Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по высшей математике (часть 2) - файл Лекции-5.doc


Загрузка...
Лекции по высшей математике (часть 2)
скачать (645.5 kb.)

Доступные файлы (4):

Лекции-5.doc645kb.04.07.2002 17:22скачать
Лекции - 6.doc619kb.04.07.2002 17:48скачать
Лекции-7.doc828kb.01.07.2002 19:37скачать
Лекции-8.doc520kb.04.07.2002 17:48скачать

Лекции-5.doc

1   2   3
Реклама MarketGid:
Загрузка...
Производные и дифференциалы высших порядков.
Частные производные функции z = f (x,y) являются, в свою очередь, функциями переменных х и у. Следовательно, можно найти их частные производные по этим переменным. Обозначим их так:



Таким образом, получены четыре частные производные 2-го порядка. Каждую из них можно вновь продифференцировать по х и по у и получить восемь частных производных 3-го порядка и т.д. Определим производные высших порядков так:
Определение 3.2. Частной производной n-го порядка функции нескольких переменных называется первая производная от производной (n – 1)-го порядка.
Частные производные обладают важным свойством: результат дифференцирования не зависит от порядка дифференцирования (например, ). Докажем это утверждение.

Теорема 3.3. Если функция z = f (x,y) и ее частные производные определены и непрерывны в точке М (х, у) и в некоторой ее окрестности, то в этой точке

(3.3)

Доказательство.

Рассмотрим выражение и введем вспомогательную функцию . Тогда

. Из условия теоремы следует, что дифференцируема на отрезке [x, x+Δx], поэтому к ней можно применить теорему Лагранжа: где

[x, x+Δx]. Но Так как в окрестности точки М определена , дифференцируема на отрезке [y, y + Δy], поэтому к полученной разности вновь можно применить теорему Лагранжа: , где Тогда

Изменим порядок слагаемых в выражении для А:

и введем другую вспомогательную функцию , тогда Проведя те же преобразования, что и для , получим, что где . Следовательно,

. В силу непрерывности и . Поэтому, переходя к пределу при получаем, что , что и требовалось доказать.

Следствие. Указанное свойство справедливо для производных любого порядка и для функций от любого числа переменных.
Дифференциалы высших порядков.
Определение 3.2. Дифференциалом второго порядка функции u = f (x, y, z) называется



Аналогично можно определить дифференциалы 3-го и более высоких порядков:
Определение 3.3. Дифференциалом порядка k называется полный дифференциал от дифференциала порядка (k – 1): d k u = d (d k-1 u).
Свойства дифференциалов высших порядков.

  1. k-й дифференциал является однородным целым многочленом степени k относительно дифференциалов независимых переменных, коэффициентами при которых служат частные производные k-го порядка, умноженные на целочисленные постоянные (такие же, как при обычном возведении в степень):

.

  1. Дифференциалы порядка выше первого не инвариантны относительно выбора переменных.


Лекция 4.

Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала. Формула Тейлора для функции нескольких переменных. Производная функции по направлению. Градиент и его свойства.
Пусть функция z = f (x, y) является дифференцируемой в окрестности точки М (х0 , у0). Тогда ее частные производные и являются угловыми коэффициентами касательных к линиям пересечения поверхности z = f (x, y) с плоскостями у = у0 и х = х0, которые будут касательными и к самой поверхности z = f (x, y). Составим уравнение плоскости, проходящей через эти прямые. Направляющие векторы касательных имеют вид {1; 0; } и {0; 1; }, поэтому нормаль к плоскости можно представить в виде их векторного произведения: n = {-,-, 1}. Следовательно, уравнение плоскости можно записать так:

, (4.1)

где z0 = .
Определение 4.1. Плоскость, определяемая уравнением (4.1), называется касательной плоскостью к графику функции z = f (x, y) в точке с координатами ( х0 , у0 , z0 ).
Из формулы (2.3) для случая двух переменных следует, что приращение функции f в окрестности точки М можно представить в виде:

или
(4.2)

Следовательно, разность между аппликатами графика функции и касательной плоскости является бесконечно малой более высокого порядка, чем ρ, при ρ→0.

При этом дифференциал функции f имеет вид:

,

что соответствует приращению аппликаты касательной плоскости к графику функции. В этом состоит геометрический смысл дифференциала.
Определение 4.2. Ненулевой вектор, перпендикулярный касательной плоскости в точке М (х0 , у0) поверхности z = f (x, y), называется нормалью к поверхности в этой точке.
В качестве нормали к рассматриваемой поверхности удобно принять вектор --n = {,,-1}.

z




z = f (x,y)

M0 (x0 , y0 , z0)

n




y

M (x0 , y0)

x

Пример.

Составим уравнение касательной плоскости к поверхности z = xy в точке М (1; 1). При х0 = у0 = 1 z0 =1; . Следовательно, касательная плоскость задается уравнением: z = 1 + (x – 1) + (y – 1), или x + yz1 = 0. При этом вектор нормали в данной точке поверхности имеет вид: n = {1; 1; -1}.

Найдем приращение аппликат графика функции и касательной плоскости при переходе от точки М к точке N(1,01; 1,01).

Δz = 1,01² - 1 = 0,0201; Δzкас = (1,01 + 1,01 – 1) – (1 + 1 – 1) = 0,02. Следовательно,

dz = Δzкас = 0,02. При этом Δz dz = 0,0001.
Формула Тейлора для функции нескольких переменных.

Как известно, функцию F(t) при условии существования ее производных по порядок n+1 можно разложить по формуле Тейлора с остаточным членом в форме Лагранжа (см. формулы (21.7), (21.11) первой части курса). Запишем эту формулу в дифференциальной форме:

(4.3)

где

В этой форме формулу Тейлора можно распространить на случай функции нескольких переменных.

Рассмотрим функцию двух переменных f(x, y), имеющую в окрестности точки (х0 , у0) непрерывные производные по (n + 1)-й порядок включительно. Зададим аргументам х и у некоторые приращения Δх и Δу и рассмотрим новую независимую переменную t:

(0 ≤ t1). Эти формулы задают прямолинейный отрезок, соединяющий точки (х0 , у0) и (х0 + Δх, у0 + Δу). Тогда вместо приращения Δf (x0 ,y0) можно рассматривать приращение вспомогательной функции

F(t) = f (x0 + t Δx, y0 + tΔy) , (4.4)

равное ΔF (0) = F (1) – F (0). Но F (t) является функцией одной переменной t, следовательно, к ней применима формула (4.3). Получаем:

.

Отметим, что при линейной замене переменных дифференциалы высших порядков обладают свойством инвариантности, то есть



Подставив эти выражения в (4.3), получим формулу Тейлора для функции двух переменных:

, (4.5)

где 0<θ<1.

Замечание. В дифференциальной форме формула Тейлора для случая нескольких переменных выглядит достаточно просто, однако в развернутом виде она весьма громоздка. Например, даже для функции двух переменных первые ее члена выглядят так:




^ Производная по направлению. Градиент.
Пусть функция u = f (x, y, z) непрерывна в некоторой области D и имеет в этой области непрерывные частные производные. Выберем в рассматриваемой области точку M(x,y,z) и проведем из нее вектор S, направляющие косинусы которого cosα, cosβ, cosγ. На векторе S на расстоянии Δs от его начала найдем точку М1(х+Δх, у+Δу, z+Δz), где



Представим полное приращение функции f в виде:

где

После деления на Δs получаем:

.

Поскольку предыдущее равенство можно переписать в виде:
(4.6)

Определение 4.3. Предел отношения при называется производной от функции u = f (x, y, z) по направлению вектора S и обозначается .

При этом из (4.6) получаем:

(4.7)
Замечание 1. Частные производные являются частным случаем производной по направлению. Например, при получаем:

.
Замечание 2. Выше определялся геометрический смысл частных производных функции двух переменных как угловых коэффициентов касательных к линиям пересечения поверхности, являющейся графиком функции, с плоскостями х = х0 и у = у0. Аналогичным образом можно рассматривать производную этой функции по направлению l в точке М(х0 , у0) как угловой коэффициент линии пересечения данной поверхности и плоскости, проходящей через точку М параллельно оси Oz и прямой l.

Определение 4.4. Вектор, координатами которого в каждой точке некоторой области являются частные производные функции u = f (x, y, z) в этой точке, называется градиентом функции u = f (x, y, z).

Обозначение: grad u = .

Свойства градиента.

  1. Производная по направлению некоторого вектора S равняется проекции вектора grad u на вектор S. Доказательство. Единичный вектор направления S имеет вид eS ={cosα, cosβ, cosγ}, поэтому правая часть формулы (4.7) представляет собой скалярное произведение векторов grad u и es, то есть указанную проекцию.

  2. Производная в данной точке по направлению вектора S имеет наибольшее значение, равное |grad u |, если это направление совпадает с направлением градиента. Доказательство. Обозначим угол между векторами S и grad u через φ. Тогда из свойства 1 следует, что |grad u |∙cosφ, (4.8) следовательно, ее наибольшее значение достигается при φ=0 и равно |grad u |.

  3. Производная по направлению вектора, перпендикулярного к вектору grad u , равна нулю.

Доказательство. В этом случае в формуле (4.8)

  1. Если z = f (x,y) – функция двух переменных, то grad f = направлен перпендикулярно к линии уровня f (x,y) = c, проходящей через данную точку.



Лекция 5.

Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.

Определение 5.1. Точка М00 , у0 ) называется точкой максимума функции z = f (x, y), если f (xo , yo) > f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.

Определение 5.2. Точка М00 , у0 ) называется точкой минимума функции z = f (x, y), если f (xo , yo) < f (x, y) для всех точек (х, у) из некоторой окрестности точки М0.
Замечание 1. Точки максимума и минимума называются точками экстремума функции нескольких переменных.

Замечание 2. Аналогичным образом определяется точка экстремума для функции от любого количества переменных.
Теорема 5.1 (необходимые условия экстремума). Если М00 , у0 ) – точка экстремума функции z = f (x, y), то в этой точке частные производные первого порядка данной функции равны нулю или не существуют.

Доказательство.

Зафиксируем значение переменной у, считая у = у0. Тогда функция f (x, y0) будет функцией одной переменной х, для которой х = х0 является точкой экстремума. Следовательно, по теореме Ферма или не существует. Аналогично доказывается такое же утверждение для .
Определение 5.3. Точки, принадлежащие области определения функции нескольких переменных, в которых частные производные функции равны нулю или не существуют, называются стационарными точками этой функции.
Замечание. Таким образом, экстремум может достигаться только в стационарных точках, но не обязательно он наблюдается в каждой из них.

Примеры.

  1. Найдем стационарную точку функции z = x² + y². Для этого решим систему уравнений откуда х0 = у0 = 0. Очевидно, что в этой точке функция имеет минимум, так как при х = у = 0 z = 0, а при остальных значениях аргументов z > 0.

  2. Для функции z = xy стационарной точкой тоже является (0, 0), но экстремум в этой точке не достигается ( z (0, 0) = 0, а в окрестности стационарной точки функция принимает как положительные, так и отрицательные значения).


Теорема 5.2 (достаточные условия экстремума). Пусть в некоторой окрестности точки М00 , у0 ) , являющейся стационарной точкой функции z = f (x, y), эта функция имеет непрерывные частные производные до 3-го порядка включительно. Обозначим Тогда:

    1. f (x, y) имеет в точке М0 максимум, если ACB² > 0, A < 0;

    2. f (x, y) имеет в точке М0 минимум, если ACB² > 0, A > 0;

    3. экстремум в критической точке отсутствует, если ACB² < 0;

    4. если ACB² = 0, необходимо дополнительное исследование.

Доказательство.

Напишем формулу Тейлора второго порядка для функции f (x, y), помня о том, что в стационарной точке частные производные первого порядка равны нулю:



где Если угол между отрезком М0М , где М (х0+Δх, у0+Δу), и осью Ох обозначить φ, то Δх = Δρ cosφ, Δy = Δρsinφ. При этом формула Тейлора примет вид: . Пусть Тогда можно разделить и умножить выражение в скобках на А. Получим:

. (5.1)

Рассмотрим теперь четыре возможных случая:

  1. AC-B² > 0, A < 0. Тогда , и при достаточно малых Δρ. Следовательно, в некоторой окрестности М0 f (x0 + Δx, y0 + Δy) < f (x0 , y0), то есть М0 – точка максимума.

  2. Пусть AC – B² > 0, A > 0. Тогда , и М0 – точка минимума.

  3. Пусть AC-B² < 0, A > 0. Рассмотрим приращение аргументов вдоль луча φ = 0. Тогда из (5.1) следует, что , то есть при движении вдоль этого луча функция возрастает. Если же перемещаться вдоль луча такого, что tg φ0 = -A/B, то , следовательно, при движении вдоль этого луча функция убывает. Значит, точка М0 не является точкой экстремума.

3`) При ACB² < 0, A < 0 доказательство отсутствия экстремума проводится

аналогично предыдущему.

3``) Если ACB² < 0, A = 0, то . При этом . Тогда при достаточно малых φ выражение 2B cosφ + C sinφ близко к 2В, то есть сохраняет постоянный знак, а sinφ меняет знак в окрестности точки М0 . Значит, приращение функции меняет знак в окрестности стационарной точки, которая поэтому не является точкой экстремума.

  1. Если ACB² = 0, а , , то есть знак приращения определяется знаком 2α0. При этом для выяснения вопроса о существовании экстремума необходимо дальнейшее исследование.

Пример. Найдем точки экстремума функции z = x² - 2xy + 2y² + 2x. Для поиска стационарных точек решим систему . Итак, стационарная точка (-2,-1). При этом А = 2, В = -2, С = 4. Тогда ACB² = 4 > 0, следовательно, в стационарной точке достигается экстремум, а именно минимум (так как A > 0).

Условный экстремум.

Определение 5.4. Если аргументы функции f (x1 , x2 ,…, xn) связаны дополнительными условиями в виде m уравнений (m < n):

φ1 (х1, х2 ,…, хn) = 0, φ2 (х1, х2 ,…, хn) = 0, …, φm (х1, х2 ,…, хn) = 0, (5.2)

где функции φi имеют непрерывные частные производные, то уравнения (5.2) называются уравнениями связи.

Определение 5.5. Экстремум функции f (x1 , x2 ,…, xn) при выполнении условий (5.2) называется условным экстремумом.

Замечание. Можно предложить следующее геометрическое истолкование условного экстремума функции двух переменных: пусть аргументы функции f(x,y) связаны уравнением φ(х,у) = 0, задающим некоторую кривую в плоскости Оху. Восставив из каждой точки этой кривой перпендикуляры к плоскости Оху до пересечения с поверхностью z = f (x,y), получим пространственную кривую, лежащую на поверхности над кривой φ(х,у) = 0. Задача состоит в поиске точек экстремума полученной кривой, которые, разумеется, в общем случае не совпадают с точками безусловного экстремума функции f(x,y).

Определим необходимые условия условного экстремума для функции двух переменных, введя предварительно следующее определение:

Определение 5.6. Функция L (x1 , x2 ,…, xn) = f (x1 , x2 ,…, xn) + λ1φ1 (x1 , x2 ,…, xn) +

+ λ2φ2 (x1 , x2 ,…, xn) +…+λmφm (x1 , x2 ,…, xn), (5.3)

где λiнекоторые постоянные, называется функцией Лагранжа, а числа λi неопределенными множителями Лагранжа.

Теорема 5.3 (необходимые условия условного экстремума). Условный экстремум функции z = f (x, y) при наличии уравнения связи φ (х, у) = 0 может достигаться только в стационарных точках функции Лагранжа L (x, y) = f (x, y) + λφ (x, y).

Доказательство. Уравнение связи задает неявную зависимость у от х, поэтому будем считать, что у есть функция от х: у = у(х). Тогда z есть сложная функция от х, и ее критические точки определяются условием: . (5.4) Из уравнения связи следует, что . (5.5)

Умножим равенство (5.5) на некоторое число λ и сложим с (5.4). Получим:

, или .

Последнее равенство должно выполняться в стационарных точках, откуда следует:

(5.6)

Получена система трех уравнений относительно трех неизвестных: х, у и λ, причем первые два уравнения являются условиями стационарной точки функции Лагранжа. Исключая из системы (5.6) вспомогательное неизвестное λ, находим координаты точек, в которых исходная функция может иметь условный экстремум.

Замечание 1. Проверку наличия условного экстремума в найденной точке можно провести с помощью исследования частных производных второго порядка функции Лагранжа по аналогии с теоремой 5.2.

Замечание 2. Точки, в которых может достигаться условный экстремум функции f (x1 , x2 ,…, xn) при выполнении условий (5.2), можно определить как решения системы (5.7)

Пример. Найдем условный экстремум функции z = xy при условии х + у = 1. Составим функцию Лагранжа L(x, y) = xy + λ (x + y1). Система (5.6) при этом выглядит так:

, откуда -2λ=1, λ=-0,5, х = у = -λ = 0,5. При этом L (x, y) можно представить в виде L (x, y) = -0,5 (xy)² + 0,5 ≤ 0,5, поэтому в найденной стационарной точке L (x, y)имеет максимум, а z = xyусловный максимум.

1   2   3



Скачать файл (645.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru