Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Ответы на вопросы к экзамену - файл 1.doc


Ответы на вопросы к экзамену
скачать (276.5 kb.)

Доступные файлы (1):

1.doc277kb.01.12.2011 14:16скачать

содержание
Загрузка...

1.doc

  1   2   3
Реклама MarketGid:
Загрузка...
-2. Керамические материалы. Изделия санитарно-технического назначения: трубы, черепица, плитки.

Материал, из которого состоят керамические изделия после обжига, называют керамическим черепком.

В зависимости от структуры черепка керамические материалы разделяются на две основные группы: пористые и плотные.

Пористыми условно считают изделия, у которых водопоглощение черепка более 5 % по массе (в среднем 8...20 %). К ним относятся все виды кирпича и стеновых камней, черепица, облицовочные плитки.

Плотными считают изделия, водопоглощение черепка которых менее 5 % (обычно 2...4 %); эти изделия практически водонепроницаемы. К ним. относятся плитки для полов, санитарный фарфор и т. п.

^ Санитарно-техническую керамику (раковины, унитазы, трубы, химическая посуда и т. п.) изготовляют из фаянса и фарфора.

Фаянс (от названия итальянского города Фаэнца) — разновидность тонкой керамики, получаемая из беложгущихся глин (60...65 %), кварца (30...35 %) и полевого шпата (3...5 %). Отформованное из пластичной массы и высушенное изделие подвергают первичному (так называемому «бисквитному») обжигу при температуре 1250... 1280°С; после чего на его поверхность наносится глазурная масса и производится повторный обжиг (1050...1150° С) для глазурования. Глазурование фаянса необходимо, так как он имеет пористый черепок (П = 20...25 %) и высокое водопоглощение.

Фарфор (от перс. фагефур) — изделия тонкой керамики с плотным черепком — получают так же, как и фаянс из беложгущихся глин (около 50 %), но с большим содержанием полевых шпатов (20...24 %) и меньшим содержанием кварца (20...25 %). Фарфор имеет плотный, полностью спекшийся черепок, просвечивающий в тонком слое. Фарфоровые изделия санитарно-технического назначения также покрывают глазурью для придания им гладкости и повышения санитарно-гигиенических свойств.

^ Керамические санитарно-технические изделия отличаются декоративностью, универсальной химической стойкостью; благодаря твердой и гладкой поверхности они легко чистятся, длительное время сохраняя свои свойства. Недостаток таких изделий, как и керамики в целом, - хрупкость. Несмотря на это, керамика остается лучшим материалом для санитарно-технических изделий.

^ Канализационные трубы изготовляют из пластичных тугоплавких глин и покрывают глазурью снаружи и изнутри, что обеспечивает их полную водонепроницаемость, химическую стойкость и высокую пропускную способность. Такие трубы выдерживают гидростатическое давление, более 0,2 МПа.

^ Керамические трубы имеют небольшую длину 800... 1200 мм, но довольно большой диаметр 150...600 мм. Трубы соединяются друг с другом с помощью раструбов, отформованных на одном конце каждой трубы..

^ Дренажные трубы для мелиоративных работ изготовляют из кирпичных высокогатастичных глин. Выпускают гладкие неглазурованные трубы, фильтрующие через свою толщу, и глазурованные с раструбами и перфорацией на стенках.

^ Керамические плиты для фасадной отделки выпускают в широком ассортименте размеров, цветов и фактуры поверхности.

Коврово-мозаичная плитка очень облегчает отделку стен путем простого втапливания ковра в раствор (или бетон) и последующего смывания бумаги после затвердевания раствора. Такая отделка может производиться как на заводе одновременно с формованием стеновых панелей, так и в построечных условиях по свежеуложенной штукатурке. Плитки керамические фасадные применяют для облицовки наружных стен кирпичных зданий, наружных поверхностей железобетонных стеновых панелей, подземных переходов и других элементов зданий и сооружений. Плитки выпускают различных размеров (от 120 х 65 до 300x200 мм), цветов и фактуры поверхности. Плитки изготовляют методом полусухого и пластического прессования. Морозостойкость плиток F35 и F50. Тыльная сторона плиток имеет рифление для обеспечения сцепления с раствором (бетоном) (рис. 5 J).

^ Крупноразмерные керамические плиты выпускают с плотным черепком (водопоглощение менее 1 %) размером от 500 х 500 до 1000 х 1000 мм и толщиной 6... 10 мм. Эти плиты крепят на фасаде с помощью металлических раскладок. Один из вариантов таких плит называют керамическим гранитом.

^ Плитку для внутренней облицовки выпускают разнообразных типоразмеров. Чаще других используют плитку размером 150 х 150 мм и разнообразные элементы к ней — уголки, фризы и т. п. Такую плитку часто называют «кафельной».

^ Плитки для внутренней облицовки имеют пористый черепок и с лицевой стороны покрыты глазурью. Глазурь не только придает декоративный вид, но и делает плитки водостойкими и химически стойкими и гигиеничными. Такие плитки широко применяются для облицовки стен санитарно-технических узлов и кухонь в жилых и общественных зданиях, в больницах, на предприятиях пищевой и химической промышленности, вестибюлей и лестничных клеток. Нельзя использовать такие плитки для настилки полов (глазурь легко царапается) и для наружной облицовки (пористый черепок зимой быстро разрушится).

^ Плитку для полов изготовляют из тугоплавких глин методом сухого или полусухого прессования, обжигая их до полного спекания. Такие плитки почти не имеют пор и практически водонепроницаемы. В соответствии со стандартом их водопоглощение не должно быть выше 4 % (как правило, оно не более 1...2 %).

Плитки могут быть окрашены в массе или иметь окрашенным только верхний слой. Поверхность плиток большей частью гладкая, но производят плитки и с фактурной поверхностью (например, имитирующие грубообработанный камень или древесину). Плитки отличаются высокой износостойкостью и прочностью, стойки к действию воды и химических реагентов, декоративны и легко моются. Размеры плиток от самых мелких (23 х 23 мм) мозаичных до плиток среднего размера (300 х 300 мм). Среди материалов для полов керамическая плитка отличается высоким теплоусвоением: такое покрытие пола называют «холодным».

^ Облицовка керамикой — один из самых экономически эффективных видов отделки фасадов и интерьеров зданий. Хотя первоначальная стоимость такой облицовки выше многих других видов отделки, но с учетом очень высокой долговечности керамики, в конечном счете, керамическая облицовка оказывается выгоднее. К несомненным достоинствам такой облицовки необходимо отнести архитектурную выразительность. Расчеты экологичности керамической облицовки также указывают, что она и с этой точки зрения оказывается одной из лучших.

^ Кровельные материалы. Керамическая черепица — старейший искусственный кровельный материал, применявшийся с давних пор практически во всех странах мира. Особенное распространение полупила черепица в европейских странах, Японии, Китае; при этом форма и цвет черепицы у разных народов были различными. До сих пор используют старинные виды черепицы: желобчатую «татарскую», волнистую «голландскую» и др.

Сырьем для черепицы служат кирпичные глины, только качество их подготовки должно быть выше. Ленточную черепицу формуют на таких же прессах, как кирпич. Штампованную прессуют поштучно. В остальном, технология черепицы аналогична технологии кирпича.

^ Черепичная кровля декоративна и очень долговечна. Недостатки ее: большой вес и трудоемкость устройства. Черепица требует мощной стропильной системы; минимальный угол наклона кровли 30° (для желобчатой, укладываемой на растворе,— 15°).
-1. Виды кирпича. Требования.

строительный кирпич - искусственный камень правильной формы, сформированный из минеральных материалов и приобретающий камнеподобные свойства после обжига или обработки паром. По виду исходного сырья и по способу изготовления различают силикатный кирпич (известково- песчанный ), получаемый автоклавным способом, и глиняный обожженный (обыкновенный и лицевой ).”

^ Кирпич керамический обыкновенный. В соответствии с действующими стандартами кирпич выпускают обыкновенный размером 250 х 120 х 65 мм; реже производится утолщенный — 250 х 120 х 88 мм и модульный — 288 х 138 х 65 мм. Поскольку масса одного кирпича не должна превышать 4,3 кг, то утолщенный и модульный кирпичи обычно делают с пустотами; кирпич полусухого прессования также производится с пустотами (но пустоты в нем конические и несквозные).

^ Приняты следующие названия граней кирпича: большая — постель, боковая длинная — ложок, торцовая — тычок.

Плотность обыкновенного полнотелого керамического кирпича - 1600... 1800 кг/м3; пористость - 28...35 %; водопоглощение - не менее 8%.

Основная характеристика качества кирпича - марка по прочности, определяемая по результатам испытания кирпича на сжатие и изгиб. Установлено 8 марок: от 75 до 300 (табл. 6.1).

^ По морозостойкости для кирпича установлены четыре марки: F15, F25; F35 и F50. При оценке морозостойкости испытания на «замораживание — оттаивание» проводят до появления внешних повреждений (трещин, отколов, шелушения поверхности), не допускаемых стандартом.

Стандарт допускает довольно большие отклонения в размерах и форме кирпича, которые объясняются большой и неравномерной усадкой кирпича в процессе изготовления. Кирпич считается удовлетворяющим стандарту, если отклонения по размерам и форме не превышают: по длине ± 5 мм, ширине ± 4 мм, толщине ± 3 мм;

непрямолинейность граней и ребер, не более: по постели — 3 мм, по ложку — 4 мм;

сквозные трещины на ложковой и тычковой гранях — не более одной при протяженности ее по постели не более 30 мм;

отбитости и притупленности ребер и углов — не более двух глубиной более 5 мм и длиной 10... 15 мм.

^ Обыкновенный керамический кирпич благодаря достаточно высоким показателям физико-механических свойств и долговечности широко применяют в современном строительстве для кладки наружных и внутренних стен зданий, фундаментов, дымовых труб и других конструкций.

^ Кирпич полусухого прессования нельзя применять для кладки цоколей, фундаментов и наружных стен влажных помещений.

Пустотелый кирпич и керамические камни. У обыкновенного керамического кирпича есть два существенных недостатка: относительно высокая плотность (1600... 1800 кг/м3) и небольшие размеры. Высокая плотность предопределяет и большую теплопроводность кирпича, и, как следствие, большую толщину стен (в средней полосе России традиционная толщина стен 51 и 64 см) и их большую массу.

Небольшой размер обыкновенного кирпича объясняется двумя причинами:

• масса кирпича, укладываемого вручную, не должна превышать 4,3 кг;

• получение крупного массивного керамического изделия затруднительно, т.к. сушка и обжиг таких изделий протекает долго и, как правило, сопровождается большими деформациями и растрескиванием изделий.

Решение этой проблемы возможно путем формования крупноразмерных керамических изделий со сквозными пустотами. Такие кирпичи называют «эффективной керамикой».

Пустотелыми считаются кирпич и камни, объем пустот которых более 13%. Форма и размер пустот могут быть различными. Расположение пустот преимущественно вертикальное, но допустим выпуск кирпича и камней с горизонтально расположенными пустотами.

^ Керамическими камнями называют штучные стеновые изделия размером от 250 х 120 х 138 мм (сдвоенный по высоте кирпич) и до укрупненных камней 510 х 260 х 219 мм для кладки стен в «один камень». Применение керамических камней позволяет значительно ускорить кладочные работы.

Прочностные свойства (марки) и морозостойкость пустотелых кирпича и камней такие же, как у обыкновенного керамического кирпича.

Дополнительное снижение плотности и улучшение теплотехнических показателей керамического кирпича и камней можно достичь, включая в сырьевую массу выгорающие добавки (опилки, угольную мелочь и т. п.) или вспенивая глиняную массу. Используя технологию поризации керамического черепка, ЗАО «Победа-Кнауф» (Санкт-Петербург) организовало производство пустотелых керамических камней (250 х 120 х 142 мм) с плотностью 950 кг/м3 и маркой по прочности 150 и 200 (кгс/см2) при морозостойкости не ниже F35; а крупноформатные блоки того же предприятия размером 510 х 260 х 219 мм имеют пустотность 52 % и среднюю плотность 800 кг/м3 (на 20 % легче воды); марка блоков по прочности 50... 100 (кгс/см2) и морозостойкость не ниже F35. Теплопроводность кладки из таких блоков 0,20 Вт/(м • К), что в 4 раза ниже, чем из полнотелого кирпича.

^ Пустотелый кирпич и камни нельзя использовать для кладки фундаментов, подвалов, цоколей и других частей зданий, где они могут контактировать с водой. Замерзание воды, попавшей в пустоты кирпича или камней, сразу приводит к их разрушению.

^ 0. Теплопроводность. Долговечность. Надежность.

Теплопроводность - свойство материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур на противоположных поверхностях Это свойство имеет важное значение для строительных материалов, применяемых при устройстве ограждающих конструкций (стен, покрытий и перекрытий), и материалов, предназначенных для тепловой изоляции. Теплопроводность материала зависит от его строения, химического состава, пористости и характера пор, а также влажности и температуры, при которой происходит передача теплоты.

Теплопроводность характеризуют коэффициентом теплопроводности, указывающим, какое количество теплоты в Дж способен пропустить материал через 1 м2 поверхности при толщине материала 1 м и разности температур на противоположных поверхностях 1 °С в течение 1 ч. Коэффициент теплопроводности, Вт/(м *°С), равен: для воздуха - 0,023; для воды - 0,59; для льда - 2,3; для керамического кирпича - 0,82. Воздушные поры в материале резко снижают его теплопроводность, а увлажнение водой сильно повышает ее, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха.

С ростом температуры теплопроводность большинства строительных материалов увеличивается, что объясняется повышением кинетической энергии молекул, слагающих вещество материала.

Долговечностью материалов называется свойство сохранять свои свойства на протяжении многих лет с перерывами на ремонты. Долговечность измеряют сроком службы без разрушения в конкретных климатических условиях и условиях эксплуатации. Например, для ж/б констр-ций установлены 3 группы долг-ти: 1 до 100 лет, 2 до 50 лет, 3 до 10 лет.

Надежность - общее свойство, характеризующее проявление всех остальных свойств в процессе эксплуатации. Надежность складывается из долговечности, безотказности и ремонтопригодности.
^ 1. Насыпная плотность.

Насыпная плотность, это масса единицы объема рыхлонасыпанных, волокнистых или зернистых материалов (щебень, гранулирован. мин.вата, гравий, песок). Она всегда < истинной плотности и средней.

^ 2. Истинная плотность, прочность.

Истинная плотность - величина, определяемая отношением массы однородного материала т (кг) к занимаемому им объему в абсолютно плотном состоянии, т. е. без пор и пустот.

^ Размерность истинной плотности - кг/м3 или г/см3. Истинная плотность каждого материала - постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры.

^ 3. Физические свойства: средняя плотность, водопоглощение.

Средняя плотность - величина, определяемая отношением массы однородного материала т (кг) к занимаемому им объему в естественном состоянии Fe (м3)

^ Средняя плотность - важная физическая характеристика материала, изменяющаяся в зависимости от его структуры и влажности в широких пределах: от 5 (пористая пластмасса) до 7850 кг/м3 (сталь). Средняя плотность оказывает существенное влияние на механическую прочность, водопоглощение, теплопроводность и другие свойства материалов.


Водопоглощение материалов, зависящее от характера пористости, может изменяться в широких пределах. Значения WM составляют для гранита 0,02...0,7 %, тяжелого бетона - 2...4, кирпича 8...20, легких теплоизоляционных материалов с открытой пористостью - 100 % и более. Водопоглощение по объему WQ не превышает пористости, так как объем впитанной материалом воды не может быть больше объема пор.

Величины W0 и WM характеризуют предельный случай, когда материал более не в состоянии впитывать влагу.
^ 4. Механические свойства: хрупкость, твердость, пластичность, прочность.

Хрупкость - свойство материала разрушаться после незначительной пластической деформации. Хрупкому материалу в отличие от пластичного нельзя придать при прессовании желаемую форму, так как такой материал под нагрузкой дробится на части, рассыпается.

Провести четкую границу между пластичными и хрупкими телами невозможно. Даже в одном и том же теле можно наблюдать либо пластичность, либо хрупкость. На характер деформации влияют различные факторы, такие как температура, тип напряженного состояния, скорость деформации, окружающая среда и др. Повышение температуры, как правило, способствует пластичности, при понижении температуры возрастает хрупкость. Влияние напряженного состояния на характер деформирования показывают опыты с хрупкими материалами. Например, мрамор при линейном напряженном состоянии - хрупкое тело, но при деформации в условиях объемно-напряженного состояния он приобретает пластичность.

Твердость - способность тела сопротивляться проникновению в него другого, более твердого тела. (Шкала Мооса).

Твердость - свойство материала сопротивляться проникновению в него более твердого тела.

Твердость ряда строительных материалов (бетона, древесины, металлов, строительного раствора) определяют специальным прибором, вдавливая в них закаленный стальной шарик, алмазный конус или пирамиду. В результате испытания вычисляют число твердости. Оно равно отношению силы вдавливания к площади поверхности отпечатка. Твердость минералов и однородных горных пород оценивают по шкале Мооса, содержащей десять минералов, расположенных по возрастающей твердости, начиная от талька (твердость 1) и кончая алмазом (твердость 10). Твердость исследуемого материала определяют, последовательно царапая его входящими в шкалу твердости минералами.

Пластичность - способность материала под действиемнагрузки изменять свою форму и после снятия нагрузки сохранять ее.

Пластичность - свойство материала необратимо деформироваться под действием внешних сил. Пластическая (остаточная) деформация, не исчезающая после снятия нагрузки, называется необратимой.

Прочность - способность материала сопротивляться разрушению, а также необратимому изменению формы (пластической деформации) при действии внешних нагрузок. Мерой прочности материала является предел прочности - наибольшее напряжение, соответствующее нарастающей нагрузке, при которой образец материала разрушается.
^ 5. Пористость, огнестойкость, водостойкость, гигроскопичность.

Пористость - структурная составляющая материала, а не свойство, %-ное содержание пор в объеме материала.


Пористость - степень заполнения объема материала порами. Пористость - величина относительная, выражается в процентах или долях объема материала.

Пористость строительных материалов колеблется в пределах от 0 (сталь, стекло) до 90...98 % (пенопласт).

Пористость материала характеризуют не только с количественной стороны, но и по характеру пор: замкнутые и открытые, мелкие (размером в сотые и тысячные доли миллиметра) и крупные (от десятых долей миллиметра до 2...5 мм). По характеру пор оценивают способность материала поглощать воду.

Так, полистирольный пенопласт, пористость которого достигает 95 %, имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую (т. е. около 30 %), благодаря открытому характеру пор (большинство пор представляют собой сообщающиеся капилляры) активно поглощает воду.

Величина пористости в значительной мере влияет на прочность материала. Строительный материал тем слабее сопротивляется механическим нагрузкам, тепловым, усадочным и другим усилиям, чем больше пор в его объеме.

Огнестойкость - способность материала противостоять действию огня и высоких тепмератур.

Огнестойкость - свойство материала выдерживать без разрушения воздействие высоких температур, пламени и воды в условиях пожара. Материал в таких условиях либо сгорает, либо растрескивается, сильно деформируется, разрушается от потери прочности. По огнестойкости различают материалы несгораемые, трудносгораемые и сгораемые.

^ Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию Это кирпич, бетон и др.

Трудносгораемые материалы под воздействием огня или высокой температуры медленно воспламеняются, но после удаления источника огня их тление или горение прекращается. К таким материалам относятся асфальтобетон и др.

^ Сгораемые материалы под воздействием огня или высокой температуры горят и продолжают гореть после удаления источника огня. Это - древесина, полимерные материалы и др.

^ Предел огнестойкости - это промежуток времени (минуты или часы) от начала возгорания до возникновения в конструкции предельного состояния. Предельным состоянием считают потерю несущей способности, т. е. обрушение конструкции; возникновение в ней сквозных трещин, через которые на противоположную поверхность могут проникать продукты горения и пламя; недопустимый нагрев поверхности, противоположной действию огня, который может вызвать самопроизвольное возгорание других частей сооружения.

Водостойкость - характеризуется коэффициентом размягчения.

Водостойкость - свойство материала сохранять прочность при насыщении его водой. Критерием водостойкости строительных материалов служит коэффициент размягчения - отношение прочности при сжатии материала, насыщенного водой, к прочности при сжатии сухого материала

Материалы, у которых коэффициент размягчения больше 0,85, называют водостойкими.

Гигроскопичность - способность материала впитывать пары влаги из окружающей среды.

Гигроскопичность - свойство капиллярно-пористого материала поглощать влагу из воздуха. С увеличением относительной влажности воздуха и снижением температуры гигроскопичность повышается.

Гигроскопичность отрицательно сказывается на свойствах строительных материалов. Так, цемент при хранении под влиянием влаги воздуха гидратируется и комкуется, при этом снижается его марка. Весьма гигроскопична древесина, от влаги она разбухает, коробится и трескается.

За характеристику гигроскопичности принята величина отношения массы поглощенной влаги при относительной влажности воздуха 100 % и температуре +20 °С к массе сухого материала.


^ 6. Понятие о композиционных материалах.

Композиционный материал - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу (или связующее), обеспечивающую совместную работу армирующих элементов.

Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

^ Преимущества композиционных материалов:

- высокая удельная прочность,

- высокая жёсткость (модуль упругости 130…140 ГПа),

- высокая износостойкость,

- высокая усталостная прочность,

- из КМ возможно изготовить размеростабильные конструкции,

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

^ Недостатки композиционных материало: большинство классов композитов (но не все) обладают недостатками:

- высокая стоимость,

- анизотропия свойств,

- повышенная наукоёмкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.
^ 7. Составные части композиционных материалов.

Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодиспeрсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. Использование в одном материале нескольких матриц (полиматричные композиционные материалы) или наполнителей различной природы (гибридные композиционные материалы) значительно расширяет возможности регулирования свойств композиционных материалов. Армирующие наполнители воспринимают основную долю нагрузки композиционных материалов.

По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсно-упрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне - и хим. стойкость.
^ 8. Матричные материалы для композита.

Наибольшее применение в строительстве и технике получили композиционные материалы, армированные высокопрочными и высокомодульными непрерывными волокнами. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, феноло-формальд., полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), орг. (органопластики), борными (боропластики) и др. волокнами; металлич. композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой;

Композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SiC. При использовании углеродных, стеклянных, арамидных и борных волокон, содержащихся в материале в кол-ве 50-70%, созданы композиции (см. табл) с уд. прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов. Кроме того, волокнистые композиционные материалы превосходят металлы и сплавы по усталостной прочности, термостойкости, виброустойчивости, шумопоглощению, ударной вязкости и др. свойствам. Так, армирование сплавов Аl волокнами бора значительно улучшает их механические характеристики и позволяет повысить т-ру эксплуатации сплава с 250-300 до 450-500 °С. Армирование проволокой (из W и Мо) и волокнами тугоплавких соединений используют при создании жаропрочных композиционных материалов на основе Ni, Cr, Co, Ti и их сплавов. Так, жаропрочные сплавы Ni, армированные волокнами, могут работать при 1300-1350 °С. При изготовлении металлических волокнистых композиционных материалов нанесение металлической матрицы на наполнитель осуществляют в основном из расплава материала матрицы, электрохимическим осаждением или напылением. Формование изделий проводят гл. обр. методом пропитки каркаса из армирующих волокон расплавом металла под давлением до 10 МПа или соединением фольги (матричного материала) с армирующими волокнами с применением прокатки, прессования, экструзии при нагр. до т-ры плавления материала матрицы.

^ 9. Группы композитов с различными видами матриц.

Композиционные материалы с металлической матрицей

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

^ Композиционные материалы с неметаллической матрицей

В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная. Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов, нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью. Свойства композиционных материалов зависят от состава компонентов, их сочетания, количественного соотношения и прочности связи между ними. Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей. Содержание упрочнителя в ориентированных материалах составляет 60-80 об.%, в неориентированных (с дискретными волокнами и нитевидными кристаллами) 20-30 об.%. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов.

Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях. Однако создание четырехнаправленных материалов сложнее, чем трехнаправленных.
^ 10. Керамические материалы: глина, свойства глины.

Глина — осадочная горная порода, основные свойства которой определяются свойствами мельчайших частиц размером менее 5 мкм, которые принято называть глинами. В минералогической энциклопедии глинами называют частицы размером менее 2мкм. Глинистые частицы обычно имеют пластинчатое строение и хорошо смачиваются водой (гидрофильны). Благодаря большой общей поверхности частиц глина способна поглощать и удерживать большое количество воды (до 20...30 % по массе). При этом она разбухает и переходит в вязкопластичное состояние.

КМИ - продукты обжига до спекания, где основным сырьем является глина. (Монтмфиллонит, каолинит).

В зависимости от водопоглощения все КМИ делятся на 2 группы:

- КМИ со спекшимся черепком (водопоглощение до 5%). К ним относятся плитки для полов, санитарный фарфор и т. п.

- КМИ с пористым ыерепком (водопоглощение > 5%). К ним относятся все виды кирпича и стеновых камней, черепица, облицовочные плитки.

Свойства глин:

1)
  1   2   3



Скачать файл (276.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru