания и гидротермальные арсенидные и сульфоарсенидные никель-кобальтовые и собственно кобальтовые месторождения (табл. 2).
7. Сульфидные медно-никелевые месторождения (37 % мировых запасов никеля и более 10 % кобальта) генетически связаны с дифференцированными массивами ультраосновных и основных магматических пород (перидотитов, габбро-норитов, габбро и габбро-диабазов). Медно-никелевые рудные тела располагаются преимущественно в придонной части интрузивов, а иногда во вмещающих интрузивы породах. Руды представлены вкрапленными и прожилковыми разностями, в меньшей степени – сплошными и брекчиевидными. Рудные тела имеют, как правило, крупные размеры: протяженность по падению и простиранию до нескольких километров, мощность до 100 м; плитообразные, пластообразные, линзообразные, жилообразные и более сложные формы; залегают субгоризонтально, реже полого- или крутонаклонно. Господствующее развитие имеют согласные пластообразные залежи вкрапленных руд. К лежачему боку рудных тел приурочены сплошные руды, образующие отдельные пласты, линзы и жилы, сложенные массивными, брекчиевидными и густовкрапленными разновидностями. Характерной особенностью сульфидных месторождений является сравнительно выдержанный минеральный состав руд. Главными минералами руд являются пирротин, пентландит, халькопирит и магнетит; второстепенными – пирит, кубанит, миллерит, валериит, минералы группы платины; редкими – хромит, маккинавит, самородное золото и др. Руды содержат никель, медь, кобальт, платиноиды, а также селен и теллур, золото, серебро и серу.

Месторождения описываемого типа являются ведущими в запасах и добыче никеля и кобальта в России. В зарубежных странах роль сульфидных медно-никелевых месторождений подчиненная.

8. Силикатные никелевые месторождения коры выветривания (63 % мировых запасов никеля и 58 % кобальта) развиваются при латеритном выветривании основных и ультраосновных пород. По условиям образования, геологическому строению и формам залегания выделяют три основных морфологических типа месторождений, соответствующие трем основным типам коры выветривания: площадной (Буруктальское, Сахаринское, Серовское), линейный (Синарское), линейно-площадной (Черемшанское). Рудные тела силикатных никелевых месторождений, как правило, значительные по размерам: протяженность сотни метров – первые километры, мощность от 1 до 30–50 м; форма их обычно плащеобразная, пластообразная со сложными контурами в плане; встречаются линзовидные, нередко с карманообразными углублениями, клинообразные и гнездовидные тела; не имеют четких геологических границ и оконтуриваются по данным опробования.

Залегание рудных тел обычно горизонтальное или пологонаклонное; исключение составляют рудные тела месторождений контактово-карстового подтипа коры выветривания (Черемшанское). Минеральный состав руд очень сложный. Никель в рудах распределен во многих минеральных формах и представлен как силикатными, так и оксидными соединениями. Руды, кроме никеля, содержат в небольшом количестве кобальт, концентрирующийся в марганцевых минералах в охрах и обохренных серпентинитах.

Эти руды характеризуются тонкодисперсным и аморфно-кристаллическим распределением металла, обычно входящего в различные минеральные фазы.
Таблица 2

^ Главные промышленные типы месторождений никеля и кобальта

Промышленный тип месторождений

Структурно-морфологичес-кий тип рудных тел

Главные рудные минералы

Содержание в рудах

Наиболее характерные попутные компоненты

Примеры месторождений

никеля

кобальта




1

2

3

4

5

6

7

Сульфидные медно-никелевые

Согласные пластообразные залежи, линзы

Никелистый пирротин, пентландит, халькопирит (талнахит, моихукит), кубанит, магнетит

От десятых долей до нескольких процентов

От сотых до десятых долей процента

Платиноиды, золото, серебро, селен, теллур

Норильск-I, Талнахское, Октябрьское, Ждановское, Семилетка (Россия), Седбери (Канада), Инсизва (ЮАР), Микола-Нивола (Финляндия), Камбалда (Австралия)

Силикатные никелевые коры выветривания

Пластообразные, плащеобразные залежи

Гарниерит, ревдинскит, керолит, нонтронит, гидрохлориты

От 0,7–0,8 % до нескольких процентов

От сотых до десятых долей процента

Железо

Серовское , Буруктальское, Сахаринское (Россия), месторождения Кемпирсайской (Казахстан), Побужской групп (Украина), Новой Каледонии, Кубы, Бразилии, Индонезии, Австралии

Арсенидные и сульфоарсенидные никель-кобальтовые и собственно кобальтовые

Трещинные жилы, жилообразные тела

Шмальтин, хлоантит, никелин, скуттерудит, кобальтин

От десятых долей до нескольких процентов

Первые проценты

Золото, сурьма, ртуть

Ховуаксы (Россия), Бу-Аззер (Марокко), месторождения района Кобальт (Канада)

Остаточные коры выветривания образованы гипергенным серпентином, феррисаполитом, нонтронитом, гётитом-гидрогётитом, маггемитом, гипергенным магнетитом, кобальт-никелевыми асболанами и железо-кремниевыми фазами. Зонам инфильтрации свойственны никелевые и магний-никелевые серпентины, талькоподобные магний-никелевые минералы (керолит, пимелит), а также их смеси. В преобразованных корах выветривания развиты никелевый бертьерит, гипергенный магнетит, маггемит, миллерит, магний-никелевые серпентины и амезиты.

Руды по комплексу рудообразующих минералов и компонентов (никель и кобальт, железо, магнезия, кремнезем и глинозем) подразделяются на два основных типа: железистые (охристые, лептохлоритовые, гематитовые) и магнезиальные (серпентиниты с никелевыми силикатами).

Силикатные никелевые руды являются необогатимыми с помощью традиционных механических методов и поэтому подвергаются непосредственно гидро- или пирометаллургическому переделу.

Содержание никеля в рудах варьирует от 0,5 % до первых процентов, а кобальта – от нескольких сотых до первых десятых процента.

Вредными примесями в силикатных никелевых рудах являются медь и хром, а при плавке на ферроникель – и фосфор.

Силикатные никелевые месторождения в России играют подчиненную роль в запасах и добыче никеля и кобальта. В зарубежных странах месторождения этого типа – ведущие в запасах никеля и кобальта и их производстве.

9. Арсенидные и сульфоарсенидные никель-кобальтовые и собственно кобальтовые месторождения представлены трещинными жилами и жилообразными телами вкрапленных и прожилково-вкрапленных руд гидротермального происхождения (Ховуаксы). Жилы имеют сложные формы, с раздувами и пережимами. Встречаются кулисообразно залегающие серии линз с переходом в зоны прожилков и вкрапленности. Помимо главных рудных минералов присутствуют леллингит, самородное серебро, аргентит, электрум, самородный висмут, арсенопирит, теннантит, антимонит, киноварь, реже отмечаются сфалерит, галенит. Среди минералов зоны окисления наиболее распространены арсенаты кобальта и никеля группы эритрина–аннабергита. Жильными минералами являются кварц, кальцит, доломит, реже анкерит и хлорит. Руды содержат кобальт, никель, медь, серебро, золото, висмут и мышьяк.

Месторождения этого типа не имеют широкого распространения, и роль их в запасах никеля и кобальта в России невелика; доля участия их в запасах и добыче зарубежных стран также ничтожно мала.

10. Кроме описанных геолого-промышленных типов за рубежом выявлены ильменит-магнетитовые никеленосные (Норвегия), колчеданные никеленосные (Финляндия) и жильные «пятиэлементной формации» (ЮАР) месторождения, на долю которых приходится менее 1 % мировых запасов никеля. В России месторождения этих типов не известны.

11. Значительная доля запасов кобальта сосредоточена в комплексных кобальтсодержащих месторождениях, которые кроме указанных выше сульфидных медно-никелевых и силикатных никелевых включают в себя следующие геолого-промышленные типы: медистых песчаников и сланцев, железорудные (магнетитовые) и медноколчеданные.

Стратиформные месторождения кобальтсодержащих медистых песчаников и сланцев выявлены только в Республике Конго, Замбии и Уганде. Рудные тела представлены пластообразными, реже жилообразными формами. Кобальт присутствует в рудах в основном в виде кобальтсодержащего пирита, линнеита и карролита в ассоциации с минералами меди и урана. Содержание кобальта до 0,3 % в сульфидных и 0,25–2,0 % в окисленных рудах. Масштаб месторождений этого типа очень крупный, запасы кобальта в них составляют до 50 % общемировых, а производство свыше 40 %. В России аналогичных месторождений не выявлено.

В железорудных месторождениях кобальт присутствует в кобальтсодержащем пирите, частично в магнетите, а также, реже, в арсенидах и сульфоарсенидах. Содержание кобальта в рудах 0,007–0,028 %. Месторождения этого типа известны во многих странах мира, в том числе и в России. В настоящее время при переработке этих руд кобальт не извлекается, несмотря на наличие технологий, по экономическим причинам.

В месторождениях медноколчеданного типа кобальт сосредоточен в пирите в виде изоморфной примеси и реже встречаются собственные минералы – кобальтин, линнеит и др. Содержание кобальта в рудах 0,013–0,07 %. Месторождения этого типа известны в Финляндии, Норвегии и России. Извлекается кобальт из таких руд только в Финляндии.

12. Новым потенциально-промышленным типом являются железомарганцевые конкреции (ЖМК), встречающиеся во всех океанах на поверхности абиссальных равнин дна глубинах 4500–5500 м. Подавляющее число рудных полей сосредоточено в Тихом океане, особенно в заоне Кларион – Клиппертон (1500  2000 км). Плотность залегания конкреций (их масса приходящаяся на 1 м2 дна) варьируется в широких пределах, редко превышая 30 кг/м2.

Залежи являются комплексными месторождениями Mn, Ni, Co и Cu. Диаметр конкреций составляет 0,1–n10 см, преимущественно 3–7 см. Конкреции содержат (%): Mn 25–30, Fe 6–12, Ni 1–2, Co 0,2–1,5, Cu 1–1,5, P 0,5–1; в качестве примесей в них обнаружены Mo, РЗЭ, V, платиноиды, Au и другие компоненты.

Потенциальный интерес представляют также кобальт железомарганцевые конкреционно-корковые (КМК) образования* Мирового океана, известные на подводных горах и океанических поднятиях на глубинах от 300 до 4000 м, где они нередко образуют покрытия мощностью от нескольких миллиметров до 10 см на коренных породах или уплотненных осадках. Коры сложены гидроксидами Fe и содержат Mn, Ni, Cu, Co и P.

13. Интерес для освоения могут представлять техногенные месторождения, образовавшиеся в результате складирования забалансовых никелевых и кобальтовых руд, никель- и кобальтсодержащие отходы обогатительного (пирротиновый концентрат, хвосты) и металлургического (шлаки, кеки) процессов. Состав и строение техногенных месторождений определяются геолого-промышленным типом исходного природного месторождения, способом добычи и технологической схемой переработки минерального сырья, а также условиями складирования и сроками хранения отходов. Указанные факторы требуют специфических подходов к изучению и оценке техногенных месторождений, особенности которых изложены в соответствующих нормативно-методических документах и в настоящих Методических рекомендацияхне рассматриваются.
^

II. Группировка месторождений по сложности геологического строения для целей разведки


14. По размерам и форме рудных тел, изменчивости их мощности, внутреннего строения и особенностям распределения никеля месторождения никелевых руд соответствуют 1-, 2- и 3-й группам, а месторождения кобальтовых руд – 4-й группе сложности, установленных «Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых», утвержденной приказом МПР России от 11 декабря 2006 г. № 278.

К 1-й группе относятся сульфидные медно-никелевые месторождения (участки) простого геологического строения с рудными телами, представленными крупными пластообразными залежами вкрапленных руд с выдержанной мощностью и относительно равномерным распределением никеля (залежи вкрапленных руд месторождений Талнах-Октябрьского района и Норильск-1).

По простиранию длина рудных тел достигает нескольких километров при ширине от 300 м до 1,5 км. Мощность тел обычно составляет 30–40 м, снижаясь на фланговых частях месторождения до 5–10 м, а в центральных осевых частях достигает 60–100 м.

Ко 2-й группе относятся:

сульфидные медно-никелевые месторождения (участки) сложного геологического строения с рудными телами, представленными крупными пластообразными и плитообразными залежами сложного строения, невыдержанной мощности, с раздувами, пережимами и ответвлениями или с неравномерным распределением никеля (залежи богатых руд Октябрьского и Талнахского месторождений, месторождения Ждановское, Заполярное, Котсельваара-Каммикиви, Семилетка). Длина рудных тел составляет от первых сотен метров до нескольких километров. По ширине аналогичные размеры имеют субгоризонтальные тела. Длина отдельных наклонных и крутопадающих тел по падению может достигать 1,5 км и более. Мощность тел изменяется в пределах от первых метров до 100 м;

силикатные никелевые месторождения с крупными, средними и мелкими залежами пластообразной, плащеобразной, линзообразной и клиновидной формы, невыдержанной мощности, с раздувами, пережимами, карманообразными углублениями, со сложным характером выклинивания и неравномерным распределением никеля (Буруктальское, Черемшанское, Серовское, Сахаринское). Размеры рудных тел, залегающих практически горизонтально или слабонаклонно, варьируют от сотен метров до первых километров при мощности от 1 до 30–50 м.

К 3-й группе относятся:

медно-никелевые месторождения (участки) очень сложного геологического строения с рудными телами, представленными средними и мелкими залежами очень сложной формы (линзовидными, жилообразными), весьма невыдержанными по мощности, с многочисленными ответвлениями, раздувами, пережимами, со сложным характером выклинивания и неравномерным распределением никеля. Длина рудных тел по простиранию и падению десятки – первые сотни метров, мощность от 1–2 м до первых десятков метров (Спутник, Шануч, участки «медистых» руд Октябрьского и Талнахского месторождений);

месторождения силикатных никелевых руд, связанные с корой выветривания смешанного типа со средними и мелкими узколинзообразными и клиновидными залежами весьма невыдержанной мощности. Размеры рудных тел по простиранию и падению составляют первые сотни метров при мощности от 1 до 10–20 м (Кунгурское, Покровское, Синарское месторождения).

К 4-й группе относятся арсенидные и сульфоарсенидные никель-кобальтовые и собственно кобальтовые месторождения весьма сложного геологического строения с рудными телами, представленными мелкими по размерам сложными трещинными жилами весьма невыдержанной мощности, с многочисленными ответвлениями, раздувами и пережимами, со сложным характером выклинивания и весьма неравномерным распределением кобальта. Протяженность рудных тел колеблется от 100 до 400 м по простиранию и от 20 до 600 м по падению при мощности от 0,5 м до первых метров (Ховуаксы).

15. Принадлежность месторождения (участка) к той или иной группе устанавливается по степени сложности геологического строения основных рудных тел, заключающих не менее 70 % общих запасов месторождения.

16. С целью более объективного отнесения месторождений к соответствующей группе сложности могут использоваться и количественные характеристики изменчивости основных свойств оруденения (см. приложение).
^

III. Изучение геологического строения месторождений и
вещественного состава руд


17. По разведанному месторождению необходимо иметь топографическую основу, масштаб которой соответствовал бы его размерам, особенностям геологического строения и рельефу местности. Топографические карты и планы на месторождениях никелевых и кобальтовых руд обычно составляются в масштабах 1:1000–1:10 000. Все разведочные и эксплуатационные выработки (канавы, шурфы, штольни, шахты, скважины), профили детальных геофизических наблюдений, а также естественные обнажения рудных тел и минерализованных зон должны быть инструментально привязаны. Подземные горные выработки и скважины наносятся на планы по данным маркшейдерской съемки. Маркшейдерские планы горизонтов горных работ обычно составляются в масштабах 1:200–1:500, сводные планы – в масштабе не мельче 1:1000. Для скважин должны быть вычислены координаты точек пересечения ими кровли и подошвы рудного тела и построены проложения их стволов на плоскости планов и разрезов.

18. Геологическое строение месторождения должно быть детально изучено и отображено на геологической карте масштаба 1:1000–1:10 000, в зависимости от размеров и сложности месторождения (для месторождений силикатных никелевых руд – также на карте развития коры выветривания того же масштаба), на геологических разрезах, планах, проекциях, а в некоторых случаях – на блок-диаграммах и моделях. Геологические и геофизические материалы по месторождению должны давать представление о размерах и форме рудных тел, условиях их залегания, внутреннем строении и сплошности, характере выклинивания рудных тел, особенностях изменения вмещающих пород и взаимоотношениях рудных тел с вмещающими породами, складчатыми структурами и тектоническими нарушениями, а для месторождений силикатных никелевых руд – также о типе кор выветривания (линейный, площадной), взаимоотношениях их с коренными породами и тектоническими нарушениями в степени, необходимой и достаточной для обоснования подсчета запасов. Следует также обосновать геологические границы месторождения и поисковые критерии, определяющие местоположение перспективных участков, в пределах которых оценены прогнозные ресурсы категории P1*.

19. Выходы на поверхность и приповерхностные части рудных тел и минерализованных зон, кор выветривания должны быть изучены горными выработками и неглубокими скважинами с применением геофизических и геохимических методов и опробованы. Детальность изучения должна позволить установить морфологию и условия залегания рудных тел, глубину развития и строение зоны окисления или кор выветривания, а также степень окисленности сульфидных руд, особенности изменения вещественного состава, технологических свойств и содержаний никеля и кобальта и провести подсчет запасов окисленных руд раздельно по промышленным (технологическим) типам.

20. Разведка сульфидных медно-никелевых и силикатных никелевых месторождений на глубину проводится в основном скважинами (месторождений сложного строения, особенно арсенидных и сульфоарсенидных, – в основном горными выработками в сочетании со скважинами) с использованием геофизических методов исследования – наземных, в скважинах и горных выработках.

Методика разведки – соотношение объемов горных работ и бурения, виды горных выработок и способы бурения, геометрия и плотность разведочной сети, методы и способы опробования – должна обеспечивать возможность подсчета запасов по категориям, соответствующим группе месторождения по сложности его геологического строения. Она определяется исходя из геологических особенностей месторождения с учетом возможностей горных, буровых и геофизических средств разведки, опыта разведки и разработки месторождений аналогичного типа. При выборе оптимального варианта разведки следует учитывать сравнительные технико-экономические показатели и сроки выполнения работ по различным вариантам разведки.

21. По скважинам колонкового бурения должен быть получен максимальный выход керна хорошей сохранности в объеме, обеспечивающем выяснение с необходимой полнотой особенностей залегания рудных тел и вмещающих пород, их мощности, внутреннего строения рудных тел, характера околорудных изменений, распределения природных разновидностей руд, их текстуры и структуры и представительность материала для опробования. Практикой геологоразведочных работ установлено, что выход керна для этих целей должен быть не менее 70 % по каждому рейсу бурения. Достоверность определения линейного выхода керна следует систематически контролировать другими способами – весовым, объемным.

Величина представительного выхода керна для определения содержаний никеля и кобальта и мощностей рудных интервалов должна быть определена исследованиями с учетом возможности его избирательного истирания. Для этого необходимо по основным типам руд сопоставить результаты опробования керна и шлама (по интервалам с их различным выходом) с данными опробования горных выработок, скважин ударного, пневмоударного и шарошечного бурения, а также колонковых скважин, пробуренных с применением съемных керноприемников. При низком выходе керна или избирательном его истирании, существенно искажающем результаты опробования, следует применять другие технические средства разведки. При разведке рудных тел, сложенных рыхлыми разновидностями руд, следует применять специальную технологию бурения, способствующую повышению выхода керна (бурение без промывки, укороченными рейсами, применение специальных промывочных жидкостей и т. п.).

Для повышения достоверности и информативности бурения и количественной оценки запасов необходимо использовать методы геофизических исследований в скважинах, рациональный комплекс которых определяется исходя из поставленных задач, конкретных геолого-геофизических условий месторождения и современных возможностей геофизических методов. Комплекс каротажа, эффективный для выделения рудных интервалов и установления их параметров, должен выполняться во всех скважинах, пробуренных на месторождении, и обеспечивать возможность дифференциальной интерпретации результатов измерений с целью последующего использования их для оценки неравномерности оруденения в недрах.

В вертикальных скважинах глубиной более 100 м и во всех наклонных, включая подземные, не более чем через каждые 20 м должны быть определены и подтверждены контрольными замерами азимутальные и зенитные углы стволов скважин. Результаты этих измерений необходимо учитывать при построении геологических разрезов, погоризонтных планов и расчете мощностей рудных интервалов. При наличии подсечений стволов скважин горными выработками результаты замеров проверяются данными маркшейдерской привязки.

Для скважин необходимо обеспечить пересечение ими рудных тел под углом не менее 30°. Для пересечения крутопадающих рудных тел под большими углами целесообразно применять искусственное искривление скважин. С целью повышения эффективности разведки следует осуществлять бурение многозабойных скважин, а при наличии горизонтов горных работ – и веера скважин подземного бурения. Бурение по руде целесообразно производить одним диаметром.

22. Горные выработки проходятся, как правило, для контроля данных бурения, геофизических исследований и отбора технологических проб, а на месторождениях сложного строения – для изучения (в сочетании со скважинами) условий залегания, морфологии, внутреннего строения рудных тел, их сплошности, вещественного состава руд. На месторождениях арсенидных и сульфоарсенидных руд горные выработки (в сочетании со скважинами) являются основным средством детального изучения условий залегания, морфологии, внутреннего строения рудных тел, их сплошности и вещественного состава руд.

На месторождениях, разведка которых осуществляется горными выработками, должны быть изучены в достаточном объеме на представительных участках сплошность и изменчивость оруденения по простиранию и падению: по маломощным рудным телам – непрерывным прослеживанием штреками и восстающими, а по мощным рудным телам – пересечением квершлагами, ортами, подземными горизонтальными скважинами.

Горные выработки следует проходить на участках и горизонтах месторождения, намеченных к первоочередной отработке.

23. Расположение разведочных выработок и расстояния между ними должны быть определены для каждого структурно-морфологического типа рудных тел с учетом их размеров и особенностей геологического строения.

Приведенные в табл. 3 обобщенные сведения о плотности сетей, применявшихся при разведке месторождений никелевых и кобальтовых руд в странах СНГ, могут учитываться при проектировании геологоразведочных работ, но их нельзя рассматривать как обязательные.

Для каждого месторождения на основании изучения участков детализации и тщательного анализа всех имеющихся геологических, геофизических и эксплуатационных материалов по данному или аналогичным месторождениям обосновываются наиболее рациональные геометрия и плотность сети разведочных выработок.

Таблица 3

^ Сведения о плотности сетей разведочных выработок, применявшихся при разведке месторождений никелевых и кобальтовых руд в странах СНГ

Группа

месторождений

Характеристика рудных тел

Вид выработок

Расстояния между пересечениями рудных тел выработками

для категории запасов, м

А

В

С1

по

прости-ранию

по паде-нию

по

прости-ранию

по паде-нию

по

прости-ранию

по паде-нию




1

2

3

4

5

6

7

8

9

1-я

Крупные пластообразные залежи вкрапленных руд простого строения с выдержанной мощностью и относительно равномерным распределением никеля

Скважины

100

100

200

200

400

400–600

2-я

Крупные пластообразные и плитообразные залежи сложного строения невыдержанной мощности или с неравномерным распределением никеля

То же





50–100

50–100

100–200

75–100

Крупные, средние и мелкие пластообразные, плащеобразные и линзовидные залежи невыдержанной мощности с неравномерным распределением никеля







20–50

20–50

50–100

50

3-я

Средние и мелкие залежи очень сложных форм с весьма неравномерным распределением никеля











50

25–50

4-я

Мелкие сложные жилы невыдержанной мощности с весьма неравномерным распределением никеля и кобальта

Горные выработки










Непре-рывное просле-живание

30–40

Скважины









50

50

П р и м е ч а н и е. На оцененных месторождениях разведочная сеть для категории С2 по сравнению с сетью для категории С1 разрежается в 2–4 раза в зависимости от сложности геологического строения месторождения.




24. Для подтверждения достоверности запасов отдельные участки месторождений должны быть разведаны более детально. Эти участки следует изучать и опробовать по более плотной разведочной сети, по сравнению с принятой на остальной части месторождения. На месторождениях 1-й группы запасы на таких участках или горизонтах должны быть разведаны по категориям А+В, 2-й группы – по категории В, 3-й и 4-й групп – по категории С1. На месторождениях 3-й группы сеть разведочных выработок на участках детализации целесообразно сгущать, как правило, не менее чем в 2 раза по сравнению с принятой для категории С1.

При использовании для подсчета запасов методов геостатистического моделирования, метода обратных расстояний и других на участках детализации необходимо обеспечить плотность разведочных пересечений, достаточную для обоснования оптимальных интерполяционных формул.

Участки детализации должны отражать особенности условий залегания и форму рудных тел, заключающих основные запасы месторождения, а также преобладающее качество руд. По возможности они располагаются в контуре запасов, подлежащих первоочередной отработке. В тех случаях, когда такие участки не характерны для всего месторождения по особенностям геологического строения, качеству руд и горно-геологическим условиям, должны быть детально изучены также участки, удовлетворяющие этому требованию. Число и размеры участков детализации на месторождениях определяются в каждом конкретном случае недропользователем.

Полученная на участках детализации информация используется для обоснования группы сложности месторождения, подтверждения соответствия принятой методики и выбранных технических средств разведки особенностям его геологического строения, оценки достоверности результатов опробования и подсчетных параметров, принятых при подсчете запасов на остальной части месторождения, а также условий разработки месторождения в целом. На разрабатываемых месторождениях для этих целей используются данные эксплуатационной разведки и разработки.

На месторождениях с прерывистым оруденением (4-я группа), оценка запасов которых производится без геометризации конкретных рудных тел в обобщенном контуре с использованием коэффициентов рудоносности, на основании определения пространственного положения, типичных форм и размеров участков кондиционных руд, а также распределения запасов по мощности рудных интервалов должна быть оценена возможность селективной выемки.

25. Все разведочные выработки и выходы рудных тел или зон на поверхность должны быть задокументированы. Результаты опробования выносятся на первичную документацию и сверяются с геологическим описанием.

Полнота и качество первичной документации, соответствие ее геологическим особенностям месторождения, правильность определения пространственного положения структурных элементов, составления зарисовок и их описаний должны систематически контролироваться сличением с натурой специально назначенными в установленном порядке комиссиями. При проверке следует также оценивать качество геологического и геофизического опробования (выдержанность сечения и массы проб, соответствие их положения особенностям геологического строения участка, полноту и непрерывность отбора проб, наличие и результаты контрольного опробования), представительность минералого-технологических и инженерно-гидрогеологических исследований, качество определений объемной массы, обработки проб и аналитических работ.

26. Для изучения качества полезного ископаемого, оконтуривания рудных тел и подсчета запасов все рудные интервалы, вскрытые разведочными выработками или установленные в естественных обнажениях, должны быть опробованы.

27. Выбор методов (геологических, геофизических*) и способов опробования производится на ранних стадиях оценочных и разведочных работ исходя из конкретных геологических особенностей месторождения и физических свойств полезного ископаемого и вмещающих пород. Они должны обеспечивать наибольшую достоверность результатов при достаточной производительности и экономичности. В случае применения нескольких методов и способов опробования их необходимо сопоставить по точности результатов и достоверности.

При выборе методов (геологических, геофизических) и способов (керновый, бороздовый, задирковый и др.) опробования, определении качества отбора и обработки проб, оценке достоверности результатов опробования следует руководствоваться соответствующими нормативно-методическими документами.

28. Опробование разведочных сечений следует производить с соблюдением следующих условий:

сеть опробования должна быть выдержанной, плотность ее определяется геологическими особенностями изучаемых участков месторождения; пробы необходимо отбирать в направлении максимальной изменчивости оруденения; в случае пересечения рудных тел разведочными выработками (в особенности скважинами) под острым углом к направлению максимальной изменчивости (если при этом возникают сомнения в представительности опробования) контрольными работами или сопоставлением должна быть доказана возможность использования в подсчете запасов результатов опробования этих сечений;

опробование следует проводить непрерывно, на полную мощность рудного тела с выходом во вмещающие породы на величину, превышающую мощность пустого или некондиционного прослоя, включаемого в соответствии с кондициями в промышленный контур: для рудных тел без видимых геологических границ – во всех разведочных сечениях, а для рудных тел с четкими геологическими границами – по разреженной сети выработок; в разведочных выработках кроме коренных выходов руд должны быть опробованы и продукты их выветривания;

природные разновидности руд и минерализованных пород должны быть опробованы раздельно – секциями; длина каждой секции (рядовой пробы) определяется внутренним строением рудного тела, изменчивостью вещественного состава, текстурно-структурных особенностей, физико-механических и других свойств руд, а в скважинах – также длиной рейса; при этом интервалы с разным выходом керна опробуются раздельно; при наличии избирательного истирания керна опробованию подвергаются как керн, так и измельченные продукты бурения (шлам, пыль и др.); мелкие продукты отбираются в самостоятельную пробу с того же интервала, что и керновая проба, обрабатываются и анализируются они отдельно При небольшом диаметре бурения и весьма неравномерном распределении минералов сурьмы деление керна при опробовании на половинки не производится.;

в горных выработках, пересекающих рудное тело на всю мощность, и в восстающих опробование должно проводиться по двум стенкам выработки, в выработках, пройденных по простиранию рудного тела, – в забоях. Расстояния между пробами в прослеживающих выработках обычно не превышают 2–4 м, а для арсенидных и сульфоарсенидных месторождений 1–2 м (рациональный шаг опробования должен быть подтвержден экспериментальными данными). В горизонтальных горных выработках при крутом залегании рудных тел все пробы размещаются на постоянной, заранее определенной высоте. Принятые параметры проб должны быть обоснованы экспериментальными работами.

Результаты геологического и геофизического опробования скважин и горных выработок являются основой для оценки неравномерности оруденения в естественном залегании и прогнозирования показателей радиометрического обогащения. При этом для прогнозирования результатов крупнопорционной сортировки целесообразно принять постоянным шаг опробования при длине каждой секции (рядовой пробы), равной 1 м; увеличение интервалов опробования возможно при выдержанности параметров оруденения, а уменьшение – в случае крайней неравномерности его, но должно оставаться кратным 1 м. Методика дифференциальной интерпретации геофизических данных для прогнозирования показателей радиометрической сепарации должна обеспечивать оценку содержания ценного компонента с достаточной точностью при линейных размерах пробы, соответствующих куску максимальной крупности (100–200 мм). По данным опробования и результатам документирования каменного материала скважин и горных выработок производится также количественная оценка распространенности в рудах пустых (некондиционных) прослоев, включаемых в контур подсчета запасов в соответствии с принятыми параметрами кондиций.

29. Качество опробования по каждому принятому методу и способу и по основным разновидностям руд необходимо систематически контролировать, оценивая точность и достоверность результатов. Следует своевременно проверять положение проб относительно элементов геологического строения и надежность оконтуривания рудных тел по мощности, выдержанность принятых параметров проб и соответствие фактической массы пробы расчетной исходя из принятого сечения борозды или фактического диаметра и выхода керна (отклонения не должны превышать ±10–20 % с учетом изменчивости плотности руды).

Точность бороздового опробования следует контролировать сопряженными бороздами того же сечения, кернового опробования в случае деления керна на половинки — отбором проб из вторых половинок керна.

При геофизическом опробовании в естественном залегании контролируются стабильность работы аппаратуры и воспроизводимость метода при одинаковых условиях рядовых и контрольных измерений. Данные по каротажу должны быть подтверждены результатами опробования керна по опорным скважинам с высоким его выходом (более 90 %).

В случае выявления недостатков, влияющих на точность опробования, следует производить переопробование (или повторный каротаж) рудного интервала.

При наличии избирательного истирания керна, существенно искажающего результаты опробования, его достоверность по скважинам заверяется опробованием сопряженных горных выработок.

Достоверность принятого метода и способа опробования контролируется более представительным способом, как правило валовым, руководствуюсь с соответствующими нормативно-методическими документами. Для этой цели необходимо также использовать данные технологических проб, валовых проб, отобранных для определения объемной массы в целиках, и результаты отработки.

Для действующих предприятий достоверность принятых способов опробования заверяется сопоставлением в пределах одних и тех же горизонтов, блоков или участков месторождения данных, полученных раздельно по горным выработкам и буровым скважинам.

Объем контрольного опробования должен быть достаточным для статистической обработки результатов и обоснованных выводов об отсутствии или наличии систематических ошибок, а в случае необходимости – и для введения поправочных коэффициентов.

30. Обработка проб производится по схемам, разработанным для каждого месторождения или принятым по аналогии с однотипными месторождениями. Основные и контрольные пробы обрабатываются по одной схеме.

Качество обработки должно систематически контролироваться по всем операциям в части обоснованности коэффициента К и соблюдения схемы обработки. Необходимо регулярно контролировать чистоту поверхностей дробильного оборудования.

Обработка контрольных крупнообъемных проб производится по специально составленным программам.

31. Химический состав руд должен изучаться с полнотой, обеспечивающей выявление всех основных, попутных полезных компонентов, вредных примесей и шлакообразующих компонентов. Содержания их в руде определяются анализами проб химическими, спектральными, физическими и другими методами, установленными государственными стандартами или утвержденными Научным советом по аналитическим методам (НСАМ) и Научным советом по методам минералогических исследований (НСОММИ).

Изучение в рудах попутных компонентов производится в соответствии с утвержденными «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке.

Рядовые пробы анализируются на все компоненты, содержание которых учитывается при оконтуривании рудных тел по мощности.

На месторождениях сульфидных медно-никелевых руд рядовые пробы анализируются на никель, медь, кобальт и серу, а в рудах с повышенным содержанием платиноидов и золота определяются также и эти компоненты. Другие полезные компоненты (серебро, селен, теллур и др.), вредные примеси (цинк, свинец, мышьяк, фтор, кадмий, висмут), а также шлакообразующие компоненты (SiO2, Fe2O3, FeO, A12O3, MgO и CaO) определяются обычно по групповым пробам.

На месторождениях силикатных никелевых руд в рядовых про­бах определяются никель, кобальт и железо (для железистых разностей). Групповые пробы анализируются на никель, кобальт, железо, на шлакообразующие компоненты (SiO2, Al2O3, MgO, Fe2O3, CaO, иногда FeO, MnO, TiO2) и вредные примеси (Cr2О3, Cu и Р2О5).

На месторождениях арсенидных и сульфоарсенидных никелевых и кобальтовых руд в рядовых пробах определяются никель, кобальт, иногда мышьяк, в групповых – медь, мышьяк, висмут, золото, серебро, сера, сурьма, свинец, цинк и шлакообразующие компоненты (SiO2, CaO и MgO).

Порядок объединения рядовых проб в групповые, их размещение и общее количество должны обеспечивать равномерное опробование основных разновидностей руд на попутные и шлакообразующие компоненты и вредные примеси и выяснение закономерностей изменения их содержаний по простиранию и падению рудных тел.

На месторождениях силикатных никелевых руд шлакообразующие компоненты должны быть изучены во всех скважинах по сети, соответствующей категории C1.

Для выяснения степени окисления сульфидных, арсенидных и сульфоарсенидных руд и установления границы зоны окисления, а также для определения количества никеля и кобальта, связанных с силикатами, должны выполняться фазовые анализы.

32. Качество анализов проб необходимо систематически проверять, а результаты контроля своевременно обрабатывать в соответствии с методическими указаниями НСАМ и НСОММИ. Геологический контроль анализов проб следует осуществлять независимо от лабораторного контроля в течение всего периода разведки месторождения. Контролю подлежат результаты анализов на все основные, попутные, шлакообразующие компоненты и вредные примеси.

33. Для определения величин случайных погрешностей необходимо проводить внутренний контроль путем анализа зашифрованных контрольных проб, отобранных из дубликатов аналитических проб, в той же лаборатории, которая выполняет основные анализы.

Для выявления и оценки возможных систематических погрешностей должен осуществляться внешний контроль в лаборатории, имеющей статус контрольной. На внешний контроль направляются дубликаты аналитических проб, хранящиеся в основной лаборатории и прошедшие внутренний контроль. При наличии стандартных образцов состава (СОС), аналогичных исследуемым пробам, внешний контроль следует осуществлять, включая их в зашифрованном виде в партию проб, которые сдаются на анализ в основную лабораторию.

Пробы, направляемые на внутренний и внешний контроль, должны характеризовать все разновидности руд месторождения и классы содержаний. В обязательном порядке на внутренний контроль направляются все пробы, показавшие аномально высокие содержания анализируемых компонентов.

34. Объем внутреннего и внешнего контроля должен обеспечить представительность выборки по каждому классу содержаний и периоду разведки (квартал, полугодие, год). При выделении классов следует учитывать параметры кондиций для подсчета запасов – бортовое и минимальное промышленное содержание. В случае большого числа анализируемых проб (2000 и более в год) на контрольные анализы направляется 5 % от их общего количества; при меньшем числе проб по каждому выделенному классу содержаний должно быть выполнено не менее 30 контрольных анализов за контролируемый период.

35. Обработка данных внутреннего и внешнего контроля по каждому классу содержаний производится по периодам (квартал, полугодие, год), раздельно по каждому методу анализа и лаборатории, выполняющей основные анализы. Оценка систематических расхождений по результатам анализа СОС выполняется в соответствии с методическими указаниями НСАМ по статистиче­ской обработке аналитических данных.

Относительная среднеквадратическая погрешность, определенная по результатам внутреннего контроля, не должна превышать значений, указанных в табл. 4. В противном случае результаты основных анализов для данного класса содержаний и периода работы лаборатории бракуются и все пробы подлежат повторному анализу с выполнением внутреннего геологического контроля. Одновременно основной лабораторией должны быть выяснены причины брака и приняты меры по его устранению.

36. При выявлении по данным внешнего контроля систематических расхождений между результатами анализов основной и контролирующей лабораторий проводится арбитражный контроль. Этот контроль выполняется в лаборатории, имеющей статус арбитражной. На арбитражный контроль направляются хранящиеся в лаборатории аналитические дубликаты рядовых проб (в исключительных случаях – остатки аналитических проб), по которым имеются результаты рядовых и внешних контрольных анализов. Контролю подлежат 30–40 проб по каждому классу содержаний, по которому выявлены систематические расхождения. При наличии СОС, аналогичных исследуемым пробам, их также следует включать в зашифрованном виде в партию проб, сдаваемых на арбитраж. Для каждого СОС должно быть получено 10–15 результатов контрольных анализов.

Таблица 4

^ Предельно допустимые относительные среднеквадратические

погрешности анализов по классам содержаний

Компонент

Класс содержаний компонентов в руде, % (Аu, Ag, Se, Те, г/т)*

Предельно допустимая относительная среднеквадратическая погрешность, %

Компонент

Класс содержаний компонентов в руде, % (Аu, Ag, Se, Те, г/т)*

Предельно допустимая относительная среднеквадратическая погрешность, %
  1   2   3   4   5



Скачать файл (427.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru