Logo GenDocs.ru


Поиск по сайту:  


Шпоры по охране труда - файл 1.doc


Шпоры по охране труда
скачать (793.5 kb.)

Доступные файлы (1):

1.doc794kb.26.11.2011 09:36скачать

содержание

1.doc

1   2   3   4   5   6   7   8
Реклама MarketGid:

^ 58 Естественное освещение, его нормирование и расчёт

Для проведения большинства видов работ наиболее рациональным является естественный дневной свет, т. к. он обладает в отличие от искусственного биологической активностью, т.е. способен активизировать биохимические процессы в организме, тонизировать его, убивать патогенные организмы.

Естественное освещение производственных помещений может быть следующих видов :

- боковым (одно, -двух и многосторонним) – через окна в наружных стенах;

- верхним – через световые фонари в перекрытии или кровле;

- комбинированным – через световые фонари и окна.

Верхнее освещение используется главным образом в многопролетных зданиях, где с помощью бокового освещения удается осветить лишь прилегающие к наружным стенам участки производства.

Для освещения рабочих мест, удаленных от оконных световых проемов, а также для естественной вентиляции помещений цехов устраивают специальные фонари - остекленные надстройки покрытия.

Кроме световых фонарей на многих промышленных предприятиях в настоящее время используются специальные светопрозрачные покрытия в кровле здания. Они могут выполняться в виде стеклоблоков, светопрозрачных колпаков, линз и т. п.

Помещения с постоянным пребыванием людей должны, как правило, обеспечиваться естественным освещением.

Следует отметить, что естественное освещение имеет резкие колебания уровня освещенности, меняющегося в течение светового дня и по временам года, в зависимости от погодных условий и ряда других факторов. Непостоянство естественного освещения во времени вызывает необходимость введения КЕО (коэффициент естественной освещенности).

КЕО является величиной постоянной и в упрощенном виде представляет собой процентное отношение освещенности определенной точки помещения к одновременной освещенности точки, находящейся на горизонтальной плоскости вне помещения и освещенной рассеянным светом всего небосвода.

Естественное освещение производственных помещений нормируется величиной КЕО в зависимости от характеристики зрительной работы, размера объекта различия, разряда зрительной работы и контраста объекта с фоном.

Допускается применение верхнего естественного освещения в крупнопролетных сборочных цехах, в которых работы выполняются в значительной части объема помещения на разных уровнях от пола и на различно ориентированных в пространстве рабочих поверхностях.

Нормативные значения КЕО для каждого разряда зрительной работы приведены в СНБ 2.04.05-98. Величина КЕО используется при расчетах величины световых проемов в проектируемых зданиях. Кроме того, он применяется в качестве оценки пригодности помещения для выполнения работ заданной точности.

В соответствии с СанПиН 9 – 94 РБ 98 организация постоянных рабочих мест без естественного освещения, если это не определяется требованиями технологии, запрещается. Очистка стекол световых проемов должна осуществляться в сроки: не реже 2 раз в год для помещений с незначительными выделениями пыли, дыма и копоти и не реже 4 раз в год для помещений со значительными их выделениями. Световые проемы не допускается загромождать производственным оборудованием, готовыми изделиями, полуфабрикатами и т.п. как внутри, так и вне зданий.

^ 59 Искусственное освещение, его нормирование и расчёт

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.

Искусственное освещение подразделяется на рабочее, аварийное, дежурное и охранное.

^ Рабочее освещение – освещение, обеспечивающее нормируемые осветительные условия (освещенность, качество освещения) в помещениях и в местах производства работ вне зданий.

Аварийное освещение в свою очередь, подразделяется на эвакуационное и освещение безопасности.

^ Эвакуационное освещение – освещение, предназначенное для эвакуации людей из помещения при аварийном отключении рабочего освещения. Эвакуационное освещение должно обеспечивать наименьшую освещенность на полу основных проходов и на ступенях лестниц.

^ Освещение безопасности – освещение, необходимое для продолжения работы при аварийном отключении рабочего освещения. Оно предусматривается в случаях, когда отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования и механизмов может вызвать взрыв, пожар, отравление людей, длительный сбой технологического процесса, нарушение работы объектов, обеспечивающих жизнедеятельность населения. Освещение безопасности должно обеспечивать на рабочих поверхностях наименьшую освещенность в размере 5 % от рабочего, но не менее 2 лк внутри здания и 1 лк – на территории предприятия.

^ Дежурное освещение предназначено для освещения помещений в нерабочее время.

Охранное освещение предусматривается вдоль границ территорий предприятия, охраняемых в ночное время. При этом освещенность должна быть не менее 0,5 лк.

Искусственное освещение обеспечивается системами общего или комбинированного освещения.

^ Общее освещение подразделяется на общее равномерное, которое устраивается без учета расположения рабочих мест, и общее локализованное, при котором размещение светильников связано с расположением оборудования и рабочих мест. При первом – высота подвески светильников, тип светильников, мощность ламп и т.д. принимаются одинаковыми, при втором – перечисленные характеристики могут быть различными.

Если по характеру выполняемой работы требуется усиленное освещение рабочего места, а общего освещения недостаточно, то в этом случае устраивается дополнительное местное освещение. Одновременное общее и местное освещение носит название «комбинированное».

При искусственном освещении рабочих мест нормируется минимальная освещенность рабочей поверхности в зависимости от разряда и подразряда выполняемой работы.

^ Совмещенное освещение представляет собой одновременное использование для освещения рабочих поверхностей в течение светового дня естественного и искусственного освещения. Оно применяется в помещениях, в которых выполняются работы I–III разрядов, а также в помещениях, где естественного освещения недостаточно, а фактический коэффициент естественной освещенности составляет 80 % и менее от нормативного при боковом освещении, 50 % и менее – при верхнем освещении. Значение КЕО для помещений с совмещенным освещением не может быть меньше определенной величины. Нормативные значения КЕО для таких помещений приведены в СНБ 2.04.05-98.

60 Характеристика источников света и светильников

В качестве источников света в современных осветительных установках используются лампы накаливания, галогенные и газоразрядные лампы.

^ В лампах накаливания свечение возникает при нагревании вольфрамовой нити накала до высокой температуры. Производятся различные типы ламп накаливания: вакуумные (НВ), газонаполненные (как правило, наполнителем является смесь аргона и азота) биспиральные (НБ), с криптоноксеноновым наполнением (НБК), зеркальные с диффузно отражающим слоем и другие.

Недостатками их являются низкая световая отдача (от 7 до 20 лм/Вт) при большой яркости нити накала, высокая температура поверхности колбы лампы, низкий КПД (10 – 13%), ограниченный срок службы (до 1000ч). Лампы дают непрерывный спектр, отличающийся от спектра дневного света преобладанием желтых и красных лучей, что в какой-то степени искажает восприятие человеком окружающих предметов.

^ Галогенные (галоидные) лампы накаливания наряду с вольфрамовой нитью содержат в колбе пары того или иного галогена, например, йода, что позволяет повысить температуру накала нити и практически исключить испарение вольфрама. Они имеют более продолжительный срок службы (до 3000 ч) и более высокую светоотдачу (до 40 лм/Вт).

^ Газоразрядные лампы излучают свет в результате электрического разряда в парах и газах. На внутреннюю поверхность стеклянной трубки наносится тонкий слой люминофора, который преобразует ультрафиолетовое излучение газового электрического разряда в видимый свет. Различают газоразрядные лампы низкого (люминесцентные) и высокого давления.

^ Люминесцентные лампы создают в помещениях искусственный свет, приближающийся по спектру к естественному, т.е. они более благоприятны для человека с гигиенической точки зрения. Лампы имеют высокую светоотдачу (до 110 лм/Вт), т.е. в 3 – 3, 5 раза экономичнее ламп накаливания и большой срок службы (до 14000ч). Свечение происходит со всей поверхности трубки, а следовательно, яркость и слепящее действие люминесцентных ламп значительно ниже ламп накаливания. Для освещения открытых пространств, территорий предприятий, улиц, высоких (более 6 м) производственных помещений используются газоразрядные лампы высокого давления. К ним относятся дуговые ртутные люминесцентные лампы типа ДРЛ, галогенные лампы ДРИ (дуговые ртутные с иодидами), ксеноновые лампы сверхвысокого давления ДКсТ (дуговые ксеноновые трубчатые), натриевые лампы ДНаТ (дуговые натриевые трубчатые) и т.д. Эти лампы в отличие от люминесцентных ламп низкого давления сосредотачивают в небольшом объеме значительную электрическую и световую мощность. Они выпускаются мощностью от 80 до 2000 Вт и могут эксплуатироваться при любой температуре окружающей среды.

Качественные показатели освещения в производственных помещениях во многом определяются правильным выбором осветительных приборов, представляющих собой совокупность источников света и осветительной арматуры. Основное назначение последней заключается в перераспределении светового потока источников света в требуемых для освещения направлениях, механическом креплении источников света и подводе к ним электроэнергии, а также защите ламп, оптических и электрических элементов от воздействия окружающей среды. Осветительная арматура предохраняет источники света от загрязнения и механических повреждений и изолирует их от внешней среды. Осветительный прибор ближнего действия называется светильником, а дальнего - прожектором.

Основными светотехническими характеристиками светильников являются КПД, защитный угол и кривая силы света.

Наиболее важной характеристикой светильников является КПД – отношение фактического светового потока светильника к световому потоку находящейся в нем лампы. Осветительная арматура поглощает часть светового потока, излучаемого источником, но благодаря рациональному перераспределению света в необходимом направлении увеличивается освещенность на рабочих местах.

^ Светильники прямого света направляют не менее 80% светового потока в нижнюю полусферу.

Светильники рассеянного света направляют в каждую полусферу от 40 до 60 % светового потока. Они обеспечивают хорошую равномерность освещения при полном отсутствии теней; их устанавливают в помещениях со светлыми потолками и стенами (административных, конструкторских, читальных залах и др.)

^ Светильники отраженного света посылают в верхнюю полусферу не менее 80% всего светового потока, обеспечивают мягкое освещение без резких теней. Их используют для освещения помещений общественного назначения.

По конструктивному исполнению светильники делятся на:

- открытые (лампа не отделена от внешней среды),

- защищенные (лампа отделена оболочкой, допускающей свободный проход воздуха),

- закрытые (оболочка защищает от проникновения внутрь крупной пыли),

- пыленепроницаемые (оболочка не допускает проникновения внутрь мелкодисперсной пыли),

- влагозащищенные,

- взрывозащищенные,

- взрывобезопасные.
^ 61 Характеристики шума и вибрации

Шум – упругие колебания в частотном диапазоне слышимости человека, распространяющиеся в виде волны в газообразных средах в диапазоне 16-16000 Гц, носящие беспорядочный, случайный характер. При этом источником его является любое колеблющееся тело, выведенное из устойчивого состояния внешней силой.

^ По спектральному составу в зависимости от преобладания звуковой энергии в соответствующем диапазоне частот различают:

- низко- (16-350 Гц);

- средне- (350-800 Гц);

- высокочастотные шумы (выше 800 Гц).

Характер распространения колебательного движения в среде называется звуковой волной, а область среды, в которой она распространяется, - звуковым полем.

Звук представляет собой колебательное движение упругой среды, воспринимаемое слуховым аппаратом человека. Движение звуковой волны в воздухе сопровождается периодическим повышением и понижением давления. Периодическое повышение давления в воздухе по сравнению с атмосферным давлением в невозмущенной среде называется звуковым давлением. Чем больше давление, тем сильнее раздражение органа слуха и ощущение громкости звука.

^ По временным характеристикам делится на:

- постоянный шум. Уровень звука меняется не более чем на 5 дБ А за 8 часов при измерении на стандартизованной временной характеристике шумомера «медленно».

- непостоянный шум. Уровень звука меняется более чем на 5 дБ А за 8 часов при измерении на стандартизованной временной характеристике шумомера «медленно». Непостоянный шум делится на:

а) колеблющийся шум - уровень звука изменяется во времени непрерывно;

б) прерывистый шум - уровень звука которого изменяется ступенчато (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1с и более, при этом уровни звука отличаются менее чем на 7 дБ А);

в) импульсный шум – шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1с, при этом уровни звука различаются на 7 дБ А и более).

^ По длительности действия:

- продолжительные

- кратковременные.

По характеру спектра:

- широкополосный шум, с непрерывным спектром шириной более октавы. Для широкополосного шума его уровень, измеренный в дБ А, не должен превышать более чем на 5 дБ уровень шума на частоте 1 кГц соответствующего предельного спектра. Например, шум реактивного самолета.

- тональный (дискретный) содержит в спектре выраженные дискретные тона (частоты, уровень звука на которых значительно выше уровня на других частотах). Например, шум дисковой пилы.

В зависимости от происхождения шумы бывают:

-механические – возникают при движении отдельных деталей и узлов оборудования, машин, аппаратов, приборов и т.д.;

-аэродинамические - возникают в результате движения воздуха, газов или газообразных сред с большой скоростью. Например при работе вентиляторов, воздуходувок;

-гидродинамические – возникают в результате нестационарных и стационарных режимов движения жидкости;

-электромагнитные – возникают в результате воздействия переменных магнитных сил, приводящих в колебательное движение детали и узлы электрических машин, аппаратов, приборов.
Если человек непосредственно контактирует с источниками каждого упругого колебания, то такое воздействие называется вибрацией.

Вибрация это сложный колебательный процесс, возникающий при периодическом смещении центра тяжести какого-либо тела от положения равновесия, а также при периодическом изменении формы тела, которую оно имело в статическом состоянии.

Причинами возникновения вибраций являются неуравновешенные движения, которые возникают при:

-возвратно- поступательном движении;

-вращательном движении, когда центр тяжести не совпадает с осью вращения (инструменты: режущие, пневматические, ручные и т.д.)

-соударении деталей;

-взаимодействии турбулентного потока с различными гидравлическими сопротивлениями;

-действии изменяющегося магнитного поля на ферромагнитные материалы;

-упругой деформации деталей;

-фрикционных процессах;

-работе специальных виброустановок.
В зависимости от источника возникновения различают:

1. локальную вибрацию, которая передаётся от:

-ручных машин или ручного механизированного инструмента и органов управления машинами и оборудованием;

-ручных инструментов без двигателей.

2. общую вибрацию разделяют на три категории:

-категория 1 – транспортная, которая действует на человека на рабочих местах транспортных средств при их движении (автомобили, тягачи, грейдеры, катки и др.);

-категория 2 – транспортно-технологическая, которая действует на человека на рабочих местах машин с ограниченной подвижностью или движущихся по специально подготовленным поверхностям производственных помещений (краны, экскаваторы, строительные машины, бетоноукладчики и др.)

-категория 3 – технологическая, которая действует на человека на рабочих местах стационарных машин или передаётся на рабочие места без источников вибрации (станки, электромашины, стационарные электроустановки, насосы, вентиляторы и др.)

В свою очередь технологическая вибрация в зависимости от места действия бывает трёх типов:

тип «а» - на постоянных рабочих местах (РМ) производственных помещений предприятий;

тип «б» - на рабочих местах производственных помещений без источников вибрации (на складах, в столовых, бытовых, дежурных и других вспомогательных производственных помещений);

тип «в» - на рабочих местах заводоуправлений, конструкторских бюро, лабораторий, учебных пунктов, вычислительных центров, медпунктов, конторских помещений, рабочих комнат и других помещений для работников умственного труда.

^ 62 Воздействие шума и вибрации на организм человека

Шум. Физиопатологические последствия могут проявляться в форме нарушения функций слуха и других анализаторов, например, вестибулярного аппарата, координирующей функции коры головного мозга, нервной или пищеварительной системы, системы органов кровообращения. Кроме того, шум влияет на углеводный, жировой и белковый обмены веществ в организме.

Интенсивный шум на производстве способствует снижению внимания и увеличению числа ошибок при выполнении работы, исключительно сильное влияние оказывает шум на быстроту реакции, сбор информации и аналитические процессы, из-за шума снижается производительность труда и ухудшается качество работы. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчиков, мостовых кранов и т. п.), что может привести к возникновению несчастных случаев на производстве.

В биологическом отношении шум является заметным стрессовым фактором, способным вызвать срыв приспособительных реакций. Акустический стресс может приводить к разным проявлениям: от функциональных нарушений регуляции ЦНС до морфологически обозначенных дегенеративных деструктивных процессов в разных органах и тканях. Степень шумовой патологии зависит от интенсивности и продолжительности воздействия, функционального состояния ЦНС и, что очень важно, от индивидуальной чувствительности организма к акустическому раздражителю.

Шум оказывает влияние на весь организм человека: угнетает ЦНС, вызывает изменение скорости дыхания и пульса, способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, гипертонической болезни, может приводить к профессиональным заболеваниям.

Шум с уровнем звукового давления до 30 ÷ 35 дБ привычен для человека и не беспокоит его. Повышение этого уровня до 40 ÷ 70 дБ в условиях среды обитания создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия, и при длительном действии может быть причиной неврозов. Воздействие шума уровнем свыше 75 дБ может привести к потере слуха − профессиональной тугоухости. При действии шума высоких уровней (более 140 дБ) возможен разрыв барабанных перепонок, контузия, а еще более высокие уровни (более 160 дБ) могут привести к смерти.

Специфическое шумовое воздействие, сопровождающееся повреждением слухового анализатора, проявляется медленно прогрессирующим снижением слуха. У некоторых лиц серьезное шумовое повреждение слуха может наступить в первые месяцы воздействия, у других − потеря слуха развивается постепенно, в течение всего периода работы на производстве. Снижение слуха на 10 дБ практически неощутимо, на 20 дБ − начинает серьезно мешать человеку, так как нарушается способность слышать важные звуковые сигналы, наступает ослабление разборчивости речи.

Вибрация воздействует на центральную нервную систему (ЦНС), желудочно-кишечный тракт, органы равновесия (вестибулярный аппарат), вызывает головокружение, онемение конечностей, заболевания суставов. Длительное воздействие вибрации приводит к профессиональному заболеванию - вибрационной болезни, эффективное лечение которой возможно лишь на ранних стадиях, причем восстановление нарушенных функций протекает крайне медленно, а при определенных условиях в организме могут наступить необратимые процессы, сопровождающиеся полной потерей трудоспособности.

Кроме вредного воздействия на организм человека, вибрация приводит к разрушению зданий, сооружений, коммуникаций, поломке оборудования. Отрицательное влияние ее заключается также в снижении КПД работающих машин и механизмов, преждевременном износе вращающихся деталей вследствие их дисбаланса, понижении точности контрольно-измерительных приборов (КИП), нарушении функционирования автоматических систем управления и т. д.

Длительное воздействие вибрации приводит к профессиональному заболеванию − вибрационной болезни, эффективное лечение которой возможно лишь на начальной стадии ее развития.

Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев, деформируя и уменьшая подвижность суставов. Колебания низких частот вызывают резкое снижение тонуса капилляров, а высоких частот - спазм сосудов.

Сроки развития периферических расстройств зависят не столько от уровня, сколько от дозы (эквивалентного уровня) вибрации в течение рабочей смены. Преимущественное значение имеет время непрерывного контакта с вибрацией и суммарное время воздействия вибрации за смену. У формовщиков, бурильщиков, заточников, рихтовщиков при среднечастотном спектре вибраций заболевание развивается через 8-10 лет работы. Обслуживание инструмента ударного действия (клепка, обрубка), генерирующего вибрацию среднечастотного диапазона (30 ÷ 125 Гц), приводит к развитию сосудистых, нервно-мышечных, костно-суставных и других нарушений через 12-15 лет. При локальном воздействии низкочастотной вибрации, особенно при значительном физическом напряжении, рабочие жалуются на ноющие, ломящие, тянущие боли в верхних конечностях (часто по ночам). Одним из постоянных симптомов локального и общего воздействия является расстройство чувствительности. Наиболее резко страдает вибрационная, болевая и температурная чувствительность.

К факторам производственной среды, усугубляющим вредное воздействие вибраций на организм, относятся чрезмерные мышечные нагрузки, неблагоприятные микроклиматические условия, особенно пониженная температура, шум высокой интенсивности, психоэмоциональный стресс. Охлаждение и смачивание рук значительно повышают риск развития вибрационной болезни из-за усиления сосудистых реакций. При совместном действии шума и вибрации наблюдается взаимное усиление эффекта в результате его суммации, а возможно, и потенцирования.

Длительное систематическое воздействие вибрации приводит к развитию вибрационной болезни (ВБ), которая включена в список профессиональных заболеваний. Эта болезнь диагностируется, как правило, у работающих на производстве; в условиях населенных мест ВБ не регистрируется, несмотря на наличие многих источников вибрации (наземный и подземный транспорт, промышленные источники и др.). Лица, подвергающиеся воздействию вибрации окружающей среды, чаще болеют сердечно-сосудистыми и нервными заболеваниями и обычно предъявляют много жалоб общесоматического характера.
^ 63 Измерение и нормирование шума и вибрации

Шум. При нормировании допустимого звукового давления на рабочих местах частотный спектр шума разбивают на девять частотных полос.

Нормируемыми параметрами постоянного шума являются:

уровень звукового давления;

уровень звука.

Нормируемыми параметрами непостоянного шума являются:

  • эквивалентный (по энергии) уровень звука,

  • максимальный уровень звука.

Превышение хотя бы одного из указанных показателей квали­фицируется как несоответствие настоящим санитарным нормам.

В соответствии с СанПиН 2.2.4/2.1.8.10—32—2002 предельно до­пустимые уровни шума нормируются по двум категориям норм шума: ПДУ шума на рабочих местах и ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки.

Максимальный уровень звука для колеблющегося и прерыви­стого шума не должен превышать 110 дБ А. Запрещается даже крат­ковременное пребывание в зонах с уровнем звука или уровнем звуко­вого давления в любой октавной полосе свыше 135 дБ А (дБ).

^ ПДУ шума в помещениях жилых, общественных зданий и на территории жилой застройки. Допустимые значения уровней зву­кового давления в октавных полосах частот эквивалентных и макси­мальных уровней звука проникающего шума в помещения жилых и общественных зданий и шума на территории жилой застройки уста­навливаются согласно прил. 3 к СанПиН 2.2.4/2.1.8.10—32—2002.

Вибрация. Основным методом, характеризующим вибрационное воздейст­вие на человека, является частотный анализ.

Нормируемый диапазон частот для локальной вибрации уста­навливается в виде октавных полос со среднегеометрическими часто­тами 8; 16; 31,5; 63; 125; 250; 500 и 1000 Гц.

Нормируемый диапазон частот для общей вибрации, в зависи­мости от категории, устанавливается в виде октавных или третьок-тавных полос со среднегеометрическими частотами 0,8; 1,0; 1,25; 1,6; 2,0; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16, 20; 25; 31,5; 40; 50, 63, 80 Гц.

Нормируемыми параметрами постоянной вибрации являются:

— средние квадрэтические значения виброускорения и вибро­скорости, измеряемые в октавных (третьоктавных) полосах частот, или их логарифмические уровни;

— корректированные по частоте значения виброускорения и виброскорости или их логарифмические уровни.

Нормируемыми параметрами непостоянной вибрации являются эквивалентные (по энергии), корректированные по частоте значения виброускорения и виброскорости, или их логарифмические уровни.

Предельно допустимые величины нормируемых параметров общей и локальной производственной вибрации при длительности вибрационного воздействия 480 мин (8 ч) приведены в табл. СанПиН 2.2.4/2.1.8.10—33—2002.

При частотном (спектральном) анализе нормируемыми па­раметрами являются средние квадратичные значения виброскорости (и их логарифмические уровни) или виброускорения для локальной вибрации в октавных полосах частот, а для общей вибрации в октав-ных или 1/3-октавных полосах частот.

Вибрацию, воздействующую на человека, нормируют отдельно для каждого установленного направления, учитывая, кроме того, при общей вибрации ее категорию, а при локальной — время фактическо­го воздействия.

^ 64 Методы борьбы с шумом и вибрацией на производстве

С целью выбора наиболее эффективных мер защиты необходимо учитывать характер шумообразования.

Снижение механических шумов достигается: -улучшением конструкции машин и механизмов, -заменой деталей из металлических материалов на пластмассовые,-заменой ударных технологических процессов на безударные, -применением вместо зубчатых передач в машинах и механизмах других видов передач или использованием зубчатых передач, не издающих громких звуков, -нанесением смазки на трущиеся детали и рядом других мероприятий.

Для снижения аэродинамического шума, возникающего при работе вентиляторов, дымососов, компрессоров, кондиционеров на воздуховодах, всасывающих трактах, магистралях выброса и перепуска воздуха устанавливают различные глушители, которые могут быть активными и реактивными. Активные глушители представляют устройства, содержащие в себе материал, поглощающий энергию аэродинамического шума. Реактивные глушители устроены таким образом, что способны отражать входящую звуковую энергию обратно к источнику ее образования.

Аэродинамические и гидродинамические шумы сопровождают течение жидкости или газа. Для уменьшения аэродинамических и гидродинамических шумов рекомендуются мероприятия:

-снижение скорости обтекания газовыми или воздушными потоками препятствий,

-улучшение аэродинамики тел, работающих в контакте с потоками,

-снижение скорости истечения газовой струи и уменьшение диаметра отверстия, из которого эта струя истекает,

-выбор оптимальных режимов работы насосов для перекачивания жидкостей,

-правильное проектирование и эксплуатация гидросистем.

Для борьбы с шумами электромагнитного происхождения рекомендуется:

-тщательно уравновешивать вращающиеся детали электромашин (ротор, подшипники),

-осуществлять тщательную притирку щеток электродвигателей,

-применять плотную прессовку пакетов трансформаторов

-выбирают оптимальные габаритные размеры;

-уменьшают магнитную индукцию.

К общим относятся коллективные средства защиты.

-архитектурно-планировочные: рациональная акустическая планировка зданий и генпланов предприятий; рациональное расположение технологического оборудования и рабочих мест; рациональное акустическое размещение зон и режимов движения транспортных средств и транспортных потоков; создание шумозащищённых зон;

-акустические средства:

-средства изоляции: звукоизолирующие ограждения зданий и помещений; звукоизолирующие кожухи, кабины, выгородки; акустические экраны, перегородки;

^ Уменьшение звуковой мощности по пути распространения шума.

-средства звукопоглощения: звукоизолирующие облицовки, объемные поглотители звука;

-организационно-технические методы: применение малошумящих технологических процессов; оснащение шумных машин средствами дистанционного управления и автоматического контроля; совершенство технологии ремонта и обслуживания машин; применение малошумящих машин и их сборочных единиц; использование рациональных режимов труда и отдыха и др.

К средствам индивидуальной защиты относятся: - противошумными вкладышами (Беруши); - наушниками; - шлемофонами.

^ Основные мероприятия от влияния вибраций на работающих:

1. Технические – снижение вибрации как в источнике образования, так и на пути её распространения. Уменьшение вибрации в источнике образования достигается подбором конструктивных материалов, качественном изготовлении деталей, выбором режимов работы оборудования, усовершенствованием геометрических форм, уравновешиванием и балансировкой вращающихся частей, устранением дефектов;

2. ^ Организационно – технические мероприятия, направленные на снижение вибрации, предусматривают:

- проверку наличия вибрационных характеристик в паспортах вновь поступивших машин, а при их отсутствии и при необходимости организацию входного контроля этих характеристик;

-своевременное проведение планового и предупредительного ремонта машин с обязательным послеремонтным контролем их вибрационных характеристик;

- контроль за соблюдением правил и условий эксплуатации машин и их использование в соответствии с назначением, указанным в научно – технической документации;

-исключение контакта работающих с вибрирующими поверхностями за пределами рабочего места или зоны;

-допуск к эксплуатации только исправных машин;

-запрет оборудования рабочих мест без амортизирующих сидений;

^ Защита от вибрации проводится несколькими методами:

1. устранение или снижение действующих переменных сил, вызывающих вибрацию в источнике их возникновения;

2. вибропоглощение;

а) вибродемпфирование – превращение энергии механических колебаний в другие виды энергии, чаще всего в тепловую. Используют материалы с большим внутренним трением; наносят на вибрирующие поверхности слоя упруговязких материалов, обладающих большими потерями на внутреннее трение; применяют демпфирующих материалов (антивибрационных мастик, мягких пластмасс, войлока, пенопласта, резины и др.);

б) виброгашение – это снижение уровня вибрации объекта путем введения в колебательную систему дополнительных реактивных сопротивлений.

3. виброизоляция – это снижение уровня вибрации защищаемого объекта, достигаемое уменьшением передачи колебаний от их источника. Виброизоляция представляет собой упругие элементы, так называемые амортизаторы вибрации, размещенные между вибрирующей машиной и ее основанием. Используется для ослабления интенсивности передачи вибрации от источников ее возникновения полу, рабочему месту, сиденью, рукоятке. Установка между источником возбуждения и защищаемым объектом амортизаторов. В качестве амортизаторов используют стальные пружины, пробки, прокладки из резины и др.

4. увеличение жёсткости элементов машин и строительных;

5. установка конструкционных разрывов (акустических швов) без заполнения, с заполнением или с подпорными стенками между фундаментом с вибрирующим оборудованием и полом или другими конструкциями здания;

6. автоматизация и дистанционное управление технологическими процессами, оборудованием, цехами, участками;

7. рациональная планировка технологических процессов и производственных помещений.

В качестве средств индивидуальной защиты от вибрации используют:

- специальную обувь на массивной резиновой подошве;

- рукавицы, перчатки, вкладыши и прокладки, которые изготавливаются из упруго демпфирующих материалов.

^ 65 Влияние инфразвука и ультразвука на орг. человека и ср-ва защиты

Инфразвук - распространяющиеся в воздушной среде колебания с частотой ниже 16 Гц. Низкая частота инфразвукового колебания обусловливает ряд особенностей его распространения в окружающей среде.

Эффективным способом защиты от инфразвука является уменьшение его в источнике образования. Это достигается путём: -повышения быстроходности машин, что позволит перейти в слышимый диапазон звуков; -повышения жёсткости конструкций; -устранение низкочастотных вибраций; -установкой глушителей реактивного типа.

Источниками инфразвука в промышленности являются компрессоры, дизельные двигатели, вентиляторы, ветро- энергоустановки, реактивные двигатели, транспортные средства и др. В природе это землетрясения, извержения вулканов, морские бури, движение большого количества газа, жидкости, при вращательном движении, при ветре в горах. Инфразвук распространяется быстрее звука.

Воздействие на человека.

Действие инфразвука на человека воспринимается как физическая нагрузка: - нарушается пространственная ориентация,- возникают морская болезнь, - пищеварительные расстройства, - нарушения зрения, - головокружение, - изменяется периферическое кровообращение.

При воздействии инфразвука на организм уровнем 110 ÷ 150 дБ могут возникать неприятные субъективные ощущения и многочисленные реактивные изменения: нарушения в ЦНС, сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Отмечаются жалобы на головные боли, головокружение, осязаемые движения барабанных перепонок, звон в ушах и голове, снижение внимания и работоспособности; может появиться чувство страха, сонливость, затруднение речи; специфическая для действия инфразвука реакция - нарушение равновесия. При воздействии инфразвука с уровнем 105 дБ отмечены психофизиологические реакции в форме повышения тревожности и неуверенности, эмоциональной неустойчивости. Особенно неблагоприятно воздействие на организм человека инфразвуковых колебаний с частотой 4 ÷ 12 Гц.

Средства и методы защиты от инфразвука.

Что же касается инфразвука, то для этого физического фактора воздействия на человека в производственной среде пока не разработаны специфические методы защиты, а также четкие санитарно-гигиенические рекомендации.

К ним следует отнести: -снижение уровня инфразвука в его источнике; -увеличение жесткости колеблющихся конструкций; -применение глушителей реактивного типа.

Ультразвук - колебания свыше 20 кГц, распространяющиеся как в воздухе, так и в жидких и твердых средах.

В зависимости от способа передачи от источника к человеку ультразвук подразделяют:

1. контактный это ультразвук, передающийся при соприкосновении рук или других частей тела человека с его источником, обрабатываемыми деталями, приспособлениями для их удержания, озвучиваемыми жидкостями, сканерами медицинской ультразвуковой аппаратуры, искательными головками ультразвуковых дефектоскопов (передаётся на руки работающего через твёрдую или жидкую среду).

2. воздушный это ультразвуковые колебания в воздушной среде (передаётся воздушным путём).

В зависимости от частотного диапазона (от спектра) ультразвук подразделяют на:

-низкочастотный (от 1,12∙104 до 1∙105 Гц), который передаётся человеку воздушным и контактным путём;

Низкочастотный ультразвук применяется при сварке, пайке, лужении, механической обработке материалов, при кристаллизации металлов, при обезжиривании, при очистке загрязнённых воды и воздуха; в медицине – для резки и соединения биологических тканей, обезболивания, разрушения новообразований, стерилизации инструмента и др.

-высокочастотный (от 1∙105 до 1∙109 Гц), который передаётся человеку только контактным путём.

Высокочастотный ультразвук применяется в аппаратуре для сбора информации, для контроля, анализа, обработки и передачи сигналов, в дефектоскопии, в радиолокации; в медицине – для диагностики, для лечения различных заболеваний, в офтальмологии, дерматологии и др.

Воздействие на человека.

Ультразвук оказывает существенное влияние на организм человека. Ультразвук способен распространяться во всех средах: газообразной, жидкой и твердой. Нарушает микроокружение мембран клеток, изменяет проницаемость мембран, приводит к возникновению новых синтезов в клетках. Поэтому в организме человека он воздействует не только собственно на органы и ткани, но и на клеточную и другие жидкости.

Длительное систематическое влияние ультразвука, распространяющегося в воздухе, вызывает функциональные нарушения нервной, сердечно-сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. У людей, работающих на ультразвуковых установках, отмечают выраженную астению, сосудистую гипотонию, снижение электрической активности сердца и мозга. Изменения ЦНС в начальной фазе проявляются нарушением рефлекторных функций мозга. Характерны жалобы на резкое утомление, головные боли и чувство давления в голове, затруднения при концентрации внимания, торможение мыслительного процесса, на бессонницу.Контактное воздействие высокочастотного ультразвука на руки приводит к нарушению капиллярного кровообращения в кистях рук, снижению болевой чувствительности, т. е. развиваются периферические неврологические нарушения. Установлено, что ультразвуковые колебания могут вызывать изменения костной структуры с разрежением плотности костной ткани.

Профессиональные заболевания зарегистрированы лишь при контактной передаче ультразвука на руки - вегетосенсорная (ангионевроз) или сенсомоторная полиневропатия рук.

Средства и методы защиты от ультразвука.

Существуют требования по ограничению неблагоприятного влияния контактного ультразвука, а именно:

-при разработке нового оборудования должны предусматриваться меры по максимальному ограничению ультразвука, как в источнике возникновения, так и на пути его распространения;

-запрещается непосредственный контакт человека с рабочей поверхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвука;

-ультразвуковые искатели и датчики, удерживаемые руками оператора, должны иметь форму, обеспечивающую минимальное напряжение мышц, удобное для работы расположение;

-исключается передача ультразвука другим частям тела кроме рук;

-применение дистанционного управления; приспособления для удержания источника ультразвука или предметов, которые могут служит в качестве твердой контактной среды;

-для защиты рук от неблагоприятного воздействия контактного ультразвука в твердых и жидких средах, а также от контактных смазок необходимо применять нарукавники, рукавицы или перчатки (наружные резиновые и внутренние хлопчатобумажные);

-использование звукоизолирующих кожухов. Эти экраны изготавливают из листовой стали или дюралюминия толщиной 1 мм, пластмассы (гетинакса) либо из специальной резины.
^ 66 Токсичность веществ и её показатели

При контакте с организмом человека пары, газы, жидкости, аэрозоли, химические соединения, смеси (далее – вещества) могут вызывать изменения в состоянии здоровья или заболевания.

В организм человека вредные химические вещества могут проникать через органы дыхания, желудочно-кишечный тракт, кожные покровы.

Под вредным веществом понимают вещество, которое при контакте с организмом человека в случае нарушения требований безопасности может вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами, как в процессе работы, так и в отдаленные сроки настоящего и последующих поколений.

Вредные химические вещества на организм человека изучает специальная наука – токсикология.

Токсикология – медицинская наука, изучающая свойства ядовитых веществ, механизм их действия на живой организм, сущность вызываемого ими патологического процесса (отравления) методы его использования и предупреждения.

В токсикологии используется понятие «яд», под которым понимают условно такое химическое соединение, которое, будучи введено в организм в малых количествах и действуя на него химически или физико-химически при определенных условиях, способно привести к болезни или смерти.

^ Химические вещества в зависимости от их практического использования классифицируются на:

- промышленные яды – используемые в производстве органические растворители (например, дихлорэтан), топливо (например, пропан, бутан), красители (например, анилин) и др.;

- ядохимикаты – используемые в сельском хозяйстве пестициды и др.;

- лекарственные средства;

- бытовые химикаты – применяемые в виде пищевых добавок (например, уксус), средства санитарии, личной гигиены, косметики и т.д.;

- биологические растительные и животные яды, которые содержаться в растениях, грибах, у животных и насекомых;

- отравляющие вещества – зарин, иприт, фосген и т.д.

Химическое вещество становится ядом лишь при определенных условиях, а эти условия разнообразны. Ядовитое действие веществ связано, прежде всего, с их количеством (дозой), затем с физическими и химическими свойствами, условиями применения, состоянием организма и пр. Так, в зависимости от дозы одно и то же вещество может быть и ядом, и лекарством. Стрихнин, атропин, морфин, соединения мышьяка, ртути и другие хорошо известны как лекарства.

Токсичность – способность веществ оказывать вредное воздействие на живые организмы. Основным критерием (показателем) токсичности вещества является предельно допустимая концентрация (мг/м 3). Показатель токсичности вещества определяет его опасность.

Предельно допустимая концентрация вредного вещества в воздухе рабочей зоныэто концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 часов или при другой продолжительности, но не более 40 часов в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений, мг/м3.

При концентрации вредных веществ в воздухе рабочей зоны, превышающей ПДК, у человека могут проявляться острые и хронические отравления, а также профессиональные заболевания.

Острые отравления, как правило, происходят в результате аварий, поломок оборудования и грубых нарушений техники безопасности. Они характеризуются кратковременностью действия и относительно высокими концентрациями вредных веществ. Симптомы отравления проявляются либо сразу, либо через сравнительно небольшой (обычно несколько часов) скрытый (латентный) период.

Хронические отравления возникают постепенно, при длительном систематическом воздействии вредных веществ, проникающих в организм человека в относительно небольших количествах. Они могут развиваться вследствие накопления вредного вещества в организме (материальная кумуляция) или вызываемых им изменений (функциональная кумуляция).

Профессиональное заболевание – это хроническое или острое заболевание работающего, являющееся результатом воздействия вредного фактора.

При любой форме отравления характер действия вредного вещества определяется степенью его физиологической активности – токсичностью.

^ По степени опасности в соответствии с ГОСТ 12.1.007 – 76 вредные вещества подразделяются на 4 класса:

1 – вещества чрезвычайно опасные (ванадий и его соединения, оксид кадмия, карбонил никеля, озон, ртуть, свинец и его соединения, терефталевая кислота, тетраэтилсвинец, фосфор желтый и др.) – ПДК менее 0,1 мг/м3;

2 – вещества высоко опасные (оксиды азота, дихлорэтан, карбофос, марганец, медь, мышьяковистый водород, пиридин, серная и соляная кислоты, сероводород, сероуглерод, тиурам, формальдегид, фтористый водород, хлор, растворы едких щелочей и др.) – ПДК 0,1 – 1,0 мг/м3;

3 – вещества умеренно опасные (камфара, капролактам, ксилол, нитрофоска, полиэтилен низкого давления, сернистый ангидрид, спирт метиловый, толуол, фенол, фурфурол и др.) - ПДК 1,0 – 10, 0 мг/м3;

4 – вещества малоопасные (аммиак, ацетон, бензин, керосин, нафталин, скипидар, спирт этиловый, оксид углерода, уайт-спирит, доломит, известняк, магнезит и др.) – ПДК более 10,0.

^ 67 Пути проникновения и характер воздействия вредных веществ на организм человека

Основными путями поступления вредных веществ в организм человека являются:

-ингаляционный (через органы дыхания), -пероралъный (через желудочно-кишечный тракт) -через неповрежденную кожу и слизистые оболочки.

Статистика профессиональных заболеваний показывает, что до 90% всех производственных отравлений связано с ингаляцией вредных веществ.

Отравления, вызванные попаданием вредных веществ в пищеварительный тракт, редко бывают производственными. Это возможно при нарушении правил личной гигиены, приеме пищи, курении в производственных помещениях.

Поступление ядов через кожу возможно лишь в том случае, если они являются неэлектролитами и способны растворяться в жирах и липидах, а следовательно, и в кожном сале (углеводороды, ароматические амины, бензол и его соединения, толуол, анилин и др.).

Выделение ядов из организма происходит через почки и кишечник, наиболее летучие вещества выделяются также и через легкие с выдыхаемым воздухом Действие ядовитого вещества на организм может быть местным и общим. Типичным местным действием обладают газы и пары, вызывающие раздражение слизистых оболочек носа, горла, бронхов (пощипывание, сухой кашель и др.) и глаз (резь, боль, слезотечение).

На производстве работники подвергаются не изолированному воздействию одного вещества, а комбинированному действию – это одновременное или последовательное действие на организм нескольких веществ при одном и том же пути их поступления в организм

Различают несколько типов комбинированного действия вредных веществ в зависимости от эффектов токсичности:

- суммация (аддитивное действие, аддитивность) – суммарный эффект действия смеси равен сумме эффектов входящих в смесь компонентов. Суммация характерна для веществ однонаправленного действия, когда вещества действуют на одни и те же системы в организме. (Например, наркотическое действие смеси углеводородов).

- потенцирование (синергическое действие, синергизм) – вещества действуют так, что одно вещество усиливает действие другого.

- антагонизм – (антагонистическое действие) – одно вещество ослабляет действие другого.

- независимость (независимое действие) – вещества действуют на различные системы организма, и их токсические эффекты не зависят друг от друга. Например, бензол и раздражающие газы, смесь продуктов сгорания и пыль.

Токсическое действие вредных веществ на организм человека зависит от:

- дозы, - токсичности, - длительности поступления, - химизма взаимодействия веществ, - индивидуальных особенностей (пола, возраста, состояния здоровья человека, чувствительности и т.д.), - метеорологических условий производственной среды, химической структуры и физических свойств вредного вещества.

Чувствительность людей к вредным веществам зависит от индивидуальных особенностей протекания биохимических процессов, а также функциональной активности различных физиологических систем человека, в частности, ферментов детоксикации.

Степень поражения организма вредными веществами зависит от состояния здоровья человека.

Индивидуальная чувствительность человека возрастает в случаях воздействия вредных веществ с явно аллергическим эффектом (соединения хрома, некоторые красители). В связи с этим лица, страдающие определенными заболеваниями, не допускаются к работе с веществами, которые могут обострить течение их болезни или привести к более быстрой и тяжелой интоксикации

^ 68 Производственная пыль и воздействие её на организм человека

Промышленные пыли (аэрозоли) - это тонкодисперсные частицы, образующиеся при различных производственных процессах и способные длительное время находиться в воздухе во взвешенном состоянии.

По происхождению аэрозоли подразделяются на пыли дезинтеграции и пыли конденсации.

^ Пыли дезинтеграции образуются при дроблении, измельчении, помоле, резании и других механических процессах. Они, как правило, характеризуются полидисперсностью, а частицы пыли имеют неправильную форму.

^ Пыли конденсации образуются в результате охлаждения и конденсации паров расплавленных масс (металлов, стекломассы, расплавов солеи, насыщенных растворов и т.п.). В этом случае частицы пыли имеют округлую, овальную, более правильную форму. Как правило, они характеризуются высокой дисперсностью.

^ По составу пыль подразделяют на органическую, минеральную и смешанную.

По размеру мелкодисперсные частицы разделяют на три основные группы:

-частицы размером более 10 мкм, оседающие в неподвижном воздухе с возрастающей скоростью и не диффундирующие;

-частицы размером от 0,1 до 10 мкм, оседающие в воздухе с постоянной скоростью, условно называемые «туманом»;

-частицы размером менее 0,1 мкм, находящиеся в постоянном броуновском движении и энергично диффундирующие. Пыль такого размера почти не оседает и по своим свойствам приближается к молекулам газа.

Мелкодисперсные частицы пыли имеют огромную удельную поверхность, повышенные физическую и химическую активность и адсорбционную способность.

Частицы пыли крупнее 10 мкм, особенно с острыми зазубренными краями, внедряются в нежную слизистую оболочку и оседают в верхних дыхательных путях. Более легкие пылевые частицы проникают в легкие, так как фильтрующее значение носовых полостей человека в отношении таких частиц пыли весьма незначительно.

^ По характеру воздействия на организм человека производственная пыль подразделяется на раздражающую и токсическую.

К раздражающим пылям относятся:

-минеральная - песочно-кварцевая, корундовая пыль, выделяющаяся, например, при заточных и шлифовальных процессах на станках с абразивными кругами; пыль, образующаяся при различных технологических операциях (размоле, просеивании, смешивании, транспортировке и т.п.);

-металлическая - чугунная, железная, медная, алюминиевая, цинковая и др., которая выделяется при разных видах механической обработки металлов;

-древесная, получающаяся при обработке древесины;

-полимерная, возникающая на различных стадиях технологических процессов переработки полимеров (полиэтиленовая, полистирольная, фенол форм альдегидная и т.д.).

Вредное действие пыли на человека зависит от формы и характера поверхности

Профессиональные заболевания, связанные с воздействием аэрозолей называются пневмокониозами.

Пневмокониозы делятся на:

- силикозы – развиваются при действии кварцевой пыли, т.е. свободным диоксидом кремния;

- силикатозы – развиваются при действии аэрозолей солей кремниевой кислоты;

- металлокониозы – развиваются при вдыхании металлической пыли (алюминиевой пылью – алюминозом, железосодержащей пылью - сидерозом,

^ Токсическая производственная пыль может оказывать ядовитое воздействие на человека при вдыхании, проглатывании и оседании на открытых участках кожи. Растворяясь в слюне, задерживаясь на слизистых оболочках дыхательных путей и пищевого тракта, она действует, как жидкий яд.

Некоторые токсические пыли при попадании на кожный покров вызывают его химическое раздражение, появляются зуд, краснота, припухлость, язвочки. Чаще всего такими свойствами обладают пыли химических веществ (хромовые соли, известь, сода, карбид кальция и др.).

При попадании пыли на слизистые оболочки глаз и верхних дыхательных путей ее раздражающее действие как механическое, так и химическое, проявляется наиболее ярко. Слизистые оболочки по сравнению с кожным покровом более тонки и неясны, их раздражают все виды пыли, в том числе и аморфные, волокнистые и др.

Пыль, попавшая в глаза, вызывает воспалительный процесс слизистых оболочек - конъюнктивит, который выражается в покраснении, слезотечении, иногда припухлости и нагноении.

Такие виды пыли, как пековая, оказывают фотосенсибилизирующее действие на кожные покровы и особенно на глаза, т.е. повышают их чувствительность к солнечному свету.

На органы пищеварения могут оказывать действие лишь некоторые токсические пыли, которые, попав туда даже в небольшой дозе, всасываются и вызывают интоксикацию организма.

Действие пыли на верхние дыхательные пути сводится к их раздражению, а при длительном воздействии - воспалению.

Наибольшую опасность представляют токсические пыли, попадающие в легкие, где, задерживаясь на длительный период в альвеолах и бронхиолах, они могут быстро всасываться в большом количестве и оказывать раздражающее и общетоксическое действие, вызывая интоксикацию организма.

Кроме вредного действия на организм человека, пыль повышает износ оборудования (главным образом трущихся частей), увеличивает брак продукции.

Мелкодисперсная пыль многих веществ способна образовывать взрывоопасные смеси. В этом случае следует пользоваться термином «горючая пыль», которая определяется как дисперсная система, состоящая из твердых частиц размером менее 850 мкм, находящихся во взвешенном или осевшем состоянии в газовой среде, способная к самостоятельному горению в воздухе нормального состояния. Взрываемость пыли зависит от ее дисперсности, концентрации в воздушной среде, наличия кислорода в смеси, детонации взрыва и других факторов.

^ 69 Нормирование вредных веществ и методы их контроля

Для оценки вредности и уровня безопасности химического вещества в воздухе рабочей зоны устанавливается его предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны является максимально разовой.

Отбор проб воздуха производится в рабочей зоне на расстоянии 0,5 м от источников выделения вредных веществ в условиях действующей приточно-вытяжной вентиляции вне действия факела приточной вентиляции и открытых окон.

Для контроля воздушной среды применяются лабораторные, индикационные и экспресс-методы. Существуют также автоматические приборы контроля газовой среды.

^ Лабораторные методы очень точны и дают возможность определить микроколичества токсических веществ в воздухе. В этом случае проба воздуха отбирается в производственном помещении, а анализируется в лаборатории. Для этой цели используют различные методы химического и физико-химического анализа.

^ Индикационные методы отличаются простотой, позволяют быстро определить качественный состав загрязнителей. Эти методы применяются в случаях, когда нежелательно присутствие токсических веществ в помещениях даже в малых концентрациях, а при их наличии требуются особые срочные меры. Однако количественное определение токсических веществ в воздухе при помощи индикационных методов можно произвести весьма ориентировочно.

В основу индикационных методов положены цветные реакции между загрязненным воздухом и поглотительным раствором или реактивной бумажкой. По интенсивности окрашивания поглотителя можно ориентировочно судить о концентрации определяемого вещества в воздухе. Так, бумажка, пропитанная уксуснокислым свинцом, чернеет в присутствии следов сероводорода; бумажка, пропитанная парами диметиламинобензольдегида (бумажка Прокофьева), краснеет в присутствии следов фосгена и т.д.

Экспресс-методы служат для качественного и количественного определения концентрации вредных паров и газов непосредственно в рабочей зоне. Экспресс-методы преимущественно основаны на получении цветной реакции при взаимодействии определяемого вещества с твердым сорбентом - индикаторным порошком, помещенным в узенькую стеклянную трубку. При просасывании загрязненного воздуха через трубку индикаторный порошок окрашивается на определенную длину, по величине которой судят о концентрации определяемого вещества.

^ Автоматические газоанализаторы непрерывного действия осуществляют обычно непрерывную регистрацию уровня загазованности на диаграммной ленте. Они могут обладать различной чувствительностью. Газоанализаторы, настроенные на уровни ПДК или показатели взрывоопасности, при достижении соответствующей концентрации дают световой или звуковой сигнал, автоматически включают вентиляцию и др. Такие приборы называются газосигнализаторами.

Для определения концентрации пыли в воздухе существует несколько методов:

-аспирационный - основан на просасывании воздуха через пористые материалы или через жидкости (воду, масла). Однако чаще всего используют стандартные фильтры;

-седиментационный - основан на естественном оседании пыли на стеклянные пластинки с последующим расчетом массы пыли на 1 м2 поверхности;

-электростатический - заключается в создании поля высокого напряжения, в котором пылевые частицы электризуются и притягиваются к электродам;

-фотометрический - пылевые частицы регистрируются с помощью сильного бокового света;

-радиоизотопный - основан на определении массы задержанной фильтром пыли по степени ослабления потока β-частиц, прошедших через фильтр до его запыления и после.

^ 70 Индивидуальные средства защиты работающих от воздействия вредных веществ

В целях охраны здоровья работающих на предприятии должны планироваться и осуществляться мероприятия, направленные на устранение или уменьшение интенсивности и длительности воздействия на работающих вредных веществ.

Основными из указанных мероприятий являются:

производственно-технологические:

- коренное изменение технологического процесса, в частности, введение непрерывных процессов, особенно в химических производствах;

- герметизация оборудования;

- замена ядовитых веществ неядовитыми;

- исключение физически тяжелых операций;

- исключение контакта с вредными и ядовитыми веществами и т.п.

по рациональной организации трудового процесса:

- рациональный режим труда и отдыха;

- правильное использование перерывов;

- рациональные объемно-планировочные решения цехов и участков;

- оптимальная организация рабочих мест и др.

санитарно-технические:

- устройство вентиляции, отопления, освещения;

- оборудование санитарно-бытовых помещений;

- организация питьевого водоснабжения;

по индивидуальной защите и гигиене:

- выдача защитной спецодежды, обуви;

- выдача средств защиты органов слуха, дыхания, зрения и других средств индивидуальной защиты;

- выдача защитных масел, мазей, паст, моющих средств;

законодательные мероприятия:

- по вопросам нормирования рабочего времени, гигиены труда, охране труда женщин, подростков;

- организация медико-санитарного обслуживания работников – предварительные и периодические медицинские осмотры;

- бесплатное профилактическое питание;

- организация здравпунктов, медико-санитарных частей, профилакториев и т.д.

Указанные мероприятия должны включаться в планы улучшения условий охраны труда и санитарно-оздоровительных мероприятий (перспективные и текущие) или программы по безопасности и гигиене труда, в заключаемые на предприятиях коллективные договоры и соглашения по охране труда.

Первостепенная задача нанимателей – обеспечение своевременной и полной реализации всех намеченных мероприятий, выделение для этих целей необходимых материальных, трудовых и финансовых ресурсов.

^ 71 Вентиляция производственных помещений

Очистку и обезвреживание газовых составляющих выбросов промышленных предприятий осуществляют методами, выбор которых определяется составом, концентрацией загрязняющих веществ, топом производства, условиями выброса.

Используются следующие методы обезвреживания газообразных выбросов:

- конденсационный, заключающийся в охлаждении тепловоздушной смеси ниже точки росы в специальных теплообменниках-конденсаторах;

- компрессионный – сжатие обезвреживаемого газа и его последующее охлаждение;

- абсорбционный, основанный на диффузии газообразных примесей на поверхности раздела газ-жидкость с переходом в жидкую фазу;

- адсорбционный, основанный на физических свойствах некоторых твердых тел с ультрамикроскопической структурой выборочно извлекать отдельные компоненты из газовой смеси и удерживать их на своей поверхности;

- электростатический, принцип действия которого состоит в улавливании в поле электрических сил веществ, находящихся во взвешенном состоянии в виде пыли или тумана;

- окислительный, заключающийся в окислении веществ до менее токсических соединений; при этом различают низкотемпературное каталитическое окисление (с утилизацией или без утилизации тепла) и высокотемпературное (с утилизацией или без утилизации тепла).

Очистку вентиляционных выбросов от механических примесей осуществляют аппаратами мокрого и сухого пылеулавливания, волокнистыми фильтрами и электрофильтрами.

К аппаратам сухой инерционной очистки относятся пылеосадительные камеры, циклоны, центробежные пылеуловители ротационного действия; к аппаратам мокрой очистки – насадочные и полые газопромыватели, тарельчатые, пенные аппараты, а также газопромыватели с подвижной насадкой, ударно-инерционного и центробежного действия, механические скрубберы Вентури и эжекторные.


^ 72 Характеристика электромагнитного излучения и методы защиты

Длительное воздействие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, по­вышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в центральной нервной системе, а также изменения в составе крови.

^ Воздействие электростатического тюля на человека связано с протеканием через него слабого тока, при этом электротравм никогда не наблюдается. Возможна механическая травма от удара о располо­женные рядом элементы конструкций, падение с высоты вследст­вие рефлекторной реакции на протекающий ток. К ЭСП наиболее чувствительны центральная нервная система, сердечно-сосудистая система. Люди, работающие в зоне действия ЭСП, жалуются на раз­дражительность, головную боль, нарушение сна.

При воздействии магнитных полей могут наблюдаться нару­шения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в составе крови. При локаль­ном действии магнитных полей (прежде всего на руки) появляется ощущение зуда, бледность и синюшность кожных покровов, отечность и уплотнение, а иногда ороговение кожи.

^ Воздействие ЭМИ радиочастотного диапазона определяется плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывное, прерывистое, импульс­ное), размером облучаемой поверхности тела, индивидуальными особен­ностями организма. Облучение глаз может привести к ожогам рогови­цы, а облучение ЭМИ СВЧ-диапазона — к помутнению хрусталика — катаракте. При длительном воздействии ЭМИ радиочастотного диа­пазона даже умеренной интенсивности могут произойти расстройства нервной системы, обменных процессов, изменения состава крови. Мо­гут также наблюдаться выпадение волос, ломкость ногтей.

^ Инфракрасное (тепловое) излучение, поглощаясь тканями, вы­зывает тепловой эффект. Наиболее поражаемые ИК-излучением — кожный покров и органы зрения (возможны ожоги, резкое расшире­ние капилляров, усиление пигментации кожи). При хроническом об­лучении появляется стойкое изменение пигментации, красный цвет лица, например у стеклодувов, сталеваров. Повышение температуры тела ухудшает самочувствие, снижает работоспособность человека.

^ Ультрафиолетовое излучение большого уровня может вызвать ожоги глаз вплоть до временной или полной потери зрения, острое вос­паление кожи с покраснением, иногда отеком и образование пузырей, при этом возможно повышение температуры, появление озноба, голов­ная боль. Острые поражения глаз называются электроофтальмией. УФИ умеренного уровня вызывает изменение пигментации кожи (за­гар), хронический конъюнктивит, воспаление век, помутнение хру­сталика. Длительное воздействие излучения приводит к старению кожи, развитию рака кожи. УФИ небольших уровней полезно и даже необходимо для человека. Но в производственных условиях УФИ, как правило, является вредным фактором.

^ Воздействие лазерного излучения на человека зависит от ин­тенсивности излучения (энергии лазерного луча), длины волны (ин­фракрасного, видимого или ультрафиолетового диапазона), характера излучения (непрерывное или импульсное), времени воздействия. Лазер­ное излучение действует избирательно на различные органы, выделя­ют локальное и общее повреждение организма. При облучении глаз легко повреждаются роговица и хрусталик, наиболее опасен видимый диапазон лазерного излучения, при котором поражается сетчатка глаза.

Общими методами защиты от электромагнитных полей и излу­чений являются следующие:

— уменьшение мощности генерирования поля и излучения не­посредственно в его источнике, в частности за счет применения по­глотителей электромагнитной энергии;

— увеличение расстояния от источника излучения;

— уменьшение времени пребывания в поле и под воздействием излучения;

  • экранирование излучения;

  • применение СИЗ.

Излучающие антенны необходимо поднимать на максимально возможную высоту и не допускать направления луча на рабочие мес­та и территорию предприятия.

Для защиты от электрических полей промышленной частоты не­обходимо увеличивать высоту подвеса фазных проводов линий электро­передач, уменьшать расстояние между ними и т.д. Путем правильного выбора геометрических пара­метров можно снизить напря­женность электрического поля вблизи ЛЭП в 1,6...1,8 раза.

^ Уменьшение мощности излучения обеспечивается пра­вильным выбором генератора, в котором используют погло­тители мощности (рис. 8.17), ослабляющие энергию излу­чения.

^ Поглотителем энергии являются специальные встав­ки из графита или материалов углеродистого состава, а также специальные диэлектрики.

Для сканирующих излучателей (вращающихся антенн) в секто­ре, в котором находится защищаемый объект — рабочее место, при­меняют способ блокирования излучения или снижение его мощности.

Экранированию подлежат либо источники излучения, либо зоны нахождения человека. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов.

Экраны частично отражают и частично поглощают электро­магнитную энергию. По степени отражения и поглощения их ус­ловно разделяют на отражающие и поглощающие экраны.

^ Отражающие экраны вы­полняют из хорошо проводящих материалов, например стали, ме­ди, алюминия толщиной не менее 0,5 мм из конструктивных и проч­ностных соображений.

^ Поглощающие экраны выполняют из радиопоглощающих мате­риалов. Естественных материалов с хорошей радиопоглощающей спо­собностью нет, поэтому их выполняют с помощью конструктивных приемов и введением различных поглощающих добавок в основу.

^ Средства индивидуальной защиты. К СИЗ, которые применяют для защиты от электромагнитных излучений, относят: радиозащит­ные костюмы, комбинезоны, фартуки, очки, маски и т.д. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микро­проводом, выполняющим роль сетчатого экрана. Шлем и бахилы кос­тюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания. Эффективность костюма может достигать 25...30 дБ. Для защи­ты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность защитных очков оценивается в 25...35 дБ. Так же как и для других видов физических полей, защита от постоянных электрических и магнитных полей использует методы защиты временем, расстоянием и экранированием.

^ 73 Нормирование и защита работающих от ультрафиолетового излучения

Ультрафиолетовое излучение

УФ-излучение – это электромагнитное излучение в оптической области в диапазоне 200-400 нм с частотой колебаний от 1013 до 1016 Гц, примыкающее со стороны коротких волн к видимому свету. Оно относится к неионизирующим излучениям.

УФ-излучение в зависимости от длины волны делится на три области:

-УФ-А - длинноволновая (400-315 нм). Имеет слабое биологическое действие;

-УФ-В - средневолновая (315-280 нм); Характеризуется сильным воздействием на кожу и противорахитичным действием;

-УФ-С - коротковолновая (280-200 нм). Свойственно бактерицидное действие.

-УФ-излучение характеризуется двояким действием на организм:

1. опасностью переоблучения,

2. необходимостью для нормального функционирования организма.

^ Основными способами защиты от воздействия УФ излучения являются:

- защита расстоянием – это удаление обслуживающего персонала от источников УФ-излучения на безопасную величину;

- экранирование рабочих мест – (укрытие) источников излучений с помощью различных материалов и светофильтров, не пропускающих или снижающих интенсивность излучений (используют противосолнечные экраны, жалюзи, оконные стекла со специальным покрытием, стекла «хамелеоны»);

- специальная окраска помещений;

- рациональное размещение рабочих мест;

- использование индивидуальных средств ( спецодежды (куртка, брюки), рукавиц, фартука из специальных тканей, щитка со светофильтром, соответствующего определенной интенсивности излучения. Для защиты кожи от УФ-излучения используются мази, содержащие вещества, обладающие защитным эффектом (салол, салицилово-метиловый эфир), а также спецодежда из льняных и хлопчатобумажных тканей с искростойкой пропиткой и из грубошерстяного сукна)

Воздействие на человека.

Длительное воздействие больших доз УФ-излучения может привести к серьезным поражениям глаз и кожи. Острые поражения глаз обычно проявляются в виде кератитов (воспаления роговицы) и помутнения хрусталика глаза. Продолжительное воздействие больших доз УФ-излучения особенно в области излучения 280-200 нм оказывает сильное разрушительное действие на клетку, а также бактерицидное действие вследствие коагуляции белков, что может привести к развитию рака кожи. Пораженный участок кожи имеет отечность, ощущается жжение и зуд, появляются дерматиты. Воздействие повышенных доз УФ-излучения на центральную нервную систему сопровождается головной болью, тошнотой, головокружением, повышением температуры тела, утомляемостью, нервным возбуждением и др.

УФ-излучение с длиной волны менее 320 нм вызывает поражение глаз. Уже на начальной стадии этого заболевания человек чувствует резкую боль и ощущение песка в глазах, ухудшение зрения, головную боль, обильное слезотечение, иногда светобоязнь, что в итоге приводит к поражению роговицы. Воздействие УФ-излучения на человека оценивается эритемным действием, т.е. покраснением кожи, которое в дальнейшем приводит к ее пигментации (загару).


^ 74 Нормирование и защита от источников ионизирующих излучений

Ионизирующие излучения – ядерные излучения, рентгеновские излучения и ультрафиолетовое излучение.

Радиоактивное излучение

Радиоактивность – самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотопы другого химического элемента, сопровождающееся испусканием элементарных частиц или ядер.

Различают природную (естественную) радиоактивность (радиоактивность1 существующих в природе изотопов) и искусственную радиоактивность (радиоактивность изотопов, полученных за счет ядерных реакций).

Воздействие на человека.

Ядерные излучения вызывают необратимые превращения белков, ферментов. Воздействие может быть

1. прямым - поглощение энергии излучения самими макромолекулами. Это приводит к:

а) ионизации особо чувствительной части макромолекулы - так называемой «мишени», приводящая к необратимому превращению поглотившей энергию молекулы в другое соединение;

б) возникновению активного состояния макромолекул относительно кислорода;

в) ожогам кожи.

2. косвенным: радиоактивное излучение вызывает диссоциацию молекул воды на два радикала - атом водорода и гидроксильную группу, являющуюся сильным окислителем и вызывающую повреждение органов. Поражение может не ограничиваться временем облучения, а в определенных условиях завершаться после его окончания. Повреждение макромолекул - белков, ферментов, гемоглобина - может проявляться не сразу, а под действием тепла или кислорода. Длительная консервация повреждения в потенциальной форме дает возможность осуществления частичной защиты человека от ядерных излучений не только во время облучения, но и после него (например, введение цистеамина).

Проявление реакции человека на радиоактивные воздействия опаздывает относительно начала их (латентный период).

Воздействие ядерных излучений приводит к накоплению в организме радиоактивных элементов (бериллия – во всем организме, стронция – в костях), вывод которых из организма очень мал (появляется внутреннее облучение человека).

Воздействие радиоактивных излучений может вызывать вторичную радиацию – внутри организма (внутреннее облучение человека).

Защита от радиоактивных излучений подразделяется

по назначению: биологическая, радиационная, тепловая.

по типу: сплошная, раздельная.

по форме: плоская, цилиндрическая.

Защита от альфа-частиц - слой воздуха толщиной 12-15 см, тонкая фольга, лист пластиката или стекла, хирургические перчатки, одежда.

Защита от бета-частиц - листы алюминия, плексигласа, стекла определенной для каждого материала толщины. Необходимо учитывать возможность возникновения тормозного излучения (рентгеновского), защитой от которого являются свинцовые экраны.

Защита от гамма-излучений - применение свинцовых, вольфрамовых, бетонных, стальных экранов определенной для каждого материала толщины с учетом мощности источника.

Защита от гамма-излучения может достигаться и снижением активности источника, ограничением времени облучения и заменой изотопного источника с большим запасом энергии на источник с меньшим запасом энергии.

Рентгеновские излучения

Рентгеновское излучение – излучение со спектром в области длин волн от 10-3 нм до 80 нм. Оно может быть двух типов:

1) тормозное излучение со сплошным спектром, возникающее за счет столкновения электронов с большим запасом энергии с мишенью;

2) характеристическое излучение с дискретным (линейчатым) спектром, возникающим за счет возбуждения глубинных электронов атома.

Воздействие на человека.

Рентгеновское излучение вызывает ожоги кожи, изменение состава крови, выпадение волос. Воздействие пропорционально интенсивности, частоте излучения, времени облучения. Оно может вызвать разрушение молекул белка, активизацию молекул относительно кислорода, азота, что может приводить к образованию озона, закиси и окиси азота. Летальная доза, вызывающая за 30 дней гибель 50% подвергнувшихся облучению, равна 400-500 рентген.

Защита от рентгеновских излучений – экраны свинцовые, баритобетонные (большой толщины), бетонные, кирпичные, из свинцового стекла, из свинцовой резины (защита, создаваемая листом свинца толщиной 1мм, достигается за счет свинцовой резины при толщине слоя в 3 мм, за счет свинцового стекла при толщине 4-5 мм).

Рентгеновская установка должна находиться в помещении с 10-20-кратным обменом воздуха за счет приточно-вытяжной вентиляции.

Тормозное рентгеновское излучение имеет место при работе многих физических приборов - модуляторы, кенотроны, тиратрону, электронный микроскоп, осциллографы катодно-лучевые, электролучевые устройства для сварки покрытий полов, для плавки металлов. Их работа сопровождается и электромагнитными полями сверхвысоких частот.
^ 75 Общие требования безопасности технологических процессов и производственного оборудования

Существует множество способов обеспечения защиты машин, механизмов, инструмента. При выборе конкретного способа защиты учитывают тип работы, размер и форму заготовки, метод обработки, расположение рабочего места, производственные требования и т.д.

Защитные устройства должны:

  1. предотвращать контакт частей тела человека или его оде­жды с опасными движущимися механизмами и деталями машины;

  2. обеспечивать безопасность: рабочие не должны иметь воз­можность снять или обойти защитное устройство;

  3. закрывать зону обработки и рабочего от падающих предметов;

  4. не создавать новых опасностей: конструкция самого защитно­го устройства должна быть безупречна с точки зрения безопасности;

  5. не создавать помех: должна быть полная функциональная совместимость с оборудованием и технологической оснасткой.

^ Оградительные устройства предназначены для предотвраще­ния случайного попадания человека в опасную зону. Оградительные устройства могут быть стацио­нарными, передвижными и переносными.

^ Стационарные ограждения являются постоянной частью обо­рудования и не зависят от движущихся частей, выполняя свою функцию. Применение стационарных ограждений обычно предпочтитель­нее, чем других видов ограждений, поскольку они отличаются прочно­стью и простотой конструкции.

^ Регулируемые защитные устройства используются при работе с заготовками, размеры которых колеблются от малых до достаточно больших. В зависимости от размера обрабатываемой заготовки или партии заготовок, делают регулировку защитного устройства, обеспе­чивающую безопасность работ.

^ Саморегулирующиеся защитные устройства открываются толь­ко при выполнении определенных технологических операций и пере­ходов: загрузка материала, снятие детали после обработки. После этого устройство возвращается в исходную позицию, устанавливая барьер между рабочим и опасной зоной.

Предохранительные (блокирующие) защитные устройства предназначены для автоматического отключения машин при откло­нениях от нормального режима работы или попадании человека в опасную зону. Предохранительные устройства подразделяются на: устройства обнаружения присутствия и оттягивающие устройства.

^ Устройства обнаружения присутствия останавливают обору­дование или прерывают рабочий цикл или операцию, если человек находится в пределах опасной зоны. По принципу действия устройства могут быть фотоэлектрическими, электромагнитными (ра­диочастотными), электромеханическими, радиационными, механиче­скими, пневматическими, ультразвуковыми. Фотоэлектрическое {оптическое) устройство присутствия ис­пользует систему световых источников и органов управления, которые могут прерывать рабочий цикл машин в случае пересечения светового потока, падающего на фотоэлемент устройства. Радиочастотное {емкостное) устройство присутствия исполь­зует радиолуч, который является частью цепи управления. Когда ем­костное поле нарушено, оборудование (машина) останавливается или не включается. Электромеханическое устройство имеет пробный или контакт­ный стержень, опускающийся на заранее установленное расстояние, с которого оператор начинает рабочий цикл машины. Если для его полного опускания на установленное расстояние есть какое-либо пре­пятствие, цепь управления не начинает рабочий цикл. Оттягивающие устройства являются одной из разновидно­стей механической блокировки, в них используется серия проводов, прикрепленных к рукам, запястьям и предплечьям рабочего. Когда начинается рабочий переход, механическое устройст­во обеспечивает устранение рук рабочего из зоны операции. Работа радиационного устройства основана на применении радио­активных изотопов. Ионизирующие излучения, направленные от источни­ка, улавливаются измерительно-командным устройством, управляющим работой реле. При пересечении опасной зоны измерительно-командное устройство подает сигнал на реле, которое разрывает электрический кон­такт и отключает оборудование.

^ Устройства аварийного отключения. К ним относятся: орга­ны ручного аварийного выключения, штанги, чувствительные к из­менению давления; устройства аварийного отключения с отключаю­щим стержнем; провода или кабели аварийного отключения.

^ Техпроцессы и оборудование. Двуручное управление требует постоянного синхронного давления на кнопки в процессе работы ма­шины. При этом типе управления руки рабочего находятся в безопас­ном месте на кнопках управления и на безопасном расстоянии от опасной зоны во время работы машины. Двуручное включение требует синхронного нажатия обеих кно­пок для запуска рабочего цикла машины, после чего руки свободны. Кнопки пуска должны располагаться достаточно далеко от опасной зоны, чтобы рабочий не успел переместить руки от кнопок в опасную зону до того, как будет завершена опасная часть технологической опе­рации Автоматическая подача. Обрабатываемый материал автоматически подается с роликов или других механизмов подачи машины. Ворота являются передвижными барьерами, защищающими рабочего от опасной технологической зоны машины. Полуавтоматическая подача— подача, при которой рабочий использует некий механизм для помещения обрабатываемой заготов­ки под обрабатывающий инструмент. Автоматический сброс — вывод заготовки из зоны обработки без участия рабочего. Полуавтоматический сброс.Когда плунжер уходит из зоны прессованияснимающая лапа, которая механически спарена с плунжером, сбра­сывает готовую деталь. Роботы — сложные устройства, выполняющие работу, которую при их отсутствии выполнял бы рабочий. Тем самым они уменьшают подверженность рабочего опасности. Более эффективно использование роботов в производствах с вредными и опасными условиями труда.

^ Другие приспособления безопасности. Предупредительные барьеры не представляют собой физическую защиту, они служат только в качестве напоминания рабочему, что он приближается к опасной зоне. Экраны. Экраны могут использоваться для защиты от летя­щих частиц, стружки, осколков и т.д., вылетающих из зоны обработки. Держатели и прихваты использу­ются для размещения, удаления заготовки или материала, находящихся в опасной зоне. Рейки и планки для проталкивания материала могут исполь­зоваться при подаче материала в машину, и обеспечить дополнительную безопасность.

^ Ограничительные предохранительные устройства — это элементы механизмов и машин, рассчитанные на разрушение (или несрабатывание) при перегрузках.

Приборы контроля безопасных условий труда включают в себя приборы для измерения давлений, температуры, статических и ди­намических нагрузок и других параметров, характеризующих работу оборудования и машин. Эффективность их использования значительно повышается при объединении с системами сигнализации (звуковыми, световыми, цветовыми, знаковыми или комбинированными).

Устройства автоматического контроля и сигнализации подраз­деляют: по назначению — на информационные, предупреждающие, аварийные; по способу срабатывания — на автоматические и полуав­томатические.

^ Устройства дистанционного управления наиболее надежно решают проблему обеспечения безопасности, так как позволяют осу­ществлять управление работой оборудования с участков за пределами опасной зоны.

^ 76 Технологический регламент как основа безопасности технологического процесса

Технологический регламент является основным документом, устанавливающим режим, технические сред­ства, порядок и нормы проведения технологических опе­раций, безопасные условия эксплуатации, требования по охране окружающей среды и пожарной безопасности.

Технологический регламент разрабатывается на процесс производства определенных видов продуктов или полупродуктов заданного качества, а также на процессы хранения и перемещения сжиженных газов, легковоспламеняющих­ся жидкостей, горючих жидкостей (СГ, ЛВЖ, ГЖ),

В зависимости от стадии разработки производства и степени его освоения технологические регламенты под­разделяются на следующие виды: лабораторные, опытно-промышленные, пусковые и промышленные. Все они сос­тавляются в соответствии с Положением о технологиче­ских регламентах на химические производства предприя­тий Республики Беларусь.

^ Лабораторный регламент - технологический документ, которым завершаются научные исследования в ла­бораторных условиях при разработке технологии производства нового вида продукции или нового технологиче­ского метода производства серийно выпускаемой продук­ции. Лабораторный регламент является основой для раз­работки опытно-промышленного регламента и составле­ния исходных данных на проектирование опытно-про­мышленной установки, контрольно-измерительного и испытательного оборудования.

^ Опытно-промышленный регламент - технологиче­ский документ, на основании которого осуществляется от­работка технологии производства новых видов продукции и проведение опытно-технологических работ при освое­нии новой (усовершенствованной) технологии. Использу­ется при изготовлении опытных парки (образцов) новых видов продукции для проведения их испытаний и отра­ботки показателей качества, вводимых в нормативно-тех­ническую документацию, выдачи исходных данные для проектирования нового промышленного производства.

^ Пусковой регламент - технологически документ, на основании которого осуществляется ввод в эксплуатацию и освоение вновь созданного промышленного производства продукции. Составляется на основании проектной документации и опытно-промышленного регламента или проектной документации и промышленного регламента действующего производства.

^ Промышленный регламент - технологический документ действующего серийного производства товарной продукции. Составляется на основе пускового регламентам после внесения в него изменений, принятых при освоении производства. Срок действия промышленного регламента - 10 лет с обязательным подтверждением его действия через 5 лет.

При вводе в эксплуатацию дополнительной мощности по выпуску продукции промышленный регламент должен быть пересмотрен.

Соблюдение всех требований технологического регла­мента является обязательным. Лица, виновные в наруше­нии действующего технологического регламента, привле­каются к дисциплинарной и материальной ответствен­ности, если последствия этого нарушения не влекут при­менения к этим лицам иного наказания в соответствии с действующим законодательством.

Утвержденные технологические регламенты регистри­руются и первые (контрольные) экземпляры хранятся в техническом или производственно-техническом отделе (службе главного технолога) предприятия.

Заверенные копии регламентов передаются производ­ственным подразделениям.

К регламенту должен быть приложен поэтажный план производственного здания с обозначением расположения отдельных помещений и наружных установок, относя­щихся к данному производству. Производственные поме­щения на плане нумеруются римскими цифрами, а уста­новки - арабскими.

Планы к регламенту могут не прилагаться, если на про­изводстве разрабатывается план локализации аварийных ситуаций, в состав которого входят такие планы с соответ­ствующими обозначениями.

1   2   3   4   5   6   7   8

Реклама:





Скачать файл (793.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru