Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по высшей математике (часть 2) - файл Лекции-7.doc


Загрузка...
Лекции по высшей математике (часть 2)
скачать (645.5 kb.)

Доступные файлы (4):

Лекции-5.doc645kb.04.07.2002 17:22скачать
Лекции - 6.doc619kb.04.07.2002 17:48скачать
Лекции-7.doc828kb.01.07.2002 19:37скачать
Лекции-8.doc520kb.04.07.2002 17:48скачать

Лекции-7.doc

  1   2   3
Реклама MarketGid:
Загрузка...
Лекция 13.

Замена переменной и интегрирование по частям в определенном интеграле. Применение определенного интеграла к вычислению площадей плоских фигур.
Теорема 13.1. Если:

  1. функция f(x) непрерывна на отрезке [a,b],

  2. функция φ(t) непрерывна и имеет непрерывную производную φ΄(t) на отрезке [α,β], где a = φ(α), b = φ(β),

  3. функция f (φ(t)) определена и непрерывна на отрезке [α,β],

то . (13.1)

Доказательство.

Если F(x) – первообразная для f(x), то ,

(см. теорему 6.2). Тогда, используя формулу Ньютона – Лейбница, получим: , откуда следует справедливость формулы (13.1).
Замечание. В отличие от неопределенного интеграла, в определенном интеграле нет необходимости возвращаться к прежней переменной интегрирования, так как результатом вычисления будет число, не зависящее от выбора переменной.
Пример.

Вычислить интеграл . Сделаем замену: откуда . При этом Тогда =


Теорема 13.2. Если функции u(x) и v(x) непрерывны вместе со своими производными на отрезке [a,b], то

. (13.2)

(Формула (13.2) называется формулой интегрирования по частям для определенного интеграла).

Доказательство.

. Все интегралы в этом равенстве существуют, так как подынтегральные функции непрерывны. При этом , поэтому , откуда следует (13.2).
Примеры.

  1. Вычислить интеграл . Пусть u = x, dv = exdx. Тогда du = dx, v = ex. Применим формулу (13.2): .

  2. . (При интегрировании принималось u = x, v = arcsinx).

  3. Вычислить . Пусть u = ex, dv = sinxdx. Тогда du = exdx, v = -cosx. Следовательно, = . Применим к интегралу в правой части полученного равенства еще раз формулу интегрирования по частям, положив u = ex, dv = cosxdx: = . Поскольку при этом в правой части равенства стоит такой же интеграл, как в левой, его значение можно найти из уравнения: 2 = eπ + 1 , то есть

=
^ Геометрические приложения определенного интеграла.


  1. Вычисление площадей плоских фигур.


Вспомним, каким образом вводилось понятие определенного интеграла. С геометрической точки зрения интегральная сумма представляет собой (при f(x) ≥ 0) сумму площадей прямоугольников с основанием и высотой . Переходя к пределу при |τ|→0, получаем, что при представляет собой площадь так называемой криволинейной трапеции 1В1b, то есть фигуры, ограниченной частью графика функции

у

у

y=f(x) y=f2(x)

A1 B1



y=f1(x)
a b х a b x
Рис. 1 Рис. 2
f(x) от х = а до x = b и отрезками прямых х = а, x = b и у = 0 (рис. 1):

. (13.3)

Если требуется найти площадь фигуры, ограниченной графиками двух функций: f1(x) и f2(x) (рис. 2), то ее можно рассматривать как разность площадей двух криволинейных трапеций: верхней границей первой из них служит график функции f2(x), а второй – f1(x). Таким образом, . (13.4)

Замечание 1. Формула (13.4) справедлива, если графики функций f1(x) и f2(x) не пересекаются при a < x < b.

Замечание 2. Функции f1(x) и f2(x) могут при этом принимать на интервале [a,b] значения любого знака.
Пример.

Найти площадь фигуры, ограниченной графиками функций y = x² - 3x – 5 и y = x5.

Найдем абсциссы точек пересечения указанных графиков, то есть корни уравнения x² - 3x – 5 = x5. x² - 4x = 0, x1 = a = 0, x2 = b = 4. Таким образом, найдены пределы интегрирования. Так как на интервале [0,4] прямая y = x5 проходит выше параболы у = x² - 3x – 5, формула (13.4) примет вид:


Лекция 14.

Площадь в полярных координатах. Длина дуги кривой и ее вычисление. Вычисление объемов тел.
Введем на плоскости криволинейную систему координат, называемую полярной. Она состоит из точки О (полюса) и выходящего из него луча (полярной оси).



у

М

ρ М

φ у=ρsinφ ρ

O

O x=ρcosφ x
Рис. 1 Рис. 2
Координатами точки М в этой системе (рис. 1) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М(ρ,φ). Отметим, что для всех точек плоскости, кроме полюса, ρ > 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Замечание. Если ограничить значения φ интервалом [0,π] или [-π, π], то каждой точке плоскости соответствует единственная пара координат (ρ,φ). В других случаях можно считать, что φ может принимать любые значения, то есть полярный угол определяется с точностью до слагаемого, кратного 2π.

Связь между полярными и декартовыми координатами точки ^ М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 2). Тогда x=ρcosφ, у=ρsinφ . Отсюда , tg. Выясним, как с помощью определенного интеграла вычислить площадь фигуры, границы которой заданы в полярных координатах.

а) Площадь криволинейного сектора. ρ=ρ1(φ)

ρ=ρ(φ)






ρ=ρ2(φ)

β α β α

О О

Рис. 3 Рис. 4
Найдем площадь фигуры, ограниченной частью графика функции ρ=ρ(φ) и отрезками лучей φ = α и φ = β. Для этого разобьем ее на п частей лучами φ = φi и найдем сумму площадей круговых секторов, радиусами которых служат где Как известно, площадь сектора вычисляется по формуле где r – радиус сектора, а α – его центральный угол. Следовательно, для суммы площадей рассматриваемых секторов можно составить интегральную сумму , где . В пределе при получим, что площадь криволинейного сектора

. (14.1)
б) Площадь замкнутой области.

Если рассмотреть замкнутую область на плоскости, ограниченную кривыми, уравнения которых заданы в полярных координатах в виде и (), а полярный угол φ принимает для точек внутри области значения в пределах от α до β (рис. 4), то ее площадь можно вычислять как разность площадей криволинейных секторов, ограниченных кривыми и , то есть

. (14.2)

Пример.

Вычислим площадь области, заключенной между дугой окружности x² + y² = 1 и прямой x = при . В точках пересечения прямой и окружности , то есть полярный угол φ изменяется внутри области в пределах от до . Уравнение окружности в полярных координатах имеет вид ρ = 1, уравнение прямой - , то есть . Следовательно, площадь рассматриваемой области можно найти по формуле (14.2):

.


  1. Длина дуги кривой.


а) Длина дуги в декартовых координатах.
у y = f(x) Рассмотрим функцию y = f(x), непрерывную

Δуi на отрезке [a,b] вместе со своей производной.

Δхi Выберем разбиение τ отрезка [a,b] и будем

считать длиной дуги кривой, являющейся

графиком f(x), от х=а до x=b предел при |τ|→0

длины ломаной, проведенной через точки

графика с абсциссами х0 , х1 ,…, хп (точками

а xi-1 xi b разбиения τ) при стремлении длины ее

наибольшего звена к нулю:

Рис. 5 . (14.3)

Убедимся, что при поставленных условиях этот предел существует. Пусть . Тогда (рис. 5). По формуле конечных приращений Лагранжа , где xi-1 < ξi < xi . Поэтому , а длина ломаной . Из непрерывности f(x) и следует и непрерывность функции , следовательно, существует и предел интегральной суммы, являющейся длиной ломаной, который равен

. Таким образом, получена формула для вычисления длины дуги:

. (14.4)
Пример.

Найти длину дуги кривой y = ln x от х = до х = .

. Сделаем замену: , тогда , а пределами интегрирования для u будут u=2 (при х = ) и и = 4 (при х = ). Получим:

.

б) Длина дуги кривой, заданной в параметрической форме.

Если уравнения кривой заданы в виде , где а φ(t) и ψ(t) – непрерывные функции с непрерывными производными, причем φ΄(t) ≠ 0 на [α,β], то эти уравнения определяют непрерывную функцию y = f(x), имеющую непрерывную производную . Если то из (14.4) или

. (14.5)

Замечание. Если пространственная линия задана параметрическими уравнениями

, то при указанных ранее условиях . (14.6)
в) Длина дуги в полярных координатах.
Если уравнение кривой задано в полярных координатах в виде ρ = f(φ), то x = ρ cos φ = f(φ)cos φ, y = ρ sin φ = f(φ)sin φ – параметрические уравнения относительно параметра φ. Тогда для вычисления длины дуги можно использовать формулу (14.5), вычислив предварительно производные х и у по φ:

Следовательно,

, поэтому

(14.7)

Пример.

Найти длину дуги спирали Архимеда ρ = φ от φ = 0 до φ = 2π .





(были применены замены φ = tg t и u = sint).



  1. Вычисление объемов тел.


Пусть имеется некоторое тело, для которого известна площадь любого его сечения плоскостью, перпендикулярной оси Ох, являющаяся функцией от х: Q = Q(x). Определим объем рассматриваемого тела в предположении, что Qнепрерывная функция. Если значение х внутри тела меняется от а до b, то можно разбить тело на слои плоскостями х = х0 = а, х = х1, х = х2,…, х = хn = b. Затем выберем в каждом слое значение х = ξi , xi-1 ≤ ξi xi , и рассмотрим сумму объемов цилиндров с площадями оснований Qi) и высотами Δxi = xixi-1 . Эта сумма будет равна . Получена интегральная сумма для непрерывной функции Q(x) на отрезке [a,b] , следовательно, для нее существует предел при | τ | → 0, который равен определенному интегралу

, (14.8)

называемому объемом данного тела.
Замечание. Если требуется определить объем так называемого тела вращения, то есть тела, образованного вращением вокруг оси Ох криволинейной трапеции, ограниченной частью графика функции y = f(x) от х = а до x = b и отрезками прямых х = а, х = b и у =0, то площадь сечения такого тела плоскостью x = const равна , и формула (14.8) в этом случае имеет вид:

. (14.9)

Пример.

Найдем объем эллипсоида вращения . При x = const сечениями будут круги с радиусом и площадью . Применим формулу (14.8), учитывая, что х изменяется от –2 до 2:

v = .



  1. Площадь поверхности тела вращения.


Пусть требуется определить площадь поверхности, полученной вращением кривой y = f(x) вокруг оси Ох при . Выберем разбиение τ отрезка [a,b] и рассмотрим, как и при определении длины кривой, ломаную, проходящую через точки кривой с абсциссами xi . Каждый отрезок такой ломаной при вращении опишет усеченный конус, площадь боковой поверхности которого равна . По формуле конечных приращений Лагранжа , где . Поэтому . Следовательно, площадь всей поверхности, описанной ломаной при вращении, равна . Назовем площадью поверхности вращения предел этой суммы при maxΔli →0 .

Заметим, что эта сумма не является интегральной суммой для функции , так как в каждом ее слагаемом фигурирует несколько точек данного отрезка разбиения. Однако можно доказать, что предел такой суммы равен пределу интегральной суммы для , откуда получаем формулу для площади поверхности вращения:

. (14.10)
Пример.

Вычислим площадь поверхности, полученной вращением части кривой от х = 0 до х=1. Используя формулу (14.10), получим: .

Лекция 15.

Несобственные интегралы с бесконечными пределами интегрирования. Теорема сравнения для интегралов от неотрицательных функций. Абсолютная и условная сходимость. Признак абсолютной сходимости. Несобственные интегралы от неограниченных функций, исследование их сходимости.
В предыдущих лекциях рассматривались определенные интегралы, соответствующие с геометрической точки зрения площадям замкнутых ограниченных областей (криволинейных трапеций). Расширим понятие определенного интеграла на случай неограниченной области. Такую область можно получить, либо приняв какой-либо из пределов интегрирования равным бесконечности, либо рассматривая график функции с бесконечными разрывами (то есть неограниченной). Рассмотрим отдельно каждый из указанных случаев.
^ Несобственные интегралы с бесконечными пределами (несобственные

интегралы 1-го рода)
Пусть функция f(x) определена и непрерывна при х а. Тогда интеграл имеет смысл при любом b > a и является непрерывной функцией аргумента b.
Определение 15.1. Если существует конечный предел

, (15.1)

то его называют несобственным интегралом 1-го рода от функции f(x) на интервале и обозначают . Таким образом, по определению

=. (15.2)

При этом говорят, что несобственный интеграл существует или сходится. Если же не существует конечного предела (15.1), несобственный интеграл не существует или расходится.

y Повторим, что геометрической интерпрета-

y=f(x) цией несобственного интеграла 1-го рода

является площадь неограниченной области,

расположенной между графиком функции

y=f(x) , прямой х = а и осью Ох.


a b
Замечание. Аналогичным образом можно определить и несобственные интегралы 1-го рода для других бесконечных интервалов:

(15.3)

В частности, последний интеграл существует только в том случае, если сходятся оба интеграла, стоящие в правой части равенства.

Часто достаточно бывает только установить сходимость или расходимость несобственного интеграла и оценить его значение.

^ Лемма.

Если на интервале [a, +∞), то для сходимости интеграла необходимо и достаточно, чтобы множество всех интегралов (b > a) было ограничено сверху, то есть чтобы существовала такая постоянная c > 0, чтобы выполнялось неравенство . (15.4)

Доказательство.

Рассмотрим функцию и покажем, что в условиях леммы она монотонно возрастает на [a, +∞). Действительно, при = +

+ =g(b), так как при 0. Следовательно, функция g(b) монотонно возрастает и ограничена сверху, поэтому она имеет конечный предел при , что по определению означает существование интеграла .

  1   2   3



Скачать файл (645.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru