Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции - курс: Математические методы в психологии. Часть 1 - файл 1.doc


Лекции - курс: Математические методы в психологии. Часть 1
скачать (2067.5 kb.)

Доступные файлы (1):

1.doc2068kb.16.11.2011 05:07скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7   8   9
Реклама MarketGid:
Загрузка...






Материалы к курсу

«МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПСИХОЛОГИИ»


ЧАСТЬ 1


@Преподаватель: Голев Сергей Васильевич, адъюнкт-профессор психологии (доцент).


@Ассистент: Голева Ольга Сергеевна, магистр психологии


(ОМУРЧ «Украина» ХФ. – 2008 г.)

ИПИС ХГУ - 2008 г. )


В лекциях были использованы материалы следующих авторов:

Годфруа Ж. Что такое психология? М.: Мир, 1996. Т 2 . Куликов Л. В. Психологическое исследование: методические рекомендаций по проведению. - СПб., 1995. Немов Р.С. Психология: Экспериментальная педагогическая психология и психодиагностика. - М., 1999.- Т. 3. Практикум по общей экспериментальной психологии / Под ред. А.А. Крылова. - Л. ЛГУ, 1987. Сидоренко Е.В. Методы математической обработки в психологии. –СПб.: ООО «Речь», 2000. -350 с. Шевандрин Н.И. Психодиагностика, коррекция и развитие личности. - М.: Владос, 1998.-С.123. Суходольский Г.В. Математические методы в психологии. – Харьков: Изд-во Гуманитарный Центр, 2004. – 284 с.


Курс «Математические методы в психологии»

(Материалы для самостоятельного изучения студентами)


Лекция № 1


^ ВВЕДЕНИЕ В КУРС «МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПСИХОЛОГИИ»


Вопросы:

1.Математика и психология

2.Методологические вопросы применения математики в психологии

3.Математическая психология

3.1.Введение

3.2.История развития

3.3.Психологические измерения

3.4.Нетрадиционные методы моделирования

4.Словарь по математическим методам в психологии

5.Список рекомендованной литературы по курсу


Вопрос 1. МАТЕМАТИКА И ПСИХОЛОГИЯ


Существует мнение, неоднократно высказывавшееся круп­ными учеными прошлого: область знания становится наукой, лишь применяя математику. С этим мнением, возможно, не со­гласятся многие гуманитарии. А зря: именно математика позво­ляет количественно сравнивать явления, проверять правильность словесных утверждений и тем самым добираться до истины либо приближаться к ней. Математика делает обозримыми длинные и подчас туманные словесные описания, проясняет и экономит мысль.

Математические методы позволяют обоснованно прогно­зировать будущие события, вместо того, чтобы гадать на кофей­ной гуще или как-либо иначе. В общем, польза от применения математики велика, но и труда на ее освоение требуется много. Однако он окупается сполна.

Психология в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех стра­нах и не в полной мере. Точной даты начала пути математизации, пожалуй, не знает ни одна наука. Однако для психологии в каче­стве условной даты начата этого пути можно принять 18 апреля

1822 г. Именно тогда в Королевском немецком научном обществе Иоганн Фридрих Гербарт прочел доклад «О возможности и необ­ходимости применять в психологии математику». Основная идея доклада сводилась к упомянутому выше мнению: если психоло­гия хочет быть наукой, подобно физике, в ней нужно и можно применять математику.

Спустя два года после этого программного по своей сути док­лада ^ И. Ф. Гербарт издал книгу «Психология как наука, заново ос­нованная на опыте, метафизике и математике». Эта книга приме­чательна во многих отношениях. Она, на мой взгляд (см. Г.В Суходольский, [8]), явилась пер­вой попыткой создания психологической теории, опирающейся на тот круг явлений, которые непосредственно доступны каждо­му субъекту, а именно на поток представлений, сменяющих друг друга в сознании. Никаких эмпирических данных о характеристиках этого потока, полученных, подобно физике, эксперимен­тальным путем, тогда не существовало. Поэтому Гербарт в отсут­ствие этих данных, как он сам писал, должен был придумывать гипотетические модели борьбы всплывающих и исчезающих в сознании представлений. Облекая эти модели в аналитическую форму,например φ =α(l-exp[-βt]) ,где t—время, φ—скорость изменения представлений, α и β — константы, зависящие от опы­та, Гербарт, манипулируя числовыми значениями параметров, пы­тался описать возможные характеристики смены представлений.


По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следова­тельно, они в дальнейшем развитии научной психологии подле­жат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».

У И. Ф. Гербарта в Лейпцигском университете нашелся уче­ник и последователь, позднее ставший профессором философии и математики, — Мориц-Вильгельм Дробиш. Он воспринял, раз­вил и по-своему реализовал программную идею учителя. В слова­ре Брокгауза и Ефрона о Дробише сказано, что еще в 30-х годах Х1Х века он занимался исследованиями по математике и психо­логии и публиковался на латинском языке. Но в 1842г. М.В.Дро­биш издал в Лейпциге на немецком языке монографию под не­двусмысленным названием: «Эмпирическая психология соглас­но естественнонаучному методу».

На мой взгляд, эта книга М.-В. Дробиша дает замечательный пример первичной формализации знаний в области психологии сознания. Там нет математики в смысле формул, символики и рас­четов, но там есть четкая система понятий о характеристиках пото­ка представлений в сознании как взаимосвязанных величинах. Уже в предисловии М.-В. Дробиш написал, что эта книга предваряет другую, уже готовую, — имеется в виду книга по математической психологии. Но поскольку его коллеги-психологи недостаточно подготовлены в математике, постольку он счел необходимым про­демонстрировать эмпирическую психологию сначала безо всякой математики, а лишь на твердых естественнонаучных основах.

Не знаю, подействовала ли эта книга на тогдашних филосо­фов и богословов, занимавшихся психологией. Скорее всего — нет. Но она, несомненно, подействовала, как и работы И. Ф. Гербарта, на лейпцигских ученых с естественнонаучным образованием.

Лишь через восемь лет, в 1850 г. в Лейпциге вышла в свет вто­рая основополагающая книга М.-В. Дробиша—«Первоосновы математической психологии». Таким образом, у этой психологи­ческой дисциплины тоже есть точная дата появления в науке. Не­которые современные психологи, пишущие в области математи­ческой психологии, ухитряются начинать ее развитие с американ­ского журнала, появившегося в 1963 г. Воистину, «все новое — это хорошо забытое старое». Целое столетие до американцев развива­лась математическая психология, точнее — математизированная психология. И начало процессу математизации нашей науки по­ложили И. Ф. Гербарт и М.-В. Дробиш.

Надо сказать, что по части новаций математическая психоло­гия Дробиша уступает сделанному его учителем — Гербартом. Правда, Дробиш к двум борющимся в сознании представлениям добавил третье, а это сильно усложнило решения. Но главное, по-моему, в другом. Большую часть объема книги составляют приме­ры численного моделирования. К сожалению, ни современники, ни потомки не поняли и не оценили научного подвига, совершен­ного М.-В. Дробишем: у него ведь не было компьютера для чис­ленного моделирования. А в современной психологии математи­ческое моделирование — это продукт второй половины XX века. В предисловии к нечаевскому переводу гербартианской психоло­гии российский профессор А. И. Введенский, знаменитый своей «психологией без всякой метафизики», весьма пренебрежитель­но отозвался о попытке Гербарта применять в психологии мате­матику. Но не такова была реакция естествоиспытателей. И пси­хофизики, в частности Теодор Фехнер, и знаменитый Вильгельм Вундт, работавшие в Лейпциге, не могли пройти мимо основопо­лагающих публикаций И.Ф.Гербартаи М.-В. Дробиша. Ведь имен­но они математически реализовали в психологии идеи Гербарта о психологических величинах, порогах сознания, времени реакций сознания человека, причем реализовали с использованием совре­менной им математики.

Основные методы тогдашней математики—дифференциальное и интегральное исчисления, уравнения сравнительно несложных за­висимостей — оказались вполне пригодными для выявления и опи­сания простейших психофизических законов и различных реакций человека Но они не годились для изучения сложных психических явлений и сущностей. Не зря В.Вундт категорически отрицал воз­можность эмпирической психологии исследовать высшие психичес­кие функции. Они оставались, по Вундту, в ведении особой, по сути метафизической, психологии народов.

Математические средства для изучения сложных многомерных объектов, в том числе высших психических функции — интеллекта, способностей, личности, стали создавать англоязычные ученые. Сре­ди других результатов оказалось, что рост потомков как бы стремит­ся возвратиться к среднему росту предков. Появилось понятие «рег­рессия», и были получены уравнения, выражающие эту зависимость. Был усовершенствован коэффициент, раньше предложенный фран­цузом Бравэ. Этот коэффициент количественно выражает соотно­шение двух изменяющихся переменных, т. е. корреляцию. Теперь этот коэффициент — одно из важнейших средств многомерного анализа данных, дажесимвол сохранил аббревиатурный: малое латинское «г» от английского relation — отношение.

Еще будучи студентом Кембриджа, Фрэнсис Гальтон заметил, что рейтинг успешности сдачи экзаменов по математике,—а это был выпускной экзамен, —- изменяется от нескольких тысяч до немногих сотен баллов. Позднее, связав это с распределением талантов, Галь­тон пришел к мысли о том, что специальные испытания позволяют прогнозировать дальнейшие жизненные успехи людей. Так в 80-х гг. XIX века родился гальтоновский метод тестов.

Идею тестов подхватили и развили французы—А. Бит, В. Анри и другие, создавшие первые тесты для селекции социально отсталых детей. Это послужило началом психологической тестологии, что, в свою очередь, повлекло за собой развитие психологических измере­ний.

Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том чис­ле математико-психологических. Особая роль здесь принадлежит ан­глийскому инженеру, работавшему в Америке, —Чарльзу Спирмену

Во-первых, Ч. Спирмен, полагавший, что для вычисления корреляции между рядами целочисленных баллов, или рангов, нужна специальная мера, перепробовав разные варианты (я читал его объемную статью в Американском психологическом журнале за 1904 г.), остановился, наконец, на той форме коэффициента корреляции рангов, которая с тех пор носит его имя.

Во-вторых, имея дело с большими массивами числовых ре­зультатов по тестам и корреляций между этими результатами, Ч. Спирмен предположил, что эти корреляции вовсе не выражают взаимовлияние результатов, а эксплицируют их совместную из­менчивость под влиянием обшей латентной психической причи­ны, или фактора, например интеллекта. Соответственно этому Спирмен предложил теорию «генерального» фактора, определя­ющего совместную изменчивость переменных тестовых результа­тов, а также разработал метод выявления этого фактора по корре­ляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.

У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясня­ющую корреляции, предложил Леон Терстоун. Ему же принадле­жит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших мате­матических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.

С конца 20-х гг XX века математические методы все шире про­никают в психологию и творчески используются в ней. Интен­сивно развивается психологическая теория измерений. На основе аппарата цепей Маркова разрабатываются стохастические моде­ли научения в психологии поведения. Созданный в области био­логии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирова­ния и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом. При этом вновь появляющиеся математичес­кие новации нередко заимствуются психологами для своих целей. К примеру, появление алгоритмического языка для задач управ­ления, предложенного А. А. Ляпуновым и Г. А. Шестопалом, по­чти сразу же бьшо использовано В.Н.Пушкиным для составления алгоритмов деятельности железнодорожного диспетчера.

Должен возникнуть во­прос: какими особыми свойствами обладает математика, если одни и те же математические методы успешно применяются в различ­ных науках. Отвечая на этот вопрос, следует обратиться к предме­ту математики и ее объектам.

На протяжении многих столетий считалось, что предметом математики является все сущее — природа в широком смысле. Математики древности полагали, что математические формы име­ют божественное происхождение. Так, Платон рассматривал гео­метрические фигуры как идеальные эйдосы, т. е. образы, создан­ные высшими богами для копирования людьми, конечно, уже не в той совершенной форме. А знаменитый Пифагор видел в числах и определенных числовых сочетаниях предустановленную гармо­нию небесных сфер.

Религиозное мировоззрение людей веками связывало боже­ственное творение мира с математическими средствами, с помо­щью которых выражаются законы природы. Глубоко религиозный сэр Исаак Ньютон верил, что «книга природы написана на языке математики», и широко использовал математические методы в своей натуральной философии.

Надо сказать, что, даже отказавшись от веры в божественное тво­рение мира, многие математики продолжали считать природу пред­метом математики. Нам широко известна формулировка, данная в свое время Ф. Энгельсом: «Предметом математики служат простран­ственные формы и количественные отношения материального мира». Еще и сегодня можно встретить эту формулировку в учебной литера­туре. Правда, появились и другие трактовки предмета — как наибо­лее абстрактных моделей всего сущего. Но здесь, намой взгляд, пред­мет математики опять-таки сужен до служебной функции — моде­лирования и снова природы в широком смысле.

Спрашивается, а правильно ли это, отказавшись от идеи тво­рения, по-прежнему считать природу предметом математики? Ведь это не только не последовательно. Дело в том, что один и тот же природный закон можно выразить математически по-разному и в пределах научной точности нельзя доказать, какое из выраже­ний истинно. Примером могут служить логарифмический закон Вебера—Фехнера и степенной закон Стивенса, которые, как по­казал Ю. М. Забродин, оба выводятся при определенных допуще­ниях из некоего обобщенного психофизического закона. То об­стоятельство, что один и тот же математический метод описывает явления из разных наук, тоже свидетельствует не в пользу приро­ды как предмета математики.

Так если не природа, то что же является предметом математи­ки? Мой ответ, несомненно, крайне удивит многих представите­лей физико-математических наук: предметом математики явля­ется ее собственный продукт—те математические объекты, из ко­торых состоит математика как наука.

Математический объект — это продукт человеческой мысли, материализованный хотя бы в одной из пяти основных форм: вер­бальной, графической, табличной, символической или аналити­ческой. Конечно, древний мыслитель мог найти в природе аналоги математическим объектам — геометрическим формам, числам, как-либо физически воплощенным (прямая тростинка, пять кам­ней и т. п.). Но ведь математическую сущность надо было абстра­гировать от материальной природной формы. Лишь после этого она становилась математической, а не физической (биологичес­кой и т.д.). И сделать это мог только человек. В длинном ряду по­колений — и для практических целей, и ради интереса — люди создавали тот мир математических объектов (включая отношения и операции над объектами, которые тоже суть математические объекты), который называется математикой.

Подобно психологии, математика — это обширная и бурно развивающаяся область знаний. Но она также далеко не однород­на: в ее составе выделяются не только многочисленные отрасли, но и «разные математики». Существуют «чистая» и прикладная, «непрерывная» и дискретная, «не конструктивная» и конструк­тивная, формально-логическая и содержательная математики.

Пожалуй, так же как нет психолога, знающего все отрасли психо­логии, так нет и математика, знающего все отрасли и направле­ния современной математики. Ведь даже энциклопедии и спра­вочники наряду с классическими, традиционными разделами, общими для всех, содержат различные дополнительные, причем отнюдь не новые разделы математических сведений. Обилие и разнообразие математических теорий и методов порождает про­блемы выбора и практического использования математики за ее пределами, в том числе в психологии. Но об этом мы поговорим в последней главе книги.

Абстрактный характер математики, ее независимость от при­роды в широком смысле и позволяют использовать математичес­кие методы в самых разных приложениях. Разумеется, при этом важно, чтобы метод был адекватен объекту, для изучения которо­го применяется.

Для того чтобы завершить рассмотрение общих вопросов, оста­новимся на том, что понимается под математическими методами.

В каждой науке, помимо ее предмета, предполагают существу­ющими особые, свойственные данной науке методы. Так, для со­временной психологии характерным является метод тестов. Ис­пользуемые в ней методы наблюдения, беседы, эксперимента и т.д., о которых пишется в учебниках, не являются специфичными для психологии и широко используются в других науках. Вообще, за редким исключением, современные научные методы универ­сальны и применяются везде, где можно.

Аналогично обстоит дело с математикой. И хотя большинство математиков убеждены в специфичности аксиоматического под­хода, математической индукции и доказательств, на самом деле все эти методы используются и за пределами математики.

Как я уже отмечал, математические объекты существуют в тек­стах и мыслях думающих о них людей в одной, нескольких или всех из пяти основных форм — словесной, графической, табличной, символической и аналитической. Это названия объектов, геомет­рические фигуры или чертежи и графики, различные таблицы, сим­волы объектов, операций и отношений, наконец, различные фор­мулы, которыми выражаются отношения между объектами. Так вот математические методы представляют собой правила или процедуры построения, преобразования, метризации и вы­числения математических объектов—всего четыре основных типа методов. Среди каждого из них есть простые и сложные, как, на­пример, суммирование двух чисел и факторизация корреляцион­ной матрицы. Пятый тип — комбинированный из основных — открывает неограниченные возможности конструирования новых математических методов, необходимых для определенных науч­ных приложений.

Заканчивая, отмечу, что многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые ма­тематиками. Для практических приложений математических ме­тодов за пределами математики, в том числе в психологии, мате­матические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.


^ Вопрос 2. МЕТОДОЛОГИЧЕСКИЕ ВОПРОСЫ ПРИМЕНЕ­НИЯ МАТЕМАТИКИ В ПСИХОЛОГИИ


Маститые психологи, имеющие базовое гуманитарное об­разование, критически относятся к применению математичес­ких методов в психологии, сомневаются в их полезности. Их аргументы таковы: математические методы создавались в на­уках, объекты которых не сравнимы по сложности с психоло­гическими объектами; психология слишком специфична, что бы в ней была польза от математики.

Первый аргумент в определенной мере справедлив. Поэто­му именно в психологии создавались математические методы, специально рассчитанные на сложные объекты, например, кор­реляционный и факторный анализы. Но второй аргумент явно ошибочен: психология не специфичнее многих других наук, где применяется математика. И сама история психологии подтверждает это. Вспомним идеи И. Гербарта и М.-В. Дробиша, да и весь путь развития современной психологии. Он подтверждает расхожую истину: область знания становится наукой, когда на­чинает применять математику.

^ Остапук Ю. В., Суходольский Г. В. Об индивидных, субъектных и личностных проявленияхиндивидуальнойтревожности//Ананьевскиечтения - 2003. СПб., Изд-во СПбГУ. С. 58-59.


В психологии всегда было много мигрантов из естественных наук, а в XX веке — из наук технических. Неплохо подго­товленные в области математики мигранты, естественно, при­меняли доступную им математику в новой психологической об­ласти, не достаточно учитывая существенную психологическую специфику, которая, конечно, существует в психологии, как и в любой науке. В результате в психологических отраслях появи­лась масса математических моделей, малоадекватных в содер­жательном отношении. Особенно это относится к психомет­рии и инженерной психологии, но и к общей, социальной и другим «популярным» психологическим отраслям.

Малоадекватные математические формализмы отталкива­ют от себя гуманитарно ориентированных психологов и под­рывают доверие к математическим методам. А между тем миг­ранты в психологию из естественных и технических наук уве­рены в необходимости математизации психологии вплоть до такого уровня, когда само существо психики будет выражено математически. При этом считается, что в математике доста­точно методов для психологического использования и психо­логам нужно только выучить математику.

В основе этих воззрений лежит ошибочная, как я считаю, мысль о всесилии математики, о ее способности, так сказать, вооружившись пером и бумагой, открывать новые тайны, по­добно тому, как в физике был предсказан позитрон.

При всем моем уважении и даже любви к математическим методам, должен сказать, что математика не всесильна; она яв­ляется одной из наук, но, благодаря абстрактности своих объек­тов, легко и с пользой применимой в других науках. Действи­тельно , в любой науке полезен расчет, и важно представлять за­кономерности в лаконичной символической форме, использо­вать наглядные схемы и чертежи. Однако, применение мате­матических методов за пределами математики должно приво­дить к утрате математической специфики.

Идущая из глубины веков вера в то, что «книга природы написана на языке математики», идущем от господа Бога — создавшего всего и вся, привела к тому, что и в языке и в мышле­нии ученых закрепились выражения «математические модели», «математические методы» в экономике, биологии, психологии, физике, но как могут существовать математические модели в физике? Ведь в ней должны быть и, конечно, существуют фи­зические модели, построенные с помощью математики. И со­здают их физики, владеющие математикой, или математики, владеющие физикой.

Короче говоря, в математической физике должны быть математико-физические модели и методы, а в математической психологии — математико-психологические. Иначе, в тради­ционном варианте «математических моделей» имеет место ма­тематический редукционизм.

Редукционизм вообще является одной из основ математи­ческой культуры: всегда сводить неизвестную, новую задачу к известной и решать ее апробированными методами. Именно математический редукционизм служит причиной появления малоадекватных моделей в психологии и других науках.

Еще недавно среди наших психологов было распространен­ным мнение: психолога должны формулировать задачи для ма­тематиков, которые смогут их корректно решить. Это мнение явно ошибочное: решать специфические задачи могут лишь спе­циалисты, но являются ли таковыми в психологии математи­ки, — нет, конечно. Рискну утверждать, что математикам также трудно решать психологические задачи, как психологам — за­дачи математические: ведь надо изучать ту научную область, к которой задача относится, а на это годы нужны и еще интерес к «чужой» научной области, в которой иные критерии научных достижений. Так, математику для научной стратификации не­обходимо совершать «математические» открытия—доказывать новые теоремы. Причем же здесь психологические задачи? Их должны решать сами психологи, которым надо научиться ис­пользовать подходящие математические методы. Таким обра­зом, снова возвращаемся к вопросу об адекватности и полезности математических методов в психологии.

Не только в психологии, но в любой науке, полезность ма­тематики состоит в том, что ее методы обеспечивают возмож­ность количественных сравнений, лаконичные символические интерпретации, обоснованность прогнозов и решений, эксп­ликацию правил управления. Но все это — при условии адек­ватности применяемых математических методов.

Адекватность — это соответствие: метод должен соответ­ствовать содержанию, причем соответствовать в том смысле, что бы отображение не математического содержания матема­тическими средствами было гомоморфным. К примеру, обыч­ные множества не адекватны для описания процессов позна­ния: в них не отображается частота необходимых повторений. Адекватными здесь будут лишь мультимножества. Читатель, познакомившийся с содержанием текста предыдущих глав, лег­ко поймет, что рассмотренные математические методы в целом адекватны для психологических приложений, а в деталях адек­ватность нужно оценивать конкретно.

Общее правило таково: если психологический объект харак­теризуется конечным набором свойств, то адекватный метод ото­бразит весь набор, а если, что-то не отобразится, то и адекват­ность снижается. Таким образом, мерой адекватности служит ко­личество отображаемых методом содержательных свойств. При этом важны два обстоятельства: наличие конкурирующих, эк­вивалентных по возможности применения, методов и возмож­ность взаимных вербально-символических, табличных, графи­ческих и аналитических отображений результатов.

Среди конкурирующих методов следует выбирать наибо­лее простые, либо понятные, и желательно проверять результат разными методами. Например, дисперсионным анализом и ма­тематическим планированием эксперимента можно обоснован­но выявлять зависимости в науке.

Не следует ограничиваться одной-двумя из математичес­ких форм, нужно, по видимости (а она всегда существует) использовать их все, создавая определенную избыточность в ма­тематическом описании результатов.

Важнейшим условием конкретного применения математи­ческих методов является, — помимо их понимания, разумеет­ся, — содержательная и формальная интерпретация. В психо­логии следует различать и уметь выполнять четыре вида интер­претаций; психолого-психологические, психолого-математи­ческие, математико-математические и (обратные) математико-психологические. Они организованы в цикл.

Любая научно-исследовательская или практическая задача в психологии сначала подвергается психолого-психологическим интерпретациям, посредством которых от теоретических воз­зрений переходят к операционально определяемым понятиям и эмпирическим процедурам. Затем наступает черед психоло­го-математических интерпретаций, с помощью которых вы­бираются и реализуются математические методы эмпиричес­кого исследования. Полученные данные надо обработать и в процессе обработки осуществляются математико-математичес­кие интерпретации. Наконец, результаты обработки следует интерпретировать содержательно, т. е. выполнить математико-психологическую интерпретацию уровней значимости, аппрок­симированных зависимостей и т. д. Цикл замкнулся, и либо за­дача решена и можно переходить к другой, либо необходимо уточнить предыдущую и повторить исследование. Такова логи­ка действий в применении математики, — и не только в психо­логии, но и в других науках.

И последнее. Нельзя досконально изучить все рассмотрен­ные в этой книге математические методы впрок, раз и навсег­да. Для овладения любым достаточно сложным методам нуж­ны многие десятки, а то и сотни обучающих попыток. Но по­знакомится с методами и попытаться их понять в общем и це­лом нужно впрок, а с деталями можно познакомится в даль­нейшем, по мере надобности.


Вопрос 3. Математическая психология


3.1. Введение


Математическая психология — это раз­дел теоретической психологии, использую­щий для построения теорий и моделей математический аппарат.

«В рамках математической психологии должен осуществляться принцип абстракт­но-аналитического исследования, в кото­ром изучается не конкретное содержание субъективных моделей действительности, а общие формы и закономерности психи­ческой деятельности» [Крылов, 1995].

Объект математической психологии: естественные системы, обладающие пси­хическими свойствами; содержательные психологические теории и математические модели таких систем. Предмет — разра­ботка и применение формального аппарата для адекватного моделирования систем, обладающих психическими свойствами. Метод — математическое моделирование.

Процесс математизации психологии начался с момента ее выделения в экспе­риментальную дисциплину. Этот процесс проходит ряд этапов.

Первыйприменение математических методов для анализа и обработки резуль­татов экспериментального исследования, а также выведение простых законов (конец XIX в. — начало XX в.). Это время разра­ботки закона научения, психофизического закона, метода факторного анализа.

Второй (40-50-е гг.) — создание моде­лей психических процессов и поведения человека с использованием ранее разрабо­танного математического аппарата.

Третий (60-е гг. по настоящее время) — выделение математической психологии в отдельную дисциплину, основная цель которой — разработка математического аппарата для моделирования психических процессов и анализа данных психологи­ческого эксперимента.

Четвертый этап еще не наступил. Этот период должен характеризоваться станов­лением психологии теоретической и отми­ранием — математической.

Часто математическую психологию отождествляют с математическими мето­дами, что является ошибочным. Математическая психология и математические методы соотносятся друг с другом так же, как теоретическая и экспериментальная психология.


3.2. История развития

Термин «математическая психология» стал применяться с появлением в 1963 г. в США «Руководства по математической психологии» [Handbook, 1963]. В эти же годы здесь начинает издаваться журнал «Journal of Mathematical Psychology».

Проведенный в лаборатории математи­ческой психологии ИП РАН анализ работ позволил выделить основные тенденции развития математической психологии.

В 60—70-е гг. получили широкое рас­пространение работы по моделированию обучения, памяти, обнаружения сигналов, поведения, принятия решений. Для их разработки использовался математический аппарат вероятностных процессов, теории игр, теории полезности и др. Было завер­шено создание математической теории обучения. Наиболее известны модели Р. Буша, Ф. Мостеллера, Г. Бауэра, В. Эс-теса, Р. Аткинсона. (В последующие годы наблюдается снижение количества работ по данной проблематике.) Появляется множество математических моделей по психофизике, например С. Стивенса, Д. Экмана, Ю. Забродина, Дж. Светса, Д. Грина, М. Михайлевской, Р. Льюса (см. разд. 3.1). В работах по моделированию группового и индивидуального поведения, в том числе в ситуации неопределенности, использовались теории полезности, игр, риска и стохастические процессы. Это модели Дж. Неймана, М. Цетлина, В. Кры­лова, А. Тверского, Р. Льюса. В рассматри­ваемый период создавались глобальные математические модели основных психи­ческих процессов.

В период до 80-х гг. появляются пер­вые работы по психологическим измере­ниям: осуществляется разработка методов факторного анализа, аксиоматики и мо­делей измерения, предлагаются различные классификации шкал, ведется работа над созданием методов классификации и гео­метрического представления данных,

строятся модели, основанные на лингвис­тической переменной (Л. Заде).

В 80-е гг. особое внимание уделяется уточнению и развитию моделей, связан­ных с разработкой аксиоматики различных теорий.

В психофизике это: современная теория обнаружения сигналов (Д. Свете, Д. Грин), структуры сенсорных прост­ранств (Ю. Забродин, Ч. Измайлов), слу­чайных блужданий (Р. Льюс, 1986), разли­чения Линка и др.

В области моделирова­ния группового и индивидуального поведения: модель решения и действия в психомотор­ных актах (Г. Коренев, 1980), модель це­ленаправленной системы (Г. Коренев), «деревья» предпочтения А. Тверского, мо­дели системы знаний (Дж. Грино), веро­ятностная модель научения (А. Дрынков, 1985), модель поведения в диадном взаи­модействии (Т. Савченко, 1986) моделиро­вание процессов поиска и извлечения ин­формации из памяти (Р. Шифрин, 1974), моделирование стратегий принятия реше­ний в процессе обучения (В. Венда, 1982) и др.

В теории измерения:

множество моделей многомерного шкалирования (МШ), в которых просле­живается тенденция к снижению точности описания сложных систем — модели пред­почтения, неметрическое шкалирование, шкалирование в псевдоевклидовом прост­ранстве, МШ на «размытых» множествах (Р. Шепард, К. Кумбс, Д. Краскал, В. Кры­лов, Г Головина, А. Дрынков);

  • модели классификации: иерархичес­кие, дендритные, на «размытых» множест­вах (А. Дрынков, Т. Савченко, В. Плюта);

  • модели конфирматорного анализа, позволяющие формировать культуру про­ведения экспериментального исследова­ния;

  • применение математичеекого моде­лирования в психодиагностике (А. Анастази, П. Клайн, Д. Кендалл, В. Дружинин)

В 90-х гг. глобальные математические модели психических процессов практичес­ки не разрабатываются, однако значительно возрастает количество работ по уточнению и дополнению существующих моделей, продолжает интенсивно развиваться тео­рия измерений, теория конструирования тестов; разрабатываются новые шкалы, более адеквантые реальности (Д. Льюс, П. Саппес, А. Тверски, А. Марли); широко внедряется в психологию синергетический подход к моделированию.

Если в 70-е гг. работы по математичес­кой психологии в основном появлялись в США, то в 80-е наблюдается бурный рост ее развития в России, в настоящее время, к сожалению, заметно снизившийся из-за недостаточного финансирования фунда­ментальной науки.

Наиболее значимые модели появились в 70-е-начале 80-х гг., далее они дополня­лись и уточнялись. В 80-е гг. интенсивно развивалась теория измерений. Эта работа продолжается и сегодня. Особенно важно, что многие методы многомерного анализа получили широкое применение в экспе­риментальных исследованиях; появляется множество специально ориентированных на психологов программ анализа данных психологического тестирования.

В США большое внимание уделяется чисто математическим вопросам модели­рования. В России же, наоборот, матема­тические модели зачастую не обладают достаточной строгостью, что приводит к неадекватному описанию реальности.

Математические модели в психологии. В математической психологии принято выделять два направления: математичес­кие модели и математические методы. Мы нарушили эту традицию, так как считаем, что нет необходимости выделять отдельно методы анализа данных психологического эксперимента. Они являются средством построения моделей: классификации, ла­тентных структур, семантических прост­ранств и др.


3.3. Психологические измерения

В основе применения математических методов и моделей в любой науке лежит измерение. В психологии объектами изме­рения являются свойства системы психики или ее подсистем, таких, как восприятие, память, направленность личности, способ­ности и т.д. Измерение — это приписы­вание объектам числовых значений, отражающих меру наличия свойства у дан­ного объекта.

^ Назовем три важнейших свойства пси­хологических измерений.

1. Существование семейства шкал, допускающих различные группы преобра­зований.

  1. Сильное влияние процедуры изме­рения на значение измеряемой величины.

  2. Многомерность измеряемых психо­логических величин, т. е. существенная их зависимость от большого числа парамет­ров.

В психологических измерениях исполь­зуются различные классификации типов шкал. Тип шкалы определяется природой измеряемой величины.

Общая концепция измерения впервые была в достаточно развитом виде сформу­лирована Д. Скоттом и П. Суппесом. Даль­нейшее развитие она получила в работах П. Суппеса и Дж. Зиннеса, Д. Льюса и Е. Галантера и др. В последнее время об­щая теория измерений интенсивно разви­вается И. Пфанцаглем, а также Д. Льюсом и Л. Неренсом. В этой концепции широко используется понятие реляционной сис­темы (системы с отношениями), введенное А. Тверским.

С. Стивенс пытался создать свою сис­тему шкальных типов, основываясь на понятиях эмпирической операции и ма­тематической структуры. Он различает четыре вида шкал: наименований, поряд­ка, интервалов и отношений.

Типы шкал обусловливаются видом функции f, осуществляющей допустимые преобразования ψ = f (φ).

*Если f — моно­тонная функция, то соответствующая шка­ла является шкалой порядка;

*если f — ли­нейная функция, то соответствующая шкала — это шкала интервалов;

*если f оп­ределяет преобразование подобия, то со­ответствующая шкала — шкала отноше­ний.

К. Кумбс расширяет классификацию Стивенса введением шкал, частично упо­рядоченных и сложных (комбинированных из двух частей: объектов и расстояний). Он различает три основных типа неметричес­ких шкал и девять типов сложных, однако если рассматривать лишь сами объекты, то комбинированные шкалы тождественны номинальным.

Классификация Торгенсона, как и Кумбса, опирается на предположение о том, что шкальные типы следует тракто­вать как формальные математические модели. Его классификация включает следующие типы шкал: порядковые — без начала отсчета и с началом отсчета, ин­тервальные — без начала отсчета и с нача­лом отсчета.

Суппес и Зиннес переосмыслили тео­рию классификации Стивенса в терминах классов числового приписывания: для дифференциации шкал существенны лишь свойства числовых приписываний с точки зрения допустимых преобразований, но никак не эмпирические операции. К. Берка (1987) считает, что вполне достаточно различать метрические и неметрические типы шкал, которые представляют два эмпирико-математических метода шкали­рования и измерения. Таким образом, ин­тервальную шкалу можно трактовать как специфический вариант шкалы порядка, т. е. шкалы неметрического типа.

Американские авторы в публикациях 90-х гг. (см. журнал «Journal of Mathematical Psychology») описывают множество работ по применению теории измерений к раз­работке шкал для ранжирования и выбора альтернатив (В. Malakooty,1991), для из­мерения нетранзитивного аддитивного объединения (P. Fishburn, 1991) и экспе­риментов с использованием попарного сравнения по шкалам отношений (I. Basak, 1992). Полемика вокруг основ измерений не прекращается.

Анализ существующих методов прямых оценок различия показал, что шкалы, с которыми работает испытуемый, не соот­ветствуют природе психологического ме­ханизма, лежащего в основе оценивания. Поэтому был предложен подход, основан­ный на «нечетких» множествах (Л. Заде, 1974). Суть его в том , что используются так называемые «лингвистические» пере­менные вместо числовых переменных или в дополнение к ним; отношения между переменными описываются «нечеткими» («размытыми») высказываниями, а слож­ные отношения описываются «нечеткими» алгоритмами.

Первая — создание теории однородных сред, элементами которых являются уст­ройства, подобные нейронам.

Втораякомпьютерная графика, помогающая решать задачи с помощью актуализации образного мышления. Когнитивная интерактивная компьютерная графика является средством воздействия на правополушарное мышле­ние человека в процессе научного твор­чества.

Третьяспециалисты различных направлений в области ИИ считают важ­ным развитие работ, касающихся представ­лений знаний и манипулирования ими (экспертные системы).

4.4.Нетрадиционные методы моделирования

Моделирование на «размытых» множествах

Нетрадиционный подход к моделиро­ванию связан с приписыванием элементу некоторой числовой оценки, которая не может объясняться объективной или субъ­ективной вероятностью, а трактуется как степень принадлежности элемента к тому или иному множеству. Множество таких элементов называется «нечетким», или «размытым» множеством.

Каждое слово х естественного языка можно рассматривать как сжатое описа­ние нечеткого подмножества М(х) полного множества области рассуждений U, где М(х) есть значение х. В этом смысле весь язык как целое рассматривается в качестве системы, в соответствии с которой нечет­ким подмножествам множества U припи­сываются элементарные или составные символы (т. е. слова, группы слов и пред­ложения). Так, цвет объекта как некото­рую переменную, значения этой переменной (красный, синий, желтый, зеленый и т. д.) можно интерпретировать как символы нечетких подмножеств полного множества всех объектов. В этом смысле цвет явля­ется нечеткой переменной, т. е. перемен­ной, значениями которой являются сим­волы нечетких множеств. Если значения переменных — это предложения в неко­тором специальном языке, то в данном случае соответствующие переменные на­зываются лингвистическими (Л. Заде, Ю. Шрейдер).


Синергетика в психологии

Еще одна альтернатива традиционному математическому аппарату — синергетический подход, в котором математическая идеализация проявляется чувствительностью к начальным условиям и непредсказуе­мостью исхода для системы. Поведение можно описать с помощью апериодических и поэтому непредсказуемых временных ря­дов, не ограничиваясь при моделировании стохастическими процессами. Беспорядок в обществе может предшествовать появ­лению новой структуры, в то время как стохастические системы имеют низкую вероятность порождения интересных структур. Именно апериодические реше­ния детерминированных уравнений, опи­сывающих самоорганизующиеся структу­ры, помогут прийти к пониманию психо­логических механизмов самоорганизации (Фриман, 1992). В этих работах разум рас­сматривается как «странный аттрактор», управляемый уравнением сознания. Мате­матически «странный аттрактор» — это множество точек, к которому приближается траектория после затухания переходных процессов.

В основе большинства традиционных моделей психотерапии лежит концепция равновесия. Согласно синергетическому подходу, разум является нелинейной сис­темой, которая при далеких от равновесия условиях превращается в части сложных аттракторов, а равновесие — лишь пре­дельный случай. Этот тезис развивают тео­ретики психотерапии, выбирая тот или иной аспект теории хаоса. Так, например, выделяется феномен хаотического в психо­физиологической саморегуляции (Step­hen, Franes, 1992) и обнаруживаются ат­тракторы в паттернах семейного взаимо­действия (L. Chamber, 1991).


^ Вопрос 4. СЛОВНИК к курсу «МАТЕМАТИЧНІ МЕТОДИ В ПСИХОЛОГІЇ»


ВЫБОРКА — группа людей, на которой проводится исследование. В противоположность в. генеральной совокупностью называют множество людей, на которых распространяются результаты исследования. В. является частью генеральной совокупности.

^ ВЫБОРКА ПРЕДСТАВИТЕЛЬНАЯ - такая выборка (см.), которая произведена по правилам, т. е. отражает специфику генеральной совокупности как по составу, так и по индивидуальным характеристикам включенных в нее людей.

^ ВЫБОРОЧНАЯ ДИСПЕРСИЯ — дисперсия (см.) или разброс данных, характеризующих выборку (см.).

ВЫБОРОЧНОЕ ОТКЛОНЕНИЕ — корень квадратный из величины дисперсии (см.). Определяется по формуле:

^ ВЫБОРОЧНОЕ РАСПРЕДЕЛЕНИЕ (в математической статистике) — упорядоченное расположение измеренных в эксперименте или в результате проведенной психодиагностики величин от наименьшей к наибольшей, сопровождаемое данными о каждой величине и частоте ее встречаемости в выборке (см.). В. р. нередко представляется в виде соответствующего графика.

^ ВЫБОРОЧНОЕ СРЕДНЕЕ — среднее значение некоторой величины, определенное по имеющейся выборке ее частных значений. Устанавливается по формуле:

ГИПОТЕЗА — научно обоснованное, вполне вероятное предположение, требующее, однако, специального доказательств для своего окончательного утверждения в качестве теоретического положения Г провернется на истинность в экспериментальном или эмпирическом научном исследовании.

ГИСТОГРАММА — специальное графическое изображение распределения нескольких дискретных величин в выборке (см.). Представляет собой совокупность расположенных рядом друг с другом и вытянутых вверх прямоугольников или прямоугольных в сечении столбиков, высота которых пропорциональна частоте встречаемости каждого из значений переменной в выборке.

^ ДИСПЕРСИЯ ВЫБОРОЧНАЯ — математико-статистический показатель разброса экспериментальных или психодиагностических данных, характеризующий среднюю величину отклонения индивидуальных показателей от среднего значения переменной по выборке. Д. определяется по формуле:

^ ДИСПЕРСИОННЫЙ АНАЛИЗ — совокупность методов математико-статистического анализа, объектом рассмотрения которых являются дисперсии (см.) случайных величин. Д. а. позволяет оценивать и сравнивать между собой дисперсии различных выборок, отвечая на вопросы о том, каковы эти дисперсии, являются они одинаковыми или разными и др.

ИНТЕРВАЛ (в математической статистике) — упорядоченный набор величин, находящихся в заданных числовых границах и характеризуемых их средней величиной (см.).

^ КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — метод математико-статистического анализа, связанный с вычислением и изучением коэффициентов корреляций (см.) между переменными.

^ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - математико-статистический показатель связи или зависимости, существующей между переменными величинами. Изменяется в пределах от —1 (абсолютная обратно пропорциональная зависимость) через 0 (отсутствие какой-либо зависимости) до +1 (абсолютная прямо пропорциональная зависимость).

^ КРИТЕРИЙ ФИШЕРА — математико-статистический критерий, пользуясь которым можно судить о сходстве и различиях в дисперсиях (см.) случайных величин.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА - область современной математики, основанная на теории вероятностей (см.) и занятая поиском законов изменения и способов измерения случайных величин, обоснованием методов расчетов, производимых с такими величинами.

МЕДИАНА — величина, разделяющая ряд упорядоченных значении на две равные по количеству входящих в них значений половины, так что справа и слева от м. оказываются одинаковые количества значений.

^ МЕТОДЫ СРАВНЕНИЯ ВЫБОРОЧНЫХ ДАННЫХ - методы математической статистики (см.), предполагающие анализ, обобщение и сравнение между собой данных, полученных на некоторой выборке испытуемых или на нескольких разных выборках.

МОДА (в математической статистике) — числовое значение изучаемого признака, наиболее часто встречающееся в изученной выборке (см.).

^ ОБЪЕКТ ИССЛЕДОВАНИЯ — тот объект, на котором проводится научное исследование. Объектом психологического исследования, например, является человек или группа людей.

^ ОБЪЕМ ПОНЯТИЯ — класс или классы объектов, явлений и т. п., к которым относится или которые включает в себя данное понятие.

ОПЕРАЦИОНАЛИЗАЦИЯ — требование, предъявляемое к научным понятиям. О. понятия предполагает указание на конкретные операции или действия, выполнив которые человек может убедиться в том, что данное понятие не является пустым, т. е. в том, что включенные в него явления действительно существуют.

^ РЕГРЕССИОННЫЙ АНАЛИЗ — метод математической статистики, позволяющий свести множество частных зависимостей между отдельными значениями переменных к их непрерывной линейной зависимости. В результате р. а. получают прямую линию, которая наилучшим образом иллюстрирует (аппроксимирует — говоря математическим языком) общий характер зависимости между изучаемыми переменными величинами.

СТАТИСТИКА — термин, имеющий два основных значения:

а) область математических или практических знаний, в которой представлены способы статистического анализа или обобщенные количественные данные о чем-либо;

б) частный показатель, с помощью которого эти данные представляются.

^ ТЕОРИЯ ВЕРОЯТНОСТЕЙ — раздел современной математики, рассматривающий случайные величины, а также законы, характеризующие множества и отношения случайных величин.

^ ТОЧНОСТЬ ПСИХОДИАГНОСТИЧЕСКОЙ МЕТОДИКИ - способность данной методики достаточно точно оценивать степень развития у человека тех психологических качеств, для диагностики которых она предназначена. Чем больше различных градаций уровня развития данных качеств позволяет получать методика, тем она точнее.

ФАКТОР — математико-статистическое понятие, означающее общую причину многих случайных изменений совокупности переменных величин, событий и т. п. Ф. выявляется при помощи специальной математической процедуры, называемой факторным анализом (см.).

^ ФАКТОРНЫЙ АНАЛИЗ — процедура или метод математической статистики, основанный на анализе корреляций случайных величин и направленный на то, чтобы выявлять группы случайных величин, взаимнокоррелирующих друг с другом. Математико-статистическая основа выявляемых таким образом корреляций называется фактором (см.).

Х критерий математико-статистический критерий, на основе которого судят о статистической значимости связей, существующих между двумя или несколькими переменными, часть которых рассматривается как причина, часть — как следствия наблюдаемых изменений.

ЭКСПЕРИМЕНТ — метод научного исследования, предполагающий создание некоторых искусственных (экспериментальных) условий и направленный на выявление причинно-следственных зависимостей, существующих между изучаемыми переменными.


Вопрос 5. СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ З КУРСУ


А) Перелік підручників та посібників (основна література)

1. Бурлачук Л.Ф. Словарь-справочник по психодиагностике. –СПб.: Питер Ком, 1999. – 528 с. (Серия «Мастера психологии»).

2. Годфруа Ж. Что такое психология? М.: Мир, 1996. Т 2

3. Куликов Л. В. Психологическое исследование: методические рекомендаций по проведению. - СПб., 1995.

4. Немов Р.С. Психология: Экспериментальная педагогическая психология и психодиагностика. - М., 1999.- Т. 3.

5. Практикум по общей экспериментальной психологии / Под ред. А.А. Крылова. - Л. ЛГУ, 1987.

6. Сидоренко Е.В. Методы математической обработки в психологии. –СПб.: ООО «Речь», 2000. -350 с.

7. Шевандрин Н.И. Психодиагностика, коррекция и развитие личности. - М.: Владос, 1998.-С.123.

8. Суходольский Г.В. Математические методы в психологии. – Харьков: Изд-во Гуманитарный Центр, 2004. – 284 с.

Б) Додаткова література

1. Введение в научное исследование по педагогике / Под ред. В. И. Журавлева. М.: 1988.

2. Гершунский Б.С. Педагогическая прогностика. - К., 1986.

3. Гласс Дж., Стенли Дж. Статические методы в педагогике и психологии - М.: 1976.

4. Грабарь М.И., Краснянская К.А. Применение математической статистики в педагогических исследованиях. Непараметрические методы. - М.: Педагогика, 1977.

5. Закс Л. Статистическое оценивание. - М.: Статистика, 1976.

6. Интерпретация и анализ данных в социологических исследованиях / Под ред. В.Г. Андресикова - М.: Наука, 1987.

7. Клименюк А.В. и др. Методология и методика педагогического исследования. Постановка цели и задач исследования. - К., 1988.

8. Крылов В.Ю. Геометрическое представление данных в психологических исследованиях. - М.: Наука, 1990.

9. Кузьмина Н.В. Методы системного педагогического исследования. - Л., 1980.

10. Методичні рекомендації до виконання дипломних робіт студентами педагогічного інституту. - К., 1986.

11. Михеев В.И. Моделирование и методы в теории измерений в педагогике М., 1987.

12. Скалкова Я. Методология и методы педагогического исследования: Пер. с чеш.-М., 1989.

13. Скаткин М.Н. Методология и методика педагогических исследований: в помощь начинающему исследователю. - М., 1986.

14. Сорокин Н.А. Дипломные работы в педагогических вузах: Уч. пос. для студентов пед. вузов-М., 1986.

В) ^ БІБЛІОГРАФІЯ ПО КУРСУ “МАТЕМАТИЧНІ МЕТОДИ В ПСИХОЛОГІЇ”

1 Алимов Ю.И. Альтернатива методу математической статистики. М.: Знание, 1986. 64 с.

2 Ананьев Б.Г. Человек как предмет познания. Л.:ЛГУ. 1969. 339 с.

3 Ананьев Б.Г. О методах современной психологии // Психодиагностические методы (в комплексном лонгитюдном исследовании студентов). Л.: ЛГУ, 1976. С. 13-35.

4 Андреенков В.Г., Аргунова К.Д. и др. Математические методы анализа и интерпретация социологических данных. // Под ред. В.Г. Андреенкова, Ю.Н. Толстовой. М.: Наука, 1989. 171 с.

5 Артемьева Е.Ю; Мартынов Е.М. Вероятностные методы в психологии. М.: МГУ, 1985. 206 с.

6 Ашмарин И.П.. Васильев Н.Н.. Амбросов ВА. Быстрые методы статистической обработки и планирование экспериментов. Л.: ЛГУ, 1974. 76 с.

7 Бадасова А. Личностные факторы суггестора, способствующие внушающему воздействию. Дипломная работа выпускницы специального факультета социальной психологии СПбГУ. СПб. 1994. 75 с.

8 Бергер Н.А., Логинова Н.А. К проблеме соотношения некоторых содержательных и структурных характеристик интеллекта (по методике Векслера)// Современные психолого-педагогические проблемы высшей школы. Л.: ЛГУ, 1974.-С. 63-66.

9 Берн Э. Игры, в которые играют люди. Психология человеческих взаимоотношений; Люди, которые играют в игры. Психология человеческой судьбы. / Пер. с англ. // Общ. ред. М.С. Мацковского. СПб.: Лениздат, 1992. 400 с.

10 ^ Большев Л. Н.. Смирнов Н.В. Таблицы математической статистики. М.: Наука. Главн. редакция физико-математ. литературы, 1983. 416 с.

11 Бурлачук Л.Ф., Морозов СМ Словарь-справочник по математической диагностике. Киев.: Наук. думка, 1989. 200 с.

12 Ван дер Варден В.Л. Математическая статистика. М., 1960. 434 с.

13 Гайда В.К., Захаров В.П. Психологическое тестирование. Учебное пособие. Л.: ЛГУ, 1982. 101с.

14 Ганзен ВА, Балин В.Д. Теория и методология психологического исследования. Практическое руководство. СПб.: СПбГУ, 1991. 74 с.

15 Геодакян В.А. Дифференциальная смертность и норма реакции мужского и женского пола. Онтогенетическая и филогенетическая пластичность. // Журнал общей биологии, 1974, т.35, №3. С. 376-385.

16 Геодакян В.А. Асинхронная асимметрия (половая и латеральная дифференциация — следствие асинхронной эволюции). //Журнал ВНД, 1993, т.43. Вып.З. С. 543-561.

17 Гласс Дж., Стенли Дж. Статистические методы в педагогике и психологии. / Пер. с англ. под общ. ред. Ю.П. Адлера. М.: Прогресс, 1976. 495 с.

18 Гоголь Н.В. Избранные произведения. М.: ДетГИЗ, 1959. С. 473-500.

19 Грекова И. Методологические особенности прикладной математики на современном этапе ее развития. // Вопросы философии, 1976, №6, С. 104-114.

20 Гублер Е.В. Вычислительные методы анализа и распознавания патологических последствий. Л.: Медицина, 1978. 296 с.

21 Гублер Е.В., Генкин А А. Применение непараметрических критериев статистики в медико-биологических исследованиях. Л.: Медицина, 1973. 142 с.

22 Девятко И.Ф. Диагностическая процедура в социологии. Очерки истории и теории. М.: Наука, 1993. 173 с.

23 Дворяшина М.Д., Пехлецкий И. Д. Основные математические процедуры психодиагностического исследования.// Психодиагностические методы (в комплексном лонгитюдном исследовании студентов). Л.: ЛГУ, 1976. С. 35-51.

24. Доброхотова Т.А., Брагина Н.Н. Левши. М.: Книга, 1994. – 230 с.

25 Езекиэл М., Фокс К.А. Методы анализа корреляций и регрессий (линейных и криволинейных).// Пер. с англ. Л.С. Кучаева. М.: Статистика, 1966. 559 с.

26 Захаров В.П. Применение математических методов в социально-психологических исследованиях. Учебное пособие. Л.: ЛГУ, 1985. 64 с.

27 Ивантер Э.В.. Коросов А.В. Основы биометрии: Введение в статистический анализ биологических явлений и процессов. Учебное пособие. Петрозаводск: ПТУ. 1992. 163 с.

28 Ильин Е.П. Психофизиология физического воспитания. Деятельность и состояния. Учебное пособие для студентов факультетов физического воспитания педагогических институтов. М.: Просвещение, 1980. 199 с.

29 ^ Ильина М.Н. Способность к проявлению терпения при мышечном утомлении как отражение общего волевого фактора. / Психомоторика. Сборник ученых трудов. // Под ред. Б.А. Ашмарина и проф Е.П. Ильина (научн. ред.). Л.: ЛГПИ, 1976. С. 49-50.

30 Кендалл М.Дж., Стюарт А. Статистические алгоритмы в социологических исследованиях. Новосибирск: Наука, 1985. 207 с.

31 Кенуй М.Г. Быстрые статистические вычисления. Упрощенные методы оценивания и проверки. / Пер. с англ. и предисловие Д.А. Астринского. М.: Статистика, 1979. 69 с.

32 Королькова НА. Возможности психологической коррекции у болезненных детей. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1994. 72 с.

33 Кузнецов С .А. Стили реагирования на вербальную агрессию. Дипломная работа выпускника кафедры социальной психологии факультета психологии СПбГУ. СПб., 1991. 33с.

34 Кулева Е.Б. Влияние традиционных и православных текстов внушения на процесс аутогенной тренировки. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1990. 45 с-

35 ^ Курочкин МА„ Сидоренко Е.В., Чураков ЮА. (Kurochkin М.. Chumkou U., Sidorenko E.). Opportunities for Leadership in Healthcare. General Practiciner» Research Project for Lilly Industries. Manchester: Manchester Business School, 1992. 22 p.

36 Дашков К.В., Поляков Л.Е. Непараметрические методы медико-статистических исследований. / Методологические вопросы санитарной статистики. Ученые записки по статистике, т. IX. М.: Наука, 1965. С. 136-184.

37 Логвиненко А.Д. Измерения в психологии М.: МГУ. 1993. 480 с.

38 Математические методы анализа и интерпретация социологических данных. // Отв. ред. В.Г. Андреенков, Ю.Н. Толстова. М.: Наука, 1989. - 171 с.

39 Математические методы психолого-педагогнческих исследований. Методические рекомендации. СПб.: Образование. 1994. 28 с.

40 ^ Мельников В.М„ Ямпольский Л.Т. Введение в экспериментальную психологию личности. Учебное пособие для слушателей ИПК преподавателей педагогических дисциплин университетов и педагогических институтов. М.: Просвещение, 1985. 319с.

41 Методы современной биометрии. М.: МГУ, 1978. С. 108-179.

42 Митрополъский А.К. Техника статистических вычислений. М.: Наука, Главная редакция физико-математической литературы., 1971. 576 с.

43 Михеев В.Н. Методика получения и обработки экспериментальных данных в психолого-педагогических исследованиях. М.: УДН, 1986. 84 с.

44 Налимов В. В. Теория эксперимента. М.: Наука, 1975.207 с.

45 Налимов В. В., Голикова Т. И. Логические основания планирования эксперимента. Изд. 2-е. М.: Металлургия, 1981.152 с.

46 Нискина Н.П. Непараметрические методы математической статистики и решение задач проверки гипотез./ Проблемы компьютеризации и статистики в прикладных науках. Сборник трудов. М.: ВНИИСИ, 1990. С. 73-89.

47 Носенко И.А. Начала статистики для лингвистов. М.: Высшая школа, 1981. 157с.

48 Оуэн Д.Б. Сборник статистических таблиц. / Пер. с англ. Л.Н. Большева и В.Ф. Котельниковой. Изд. 2-е, исправл. М.: Вычислительный центр АН СССР. 1973. 586 с.

49 Паповян С.С. Математические методы в социальной психологии. М.: Наука, 1983. 343 с.

50 Плохинский НА. Дисперсионный анализ. / Под ред. чл.-корр. АН СССР Н.П. Дубинина. Новосибирск: Сиб. Отд. АН СССР, 1960. 124 с.

51 Плохинскии НА. Биометрия. 2-е изд. М.: МГУ, 1970. 368 с.

52 Пуни А.Ц. Психологические основы волевой подготовки в спорте. Учебное пособие. Л.: ГИФК,1977.48с.

53 Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. М : Наука, 1968. 185с.

54 Рахова М.Э. Личностная предрасположенность к определенным видам страха. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1994. 54 с.

55 Роджерс К. Взгляд на психотерапию. Становление человека. / Пер. с англ. / /Общ. ред. и предисл. Е.И.Исениной. М.: Прогресс, Универс. 1994. 480 с.

56 Рунион Р. Справочник по непараметрической статистике. М.: Финансы и статистика, 1982. 198с.

57 Сидоренко (Маркова) Е.В. Связь мотивации достижения с индивидными и личностными свойствами / Вопросы экспериментальной и прикладной психологии. Сборник аспирантских работ. Л.: ЛГУ, 1980. Деп. в ВНТИ №435-80 от 7 февр. 1980. С. 64-72

58 Сидоренко (Маркова) Е.В. Исследование психодиагностических возможностей проективной методики Хекхаузена. / Личность в системе коллективных отношений. Тезисы докладов Всесоюзной конференции в г.Курске. Курск: 1980. С. 43-45

59 ^ Сидоренко (Маркова) Е.В. Мотивационно-волевые особенности личности как фактор успешной деятельности. Дисс. на соискание учен. степ. канд. психол. наук. Л.: ЛГУ. 1984. 262с.

60 Сидоренко (Маркова) Е.В. Психодраматический и недирективный подходы в групповой работе с людьми. Методические описания и комментарии. СПб.: Центр психологической поддержки учителя, 1992. 72 с.

61 Сидоренко Е.В. Экспериментальная групповая психология. Комплекс "неполноценности" и анализ ранних воспоминаний в концепции Альфреда Адлера. Учебное пособие. СПб.: СПбГУ, 1993. 152 с.

62 Сидоренко Е.В. Опыты реоритационного тренинга. СПб.: Институт тренинга, 1995. 248 с.

63 ^ Сидоренко Е.В.. Дерманова И.Б.. Анисимова О.М„ Витснберг Е.В., Шулыга А.П. Разработка методики отбора и подготовки кадров в представительные органы муниципальной власти. СПб.: Гуманистический и политологический Центр "Стратегия", 1994. 26 с.

64 ^ Сочивко Л.Б.. Якунин В.А. Математические модели в психолого- педагогических исследованиях. Учебное пособие. Л.: ЛГУ, 1988. 68 с.

65 Справочник по прикладной статистике. В 2-х т. Т.2 / Пер. с англ. под ред. Э.Ллойда, У. Ледермана, С.А. Айвазяна, Ю.Н. Тюрина. М.: Финансы и статистика, 1990. 526 с.

66 Стан Н.В. Социально-психологическое исследование стереотипов мужественности. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1992. 58 с.

67 Стивенс С. Математика, измерение и психофизика // Экспериментальная психология (Под ред. С.С. Стивенса). // Пер. с англ под ред. действ, чл. АМН СССР П.К. Анохина, докт. пед. наук В.А. Артемова. М.: Иностранная литература, 1960. т.1. С. 19-92.

68 Суходольский Г.В. Основы математической статистики для психологов. Л.: ЛГУ, 1972. 428 с.

69 Суходольский Г.В. Математико-психологические модели деятельности. СПб.: Петрополис,1994.64 с.

70 Тлегенова Г.А. Влияние агрессивности на проксемические характеристики невербального поведения. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1990. 28 с.

71 Телешова Ю.Н. Логика математического анализа социологических данных. М.: Наука, 1991.112с.

72 Тюрин Ю.Н. Непараметрические методы статистики. М.: Знание, 1978. 64 с.

73 Тюрин Ю.Н., Макаров А.А, Анализ данных на компьютере. // Под ред. В.В. Фигурнова. М.: Финансы и статистика, 1995. 384 с.

74 Урбах В.Ю. Математическая статистика для биологов и медиков. М.: Академия наук СССР. 1963. 323 с.

75 Урбах В.Ю. Биометрические методы. Статистическая обработка опытных данных в биологии, сельском хозяйстве и медицине. М.: Наука, 1964. 415 с.

76 Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях. М.: Медицина, 1975. 295 с.

77 Фелингер А.Ф. Статистические алгоритмы в социологических исследованиях. Новосибирск: Наука, 1985. 385 с.

78 Холлендер М. Вулф Д.А. Непараметрические методы статистики. / Пер. с англ. под ред. Ю.П. Адлера и Ю.Н. Тюрина М.: Финансы и статистика, 1983. 518с.

79 Чиркина Р.Т. Психодннамические факторы памяти. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1995. 80 с.

80 Шеффс Г. Дисперсионный анализ. М.: Наука, 1980. 512с.







^

Курс «Математические методы в психологии»


(Материалы для самостоятельного изучения студентам психологам и социальным работникам)

Лекция № 2



^ СТАТИСТИЧЕСКИЙ АНАЛИЗ

ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ
  1   2   3   4   5   6   7   8   9



Скачать файл (2067.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru