Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Курсовая работа - ВМСиС - Проектирование локальной вычислительной сети организации, располагающейся в двух зданиях - файл 1.doc


Курсовая работа - ВМСиС - Проектирование локальной вычислительной сети организации, располагающейся в двух зданиях
скачать (323.5 kb.)

Доступные файлы (1):

1.doc324kb.01.12.2011 16:17скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
Государственное образовательное учреждение

высшего профессионального образования

Нижегородский государственный технический университет им. Р.Е. Алексеева
Дзержинский политехнический институт (филиал)
Кафедра “Автоматизация и информационные системы”


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по дисциплине «ВМСиС»

«Проектирование локальной вычислительной сети организации,

располагающейся в двух зданиях»


В


ыполнил: студент группы

__________________________________________


подпись

_
дата
___________________________________

Проверил: к.т.н., доцент


.


_
подпись
_________________________________________
_
дата
___________________________________
Р
дата
абота защищена ____________________
с оценкой _________________________________

2009


Содержание
1. Введение 3
2. Техническое задание 4
3.Проектирование ЛВС на основе коммутаторов и концентраторов 7

    1. Стандарт 10-Вase-5 7

    2. Стандарт 10-Вase-2 11

    3. Стандарт 10-Вase-T 13

    4. Оптоволоконный Ethernet 17

    5. Домен коллизий 18

    6. Общие характеристики стандартов Ethernet 10 Мбит/с 19

    7. Методика расчета конфигурации сети Ethernet 20


4. Основная часть 22

4.1 Размещение персональных компьютеров 22

4.2 Выбор сетевого и коммутационного оборудования 22

4.3 Список оборудования в коммутационных шкафах 26

4.4 Расчет устойчивости сети 27

4.5 Порядок расчета 28
5.Спецификация используемого оборудования с указанием 30

условной стоимости и расчет общих затрат на оборудование
6. Заключение 31
7. Используемая литература 32

  1. Введение


Цель данной курсовой работы: спроектировать локальную вычислительную сеть организации, располагающейся в двух здания. Вариант задания приведен в основной части курсовой работы.
^ 2 Техническое задание
Спроектировать локальную вычислительную сеть организации по технологии Ethernet, располагающейся в двух зданиях( рис.1).


Корпус 1


50

50

Трубопровод


Рис.1 - Локальная вычислительная сеть организации
Количество компьютеров, установленных в отделах:

  • Отдел маркетинга – 7шт.

  • Отдел АСУ - 10 шт.

  • Производственный отдел – 42 шт.

  • Проектный отдел – 30 шт.

Размеры помещений и длина трубопровода:

- L1 =60 м

- L2 =70 м

- L3 =50 м

- L4 =50 м

- L5 =15 м

- L6 =25 м

- L7 = 300м
Тип среды: коаксиальный кабель и оптоволокно.

Проект должен удовлетворять следующим требованиям:

  1. Каждый отдел предприятия должен иметь доступ к ресурсам всех остальных отделов;

  2. Трафик, создаваемый сотрудниками одного отдела, не должен влиять на локальные сети других отделов, кроме случаев обращения к ресурсам локальных сетей других отделов;

  3. Один файл – сервис может поддерживать не более 30 пользователей;

  4. файловые серверы не могут совместно использоваться несколькими отделами;

  5. Все повторители, мосты и коммуникаторы должны располагаться в коммутационных шкафах (WS);

  6. Расстояние между компьютерами на моноканале не должно быть менее одного метра;

  7. Коммутационное оборудование и файл – серверы должны иметь защиту от пропадания сетевого напряжения;

  8. спроектированная сеть должна работать устойчиво. В случаи неустойчивости работы сети проект должен быть переработан;

  9. допускается использовать следующие комбинации кабелей: витая пара и оптоволокно;

  10. Проект должен иметь минимальную стоимость;

  11. Скорость передачи данных не должна быть ниже 10 Мбит/сек;

  12. Тип используемой сетевой технологии – Ethernet;

  13. В проекте можно использовать лишь оборудование из табл. 1.



Таблица 1 Перечень используемого оборудования

Наименование

Условная стоимость (y.e.)

Тонкий коаксиальный кабель( за один метр)

1

Неэкранированная витая пара (за один метр)

1

Двужильный оптоволоконный кабель (за один метр)

2

Сетевой адаптер с разъемом BNC

70

Сетевой адаптер с разъемом RJ - 45

70

Двухпортовый повторитель (HUB) c разъемами BNC

80

Коммутатор на 8 портов с разъемами BNC

150

Коммутатор на 6 оптических портах

200

Двухпортовый мост с любой комбинацией портов для коаксиальных кабелей, неэкранированных витых пар и оптоволоконных кабелей

220

Коммутатор на 6 оптических портах и 24 порта с разъемом RJ – 45

600

Коммутатор на 8 портов разъемом RJ – 45

150

Коммутатор на 36 портов разъемом RJ – 45

400

Источник бесперебойного питания на 800 ВА

200

Файловый сервер на основе процессора Pentium с предустановленной операционной системой (максимум на 30 пользователей)

900

^ 3 Проектирование ЛВС на основе коммутаторов и

концентраторов
Исторически первые сети технологии Ethernet были созданы на коаксиальном кабеле диаметром 0,5 дюйма. В дальнейшем были определены и другие спецификации физического уровня для стандарта Ethernet, позволяющие использовать различные среды передачи данных. Метод доступа CSMA/CD и все временные параметры остаются одними и теми же для любой спецификации физической среды технологии Ethernet 10 Мбит/с.

Физические спецификации технологии Ethernet на сегодняшний день включают следующие среды передачи данных.

  • l0Base-5 - коаксиальный кабель диаметром 0,5 дюйма, называемый «толстым» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 500 метров (без повторителей).

  • l0Base-2 - коаксиальный кабель диаметром 0,25 дюйма, называемый «тонким» коаксиалом. Имеет волновое сопротивление 50 Ом. Максимальная длина сегмента - 185 метров (без повторителей).

  • l0Base-T - кабель на основе неэкранированной витой пары (Unshielded Twisted Pair, UTP). Образует звездообразную топологию на основе концентратора. Расстояние между концентратором и конечным узлом - не более 100 м.

  • l0Base-F - волоконно-оптический кабель. Топология аналогична топологии стандарта l0Base-T. Имеется несколько вариантов этой спецификации - FOIRL (расстояние до 1000 м), l0Base-FL (расстояние до 2000 м), l0Base-FB (расстояние до 2000 м).

Число 10 в указанных выше названиях обозначает битовую скорость передачи данных этих стандартов - 10 Мбит/с, а слово Base - метод передачи на одной базовой частоте 10 МГц (в отличие от методов, использующих несколько несущих частот, которые называются Broadband - широкополосными). Последний символ в названии стандарта физического уровня обозначает тип кабеля.
^

3.1 Стандарт 10Base-5


Стандарт IOBase-5 в основном соответствует экспериментальной сети Ethernet фирмы Xerox и может считаться классическим Ethernet. Он использует в качестве среды передачи данных коаксиальный кабель с волновым сопротивлением 50 Ом, диаметром центрального медного провода 2,17 мм и внешним диаметром около 10 мм («толстый» Ethernet). Такими характеристиками обладают кабели марок RG-8 и RG-ll.

Различные компоненты сети, состоящей из трех сегментов, соединенных повторителями, выполненной на толстом коаксиале, показаны на рис. 2.



Рис. 2 - Компоненты физического уровня сети стандарта 10 Base-5, состоящей из трех сегментов

Кабель используется как моноканал для всех станций. Сегмент кабеля имеет максимальную длину 500 м (без повторителей) и должен иметь на концах согласующие терминаторы(‘Заглушки’) сопротивлением 50 Ом, поглощающие распространяющиеся по кабелю сигналы и препятствующие возникновению отраженных сигналов. При отсутствии терминаторов («заглушек») в кабеле возникают стоячие волны, так что одни узлы получают мощные сигналы, а другие - настолько слабые, что их прием становится невозможным.

Станция должна подключаться к кабелю при помощи приемопередатчика - трансивера (transmitter+Teceiver = transceiver). Трансивер устанавливается непосредственно на кабеле и питается от сетевого адаптера компьютера. Трансивер может подсоединяться к кабелю как методом прокалывания, обеспечивающим непосредственный физический контакт, так и бесконтактным методом.

Трансивер соединяется с сетевым адаптером интерфейсным кабелем ^ А VI (Attachment Unit Interface) длиной до 50 м, состоящим из 4 витых пар (адаптер должен иметь разъем AUI). Наличие стандартного интерфейса между трансивером и остальной частью сетевого адаптера очень полезно при переходе с одного типа кабеля на другой. Для этого достаточно только заменить Трансивер, а остальная часть сетевого адаптера остается неизменной, так как она отрабатывает протокол уровня MAC. При этом необходимо только, чтобы новый Трансивер (например, Трансивер для витой пары) поддерживал стандартный интерфейс AUI. Для присоединения к интерфейсу AUI используется разъем DB-15.

Допускается подключение к одному сегменту не более 100 трансиверов, причем расстояние между подключениями трансиверов не должно быть меньше 2,5 м. На кабеле имеется разметка через каждые 2,5 м, которая обозначает точки подключения трансиверов. При подсоединении компьютеров в соответствии с разметкой влияние стоячих волн в кабеле на сетевые адаптеры сводится к минимуму.

Трансивер - это часть сетевого адаптера, которая выполняет следующие функции:

  • прием и передача данных с кабеля на кабель;

  • определение коллизий на кабеле;

  • электрическая развязка между кабелем и остальной частью адаптера;

  • защита кабеля от некорректной работы адаптера.

Последнюю функцию иногда называют «контролем болтливости», что является буквальным переводом соответствующего английского термина (jabber control). При возникновении неисправностей в адаптере может возникнуть ситуация, когда на кабель будет непрерывно выдаваться последовательность случайных сигналов. Так как кабель - это общая среда для всех станций, то работа сети будет заблокирована одним неисправным адаптером. Чтобы этого не случилось, на выходе передатчика ставится схема, которая проверяет время передачи кадра. Если максимально возможное время передачи пакета превышается (с некоторым запасом), то эта схема просто отсоединяет выход передатчика от кабеля. Максимальное время передачи кадра (вместе с преамбулой) равно 1221 мкс, а время jabber- контроля устанавливается равным 4000 мкс (4 мс).

Упрощенная структурная схема трансивера показана на рис. 3. Передатчик и приемник присоединяются к одной точке кабеля с помощью специальной схемы, например трансформаторной, позволяющей организовать одновременную передачу и прием сигналов с кабеля.



Рис. 3 - Структурная схема трансивера

Детектор коллизий определяет наличие коллизии в коаксиальном кабеле по повышенному уровню постоянной составляющей сигналов. Если постоянная составляющая превышает определенный порог (около 1,5 В), значит, на кабель работает более одного передатчика. Развязывающие элементы (РЭ) обеспечивают гальваническую развязку трансивера от остальной части сетевого адаптера и тем самым защищают адаптер и компьютер от значительных перепадов напряжения, возникающих на кабеле при его повреждении.

Стандарт l0Base-5 определяет возможность использования в сети специального устройства - повторителя (repeator). Повторитель служит для объединения в одну сеть нескольких сегментов кабеля и увеличения тем самым общей длины сети. Повторитель принимает сигналы из одного сегмента кабеля и побитно синхронно повторяет их в другом сегменте, улучшая форму и мощность импульсов, а также синхронизируя импульсы. Повторитель состоит из двух (или нескольких) трансиверов, которые присоединяются к сегментам кабеля, а также блока повторения со своим тактовым генератором. Для лучшей синхроннизации передаваемых бит повторитель задерживает передачу нескольких первых бит преамбулы кадра, за счет чего увеличивается задержка передачи кадра с сегмента на сегмент, а также несколько уменьшается межкадровый интервал IPG.

Стандарт разрешает использование в сети не более 4 повторителей и, соответственно, не более 5 сегментов кабеля. При максимальной длине сегмента кабеля в 500 м это дает максимальную длину сети l0Base-5 в 2500 м. Только 3 сегмента из 5 могут быть нагруженными, то есть такими, к которым подключаются конечные узлы. Между нагруженными сегментами должны быть ненагруженные сегменты, так что максимальная конфигурация сети представляет собой два нагруженных крайних сегмента, которые соединяются ненагруженными сегментами еще с одним центральным нагруженным сегментом. На рис. 3.7 был приведен пример сети Ethernet, состоящей из трех сегментов, объединенных двумя повторителями. Крайние сегменты являются нагруженными, а промежуточный - ненагруженным.

Правило применения повторителей в сети Ethernet l0Base-5 носит название «правило 5-4-Зу. 5 сегментов, 4 повторителя, 3 нагруженных сегмента. Ограниченное число повторителей объясняется дополнительными задержками распространения сигнала, которые они вносят. Применение повторителей увеличивает время двойного распространения сигнала, которое для надежного распознавания коллизий не должно превышать время передачи кадра минимальной длины, то есть кадра в 72 байт или 576 бит.

Каждый повторитель подключается к сегменту одним своим трансивером, поэтому к нагруженным сегментам можно подключить не более 99 узлов. Максимальное число конечных узлов в сети l0Base-5 таким образом составляет 99*3 = 297 узлов.

К достоинствам стандарта 10Base-5 относятся:

  • хорошая защищенность кабеля от внешних воздействий;

  • сравнительно большое расстояние между узлами;

  • возможность простого перемещения рабочей станции в пределах длины кабеля AUI. Недостатками 10Base-5 являются:

  • высокая стоимость кабеля;

  • сложность его прокладки из-за большой жесткости;

  • потребность в специальном инструменте для заделки кабеля;

  • останов работы всей сети при повреждении кабеля или плохом соединении;

  • необходимость заранее предусмотреть подводку кабеля ко всем возможным местам установки компьютеров.
^

3.2 Стандарт 10Base-2


Стандарт 10Base-2 использует в качестве передающей среды коаксиальный кабель с диаметром центрального медного провода 0,89 мм и внешним диаметром около 5 мм («тонкий» Ethernet). Кабель имеет волновое сопротивление 50 Ом. Такими характеристиками обладают кабели марок RG-58 /U, RG-58 A/U, RG-58 C/U.

Максимальная длина сегмента без повторителей составляет 185 м, сегмент должен иметь на концах согласующие терминаторы 50 Ом. Тонкий коаксиальный кабель дешевле толстого, из-за чего сети l0Base-2 иногда называют сетями Cheapemet (от cheaper - более дешевый). Но за дешевизну кабеля приходится расплачиваться качеством - «тонкий» коаксиал обладает худшей помехозащищенностью, худшей механической прочностью и более узкой полосой пропускания.

Станции подключаются к кабелю с помощью высокочастотного BNC Т-коннектора, который представляет собой тройник, один отвод которого соединяется с сетевым адаптером, а два других - с двумя концами разрыва кабеля. Максимальное количество станций, подключаемых к одному сегменту, - 30. Минимальное расстояние между станциями -1м. Кабель «тонкого» коаксиала имеет разметку для подключения узлов с шагом в 1 м.

Стандарт l0Base-2 также предусматривает использование повторителей, применение которых также должно соответствовать «правилу 5-4-3». В этом случае сеть будет иметь максимальную длину в 5х185 = 925 м. Очевидно, что это ограничение является более сильным, чем общее ограничение в 2500 метров.

Для построения корректной сети Ethernet нужно соблюсти много ограничений, причем некоторые из них относятся к одним и тем же параметрам сети - например, максимальная длина или максимальное количество компьютеров в сети должны удовлетворять одновременно нескольким разным условиям. Корректная сеть Ethernet должна соответствовать всем требованиям, но на практике нужно удовлетворить только наиболее жесткие. Так, если в сети Ethernet-не должно быть более 1024 узлов, а стандарт 10Base-2 ограничивает число нагруженных сегментов тремя, то общее количество узлов в сети lOBase-2 не должно превышать 29*3 = 87. Менее жесткое ограничение в 1024 конечных узла в сети 10Base-2 никогда не достигается.

Стандарт 10Base-2 очень близок к стандарту 10Base-5. Но трансиверы в нем объединены с сетевыми адаптерами за счет того, что более гибкий тонкий коаксиальный кабель может быть подведен непосредственно к выходному разъему платы сетевого адаптера, установленной в шасси компьютера. Кабель в данном случае «висит» на сетевом адаптере, что затрудняет физическое перемещение компьютеров.

Типичный состав сети стандарта 10Base-2, состоящей из одного сегмента кабеля, показан на рис. 4.



Рис. 4 - Сеть стандарта 10Base-2

Реализация этого стандарта на практике приводит к наиболее простому решению для кабельной сети, так как для соединения компьютеров требуются только сетевые адаптеры, Т-коннекторы и терминаторы 50 Ом. Однако этот вид кабельных соединений наиболее сильно подвержен авариям и сбоям: кабель более восприимчив к помехам, чем «толстый» коаксиал, в моноканале имеется большое количество механических соединений (каждый Т-коннектор дает три механических соединения, два из которых имеют жизненно важное значение для всей сети), пользователи имеют доступ к разъемам и могут нарушить целостность моноканала. Кроме того, эстетика и эргономичность этого решения оставляют желать лучшего, так как от каждой станции через Т-коннектор отходят два довольно заметных провода, которые под столом часто образуют моток кабеля - запас, необходимый на случай даже небольшого перемещения рабочего места.

Общим недостатком стандартов 10Base-5 и 10Base-2 является отсутствие оперативной информации о состоянии моноканала. Повреждение кабеля обнаруживается сразу же (сеть перестает работать), но для поиска отказавшего отрезка кабеля необходим специальный прибор - кабельный тестер.
^

3.3 Стандарт 10Bаse-T


Стандарт принят в 1991 году, как дополнение к существующему набору стандартов Ethernet, и имеет обозначение 802.3L

Сети 10Base-T используют в качестве среды две неэкранированные витые пары (Unshielded Twisted Pair, UTP). Многопарный кабель на основе неэкранированной витой пары категории 3 (категория определяет полосу пропускания кабеля, величину перекрестных наводок NEXT и некоторые другие параметры его качества) телефонные компании уже достаточно давно использовали для подключения телефонных аппаратов внутри зданий. Этот кабель носит также название Voice Grade, говорящее о том, что он предназначен для передачи голоса.

Идея приспособить этот популярный вид кабеля для построения локальных сетей оказалась очень плодотворной, так как многие здания уже были оснащены нужной кабельной системой. Оставалось разработать способ подключения сетевых адаптеров и прочего коммуникационного оборудования к витой паре таким образом, чтобы изменения в сетевых адаптерах и программном обеспечении сетевых операционных систем были бы минимальными по сравнению с сетями Ethernet на коаксиале. Это удалось, поэтому переход на витую пару требует только замены трансивера сетевого адаптера или порта маршрутизатора, а метод доступа и все протоколы канального уровня остались теми же, что и в сетях Ethernet на коаксиале.

Конечные узлы соединяются по топологии «точка-точка» со специальным устройством - многопортовым повторителем с помощью двух витых пар. Одна витая пара требуется для передачи данных от станции к повторителю (выход Тх сетевого адаптера), а другая - для передачи данных от повторителя к станции (вход Rх сетевого адаптера). На рис. 5 показан пример трехпортового повторителя. Повторитель принимает сигналы от одного из конечных узлов и синхронно передает их на все свои остальные порты, кроме того, с которого поступили сигналы.



Рис. 5 - Сеть стандарта 10Bаse-T: Тх - передатчик; Rх - приемник

Многопортовые повторители в данном случае обычно называются концентраторами (англоязычные термины - hub или concentrator). Концентратор осуществляет функции повторителя сигналов на всех отрезках витых пар, подключенных к его портам, так что образуется единая среда передачи данных - логический моноканал (логическая общая шина). Повторитель обнаруживает коллизию в сегменте в случае одновременной передачи сигналов по нескольким своим Rх -входам и посылает jam-последовательность на все свои Тх - выходы. Стандарт определяет битовую скорость передачи данных 10 Мбит/с и максимальное расстояние отрезка витой пары между двумя непосредственно связанными узлами (станциями и концентраторами) не более 100 м при наличии витой пары качества не ниже категории 3. Это расстояние определяется полосой пропускания витой пары - на длине 100 м она позволяет передавать данные со скоростью 10 Мбит/с при использовании манчестерского кода.

Концентраторы 10Base-T можно соединять друг с другом с помощью тех же портов, которые предназначены для подключения конечных узлов. При этом нужно позаботиться о том, чтобы передатчик и приемник одного порта были соединены соответственно с приемником и передатчиком другого порта.

Для обеспечения синхронизации станций при реализации процедур доступа CSMA/CD и надежного распознавания станциями коллизий в стандарте определено максимально число концентраторов между любыми двумя станциями сети, а именно 4. Это правило носит название «правила 4-х хабов» и оно заменяет «правило 5-4-3», применяемое к коаксиальным сетям. При создании сети 10Base-T с большим числом станций концентраторы можно соединять друг с другом иерархическим способом, образуя древовидную структуру (рис. 6 ).



Рис. 6 - Иерархическое соединение концентраторов Ethernet

Петлевидное соединение концентраторов в стандарте 10Ваsе-Т запрещено, так как оно приводит к некорректной работе сети. Это требование означает, что в сети 10Вазе-Т не разрешается создавать параллельные каналы связи между критически важными концентраторами для резервирования связей на случай отказа порта, концентратора или кабеля, Резервирование связей возможно только за счет перевода одной из параллельных связей в неактивное (заблокированное) состояние.

Общее количество станций в сети 10Base-T не должно превышать общего предела в 1024, и для данного типа физического уровня это количество действительно можно достичь. Для этого достаточно создать двухуровневую иерархию концентраторов, расположив на нижнем уровне достаточное количество концентраторов с общим количеством портов 1024 (рис. 7 ). Конечные узлы нужно подключить к портам концентраторов нижнего уровня. Правило 4-х хабов при этом выполняется - между любыми конечными узлами будет ровно 3 концентратора.



Рис. 7 - Схема с максимальным количеством станций

Максимальная длина сети в 2500 м здесь понимается как максимальное расстояние между любыми двумя конечными узлами сети (часто применяется также термин «максимальный диаметр сети»). Очевидно, что если между любыми двумя узлами сети не должно быть больше 4-х повторителей, то максимальный диаметр сети 10Base-T составляет 5*100 = 500 м.

Сети, построенные на основе стандарта 10Base-T, обладают по сравнению с коаксиальными вариантами Ethernet многими преимуществами. Эти преимущества связаны с разделением общего физического кабеля на отдельные кабельные отрезки, подключенные к центральному коммуникационному устройству. И хотя логически эти отрезки по-прежнему образуют общую разделяемую среду, их физическое разделение позволяет контролировать их состояние и отключать в случае обрыва, короткого замыкания или неисправности сетевого адаптера на индивидуальной основе. Это обстоятельство существенно облегчает эксплуатацию больших сетей Ethernet, так как концентратор обычно автоматически выполняет такие функции, уведомляя при этом администратора сети о возникшей проблеме.

В стандарте 10Base-T определена процедура тестирования физической работоспособности двух отрезков витой пары, соединяющих трансивер конечного узла и порт повторителя. Эта процедура называется тестом связности (link test), и она основана на передаче каждые 16 мс специальных импульсов J и К манчестерского кода между передатчиком и приемником каждой витой пары. Если тест не проходит,, то порт блокируется и отключает проблемный узел от сети. Так как коды} и К являются запрещенными при передаче кадров, то тестовые последовательности не влияют на работу алгоритма доступа к среде.

Появление между конечными узлами активного устройства, которое может контролировать работу узлов и изолировать от сети некорректно работающие, является главным преимуществом технологии l0Base-T по сравнению со сложными в эксплуатации коаксиальными сетями. Благодаря концентраторам сеть Ethernet приобрела некоторые черты отказоустойчивой системы.
^

3.4 Оптоволоконный Ethernet


В качестве среды передачи данных 10 мегабитный Ethernet использует оптическое волокно. Оптоволоконные стандарты в качестве основного типа кабеля рекомендуют достаточно дешевое многомодовое оптическое волокно, обладающее полосой пропускания 500-800 МГц при длине кабеля 1 км. Допустимо и более дорогое одномодовое оптическое волокно с полосой пропускания в несколько гигагерц, но при этом нужно применять специальный тип трансивера.

Функционально сеть Ethernet на оптическом кабеле состоит из тех же элементов, что и сеть стандарта 10Base-T - сетевых адаптеров, многопортового повторителя и отрезков кабеля, соединяющих адаптер с портом повторителя. Как и в случае витой пары, для соединения адаптера с повторителем используются два оптоволокна - одно соединяет выход Тх адаптера со входом Rх повторителя, а другое - вход Rx адаптера с выходом Тх повторителя.

^ Стандарт FOIRL (Fiber Optic Inter-Repeater Link) представляет собой первый стандарт комитета 802.3 для использования оптоволокна в сетях Ethernet. Он гарантирует длину оптоволоконной связи между повторителями до 1 км при общей длине сети не более 2500 м. Максимальное число повторителей между любыми узлами сети - 4. Максимального диаметра в 2500 м здесь достичь можно, хотя максимальные отрезки кабеля между всеми 4 повторителями, а также между повторителями и конечными узлами недопустимы - иначе получится сеть длиной 5000 м.

^ Стандарт 10Base-FL представляет собой незначительное улучшение стандарта FOIRL. Увеличена мощность передатчиков, поэтому максимальное расстояние между узлом и концентратором увеличилось до 2000 м. Максимальное число повторителей между узлами осталось равным 4, а максимальная длина сети - 2500 м.

^ Стандарт 10Base-FB предназначен только для соединения повторителей. Конечные узлы не могут использовать этот стандарт для присоединения к портам концентратора. Между узлами сети можно установить до 5 повторителей 10Base-FB при максимальной длине одного сегмента 2000 м и максимальной длине сети 2740 м.

Повторители, соединенные по стандарту 10Base-FB, при отсутствии кадров для передачи постоянно обмениваются специальными последовательностями сигналов, отличающимися от сигналов кадров данных, для поддержания синхронизации. Поэтому они вносят меньшие задержки при передаче данных из одного сегмента в другой, и это является главной причиной, по которой количество повторителей удалось увеличить до 5. В качестве специальных сигналов используются манчестерские коды J и К в следующей последовательности: J-J-K-K-J-J-... Эта последовательность порождает импульсы частоты 2,5 МГц, которые и поддерживают синхронизацию приемника одного концентратора с передатчиком другого. Поэтому стандарт l0Base-FB имеет также название синхронный Ethernet.

Как и в стандарте l0Base-T, оптоволоконные стандарты Ethernet разрешают соединять концентраторы только в древовидные иерархические структуры. Любые петли между портами концентраторов не допускаются.
^

3.5 Домен коллизий


В технологии Ethernet, независимо от применяемого стандарта физического уровня, существует понятие домена коллизий.

Домен коллизий (collision domain) - это часть сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части этой сети коллизия возникла. Сеть Ethernet, построенная на повторителях, всегда образует один домен коллизий. Домен коллизий соответствует одной разделяемой среде. Мосты, коммутаторы и маршрутизаторы делят сеть Ethernet на несколько доменов коллизий.

Приведенная на рис. 6 сеть представляет собой один домен коллизий. Если, например, столкновение кадров произошло в концентраторе 4, то в соответствии с логикой работы концентраторов10Base-T сигнал коллизии распространится по всем портам всех концентраторов.

Если же вместо концентратора 3 поставить в сеть мост, то его порт С, связанный с концентратором 4, воспримет сигнал коллизии, но не передаст его на свои остальные порты, так как это не входит в его обязанности. Мост просто отработает ситуацию коллизии средствами порта С, который подключен к общей среде, где эта коллизия возникла. Если коллизия возникла из-за того, что мост пытался передать через порт С кадр в концентратор 4, то, зафиксировав сигнал коллизии, порт С приостановит передачу кадра и попытается передать его повторно через случайный интервал времени. Если порт С принимал в момент возникновения коллизии кадр, то он просто отбросит полученное начало кадра и будет ожидать, когда узел, передававший кадр через концентратор 4, не сделает повторную попытку передачи. После успешного принятия данного кадра в свой буфер мост передаст его на другой порт в соответствии с таблицей продвижения, например на порт А. Все события, связанные с обработкой коллизий портом С, для остальных сегментов сети, которые подключены к другим портам моста, останутся просто неизвестными.

Узлы, образующие один домен коллизий, работают синхронно, как единая распределенная электронная схема.

^ 3.6 Общие характеристики стандартов Ethernet 10 Мбит/с

В табл. 2 и 3 сведены основные ограничения и характеристики стандартов Ethernet.

Таблица 2 Общие ограничения для всех стандартов Ethernet




Таблица 3 Параметры спецификаций физического уровня для стандарта Ethernet



^ 3.7 Методика расчета конфигурации сети Ethernet

Соблюдение многочисленных ограничений, установленных для различных стандартов физического уровня сетей Ethernet, гарантирует корректную работу сети (естественно, при исправном состоянии всех элементов физического уровня).

Наиболее часто приходится проверять ограничения, связанные с длиной отдельного сегмента кабеля, а также количеством повторителей и общей длиной сети. Правила «5-4-3» для коаксиальных сетей и «4-х хабов» для сетей на основе витой пары и оптоволокна не только дают гарантии работоспособности сети, но и оставляют большой «запас прочности» сети. Например, если посчитать время двойного оборота в сети, состоящей из 4-х повторителей 10Base-5 и 5-ти сегментов максимальный длины 500 м, то окажется, что оно составляет 537 битовых интервала. А так как время передачи кадра минимальной длины, состоящего вместе с преамбулой 72 байт, равно 575 битовым интервалам, то видно, что разработчики стандарта Ethernet оставили 38 битовых интервала в качестве запаса для надежности. Тем не менее комитет 802.3 говорит, что и 4 дополнительных битовых интервала создают достаточный запас надежности.

Комитет IEEE 802.3 приводит исходные данные о задержках, вносимых повторителями и различными средами передачи данных, для тех специалистов, которые хотят самостоятельно рассчитывать максимальное количество повторителей и максимальную общую длину сети, не довольствуясь теми значениями, которые приведены в правилах «5-4-3» и «4-х хабов». Особенно такие расчеты полезны для сетей, состоящих из смешанных кабельных систем, например коаксиала и оптоволокна, на которые правила о количестве повторителей не рассчитаны. При этом максимальная длина каждого отдельного физического сегмента должна строго соответствовать стандарту, то есть 500 м для «толстого» коаксиала, 100 м для витой пары и т.д.

Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий:

  • количество станций в сети не более 1024;

  • максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня;

  • время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала;

  • сокращение межкадрового интервала IPG (Path Variability Value, PW) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала. Так как при отправке кадров конечные узлы обеспечивают начальное межкадровое расстояние в 96 битовых интервала, то после прохождения повторителя оно должно быть не меньше, чем 96 - 49 = 47 битовых интервала.

Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и общую длину сети в 2500 м.

4 Основная часть
^ 4.1 Размещение персональных компьютеров
Исходя из технического задания, мы имеем 4 отдела. Из которых три располагаются в корпусе 1, а четвертый, в корпусе два, удаленном от первого на 300 метров. В каждом отделе установлен персональный компьютер (ПК) в количестве:

- в отделе маркетинга – 7 шт.

- в отделе АСУ – 10 шт.

- в производственном отделе – 42 шт.

- в проектном отделе – 30 шт.

Соединение ПК, внутри отделов, будет производиться с помощью коаксиального кабеля. Первой задачей является, размещение ПК в каждом отделе, т.е. ПК должны располагаться не в случайном порядке и не кучно, а на приемлемом друг от друга расстоянии. На рисунке 8 показаны схемы размещения ПК, с указанными расстояниями между ними. Схема подключения компьютеров приведена на рисунке 9
^ 4.2 Выбор сетевого и коммутационного оборудования
Для оптимизации работы вся локальная сеть (ЛВС) разбивается на сегменты. Каждому отделу соответствует свой сегмент. Все сегменты будут подключены к головному коммутатору. Выбираем из таблицы 1 коммутатор на 8 оптических портах с разъемом BNC, который будет являться головным. Коммутатор защищен от падения сетевого напряжения источником бесперебойного питания на 800 ВА. Данный коммутатор автоматически определит скорость работы каждого сегмента и поддержит ее. Это позволит получить требуемую скорость передачи данных, не ниже 10 Мбит/сек. Головной коммутатор располагается в коммутационном шкафу WS3 производственного отдела.
Отдел маркетинга.
В отделе имеется 7 ПК и коммутационный шкаф WC1. Для устойчивой работы сети разбиваем отдел на 2 сегмента по 3 и 4 ПК. Расстояние между последним ПК в первом сегменте и головным коммутатором , для сегмента , что позволяет его использовать как единое целое, т.к. длина сегмента не будет превышать 185 метров.

В коммутационном шкафу WC1 расположен файл–сервер отдела (файл–сервер на основе процессора Pentium с предустановленной операционной системой), источник бесперебойного питания, и коммутатор на 8 портов с разъемами BNC. Все ПК и файл-сервер оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-конекторов.


Рис 10 – Связь компьютеров и файл–сервера
В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор (рисунок 11). Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру.


Рис 11 –Терминатор

Отдел АСУ.
В отделе находятся 10 компьютеров и коммутационный шкаф WC2. В шкафу WC2 располагаются коммутатор, источник бесперебойного питания, который подключен к файл–серверу. Файл–сервер на основе процессора Pentium с предустановленной операционной системой находится непосредственно в отделе. Все ПК и файл-сервер оснащены сетевыми адаптерами с разъемами BNC. Персональные компьютеры и файл-сервер соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор. Сегмент LS2 для более устойчивой работы раздели на 2 сегмента по 5 ПК. Коммутатор подключен к головному коммутатору в шкафу WC3 в производственном отделе. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. Длина сегмента LS2– а от последнего ПК до головного коммутатора и с учетом запаса кабеля между ПК, составляет, для сегмента LS2–б , что не превышает допустимых 185 метров.
Производственный отдел.
В отделе имеется 42 компьютеров и коммутационный шкаф WC3. В связи с большим числом компьютеров, целесообразно разделить их. Таким образом, мы получаем 7 сегментов LS3–а, LS3–б , LS3–в и т.д., в каждом из которых по 6 ПК. Сегменты объединены между собой 8-ми портовыми коммутаторами с разъемами BNC(3 шт.). Использование коммутатора позволяет без потерь в скорости обойти правило «5-4-3», кроме того, использование коммутатора дает большую защищенность от возникновения коллизий, чем следование вышеупомянутому правилу. В данном отделе будет использоваться два файл-сервера.

В коммутационном шкафу отдела WC3 будут располагаться источник бесперебойного питания, который подключен к файл-серверу; коммутаторы данного отдела, соединяющие отдельные сегменты; головной коммутатор всей сети.

Все ПК и файл-серверы оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. В свободный разъем последнего Т-конектора вставляется «заглушка» - терминатор.

Общая длина сегмента LS3–а от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–б от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–в от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–г от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–д от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–е от последнего ПК до коммутатора составляет . Общая длина сегмента LS3–ж от последнего ПК до коммутатора составляет . Длина ни одного из сегментов не превышает допустимой в 185м.
Проектный отдел
В отделе имеется 30 ПК и коммутационный шкаф WC4. Сегмент S4 для более устойчивой работы раздели на 5 сегментов. В коммутационном шкафу устанавливаем источник бесперебойного питания, защищающий файл-серверы от падения сетевого напряжения, коммутатор на 8 портов с разъемами BNC объединяющий сегменты. Все ПК и файл-серверы оснащены сетевыми адаптерами с разъемами BNC и соединены между собой тонким коаксиальным кабелем с помощью BNC Т-коннекторов. В свободный разъем последнего Т-коннектора вставляется «заглушка» - терминатор. Для того, чтобы тонкий коаксиальный кабель не находился в натянутом состоянии, между компьютерами оставляем на каждом участке запас равный одному метру. Длина сегмент LS4–а от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4–б от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4–в от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4–г от последнего ПК до коммутационного шкафа WC4 составляет. Длина сегмента LS4–д от последнего ПК до коммутационного шкафа WC4 составляет. Длина ни одного из сегментов не превышает допустимой в 185м.
Соединение отделов между собой
Корпус 2 удален от корпуса 1 на 300 метров. Корпуса соединены между собой трубопроводом. Для того чтобы связать сегмент WC4 с головным коммутатором, прокладываем в трубопроводе двужильный оптоволоконный кабель(табл.1). Длина кабеля составляет 320 метров. С каждой стороны оставляем запас 10 метров, два из которых требуются для разделки кабеля, остальные восемь укладываются в шкафу кольцами в связи с технологическими требованиями. Для того чтобы перейти от одной среды передачи данных к другой, выбираем из таблицы 1 двухпортовый мост с комбинацией портов «коаксиальный кабель – оптоволоконный кабель», который устанавливается в шкафу WC4, и «оптоволоконный кабель – коаксиальный кабель», который устанавливается в шкафу WC3. Оба моста защищены от падения напряжения источником бесперебойного питания. Мост «оптоволоконный кабель – коаксиальный кабель» в шкафу WC3 в свою очередь подключается с помощью тонкого коаксиального кабеля непосредственно к головному коммутатору.

Таким образом, получили сеть, соединяющую два здания, имеющую минимальную стоимость, но при этом в ней отсутствует широковещательный трафик и скорость передачи данных достигает не менее 10 Мбит/с. На рисунках 8 и 9 показаны соответственно схема размещения персональных компьютеров, входящих в состав локальной вычислительной сети и схема подключения персональных компьютеров со схемой кабельных прокладок и длин кабельных сегментов.

^ 4.3 Список оборудования в коммутационных шкафах
WS1: Файл – сервер отдела

Источник бесперебойного питания;

Коммутатор отдела маркетинга на 8 портов с разъемами BNC.
WS2: Файл – сервер отдела

Источник бесперебойного питания;

Коммутатор отдела АСУ на 8 портов с разъемами BNC.
WS3: 2 источника бесперебойного питания;

2 файл – сервера отдела;

2 коммутатора на 8 портов с разъемами BNC;

Головной коммутатор на 8 портов с разъемами BNC;

Двухпоротовый мост «коаксиальный кабель – оптоволокно».
WS4: Файл – сервер отдела

Источник бесперебойного питания;

Коммутатор проектного отдела на 8 портов с разъемами BNC;

Мост «коаксиальный кабель –оптоволоконный кабель»
На рисунке 12 показана схема размещения оборудования в кабельных шкафах и линии коммутации данного оборудования.


^ 4.4 Расчет устойчивости сети.
Для того чтобы сеть работала устойчиво, то есть не происходило искажений передаваемой информации или ее пропадание, необходимо выполнения следующих условий:

  1. Длина сегмента не должна превышать допустимую величину:

тонкий коаксиал – 185 м;

оптика – 2000 м (имеем максимум 320 м).

  1. Общая длина сети не должна превышать 2,5км.

  2. Количество компьютеров в сети не должно превышать 90 шт. (имеем 89 компьютеров + 5 файл-серверов отделов).

  3. Один файл-сервер может поддерживать не более 30 пользователей (имеем максимум 30 пользователей).

  4. Файл-серверы не могут совместно использоваться несколькими отделами.

  5. Все повторители, мосты и коммутаторы должны распологаться в коммутационных шкафах.

  6. Должно выполняться правило «5-4-3» (выполняется).


Не имеется ни одного превышения требуемых параметров. Следовательно, нет необходимости выполнять проверку устойчивости с использованием PDV(время двойного интервала – не должно превышать 575 битовых интервалов) и PVV(уменьшение межкадрового интервала не должно превышать 49 битовых интервалов). Соблюдение этих требований обеспечивает устойчивую работу сети даже в тех случаях, когда нарушаются вышеизложенные условия. Данная проверка будет выполнена для полной уверенности работоспособности сети.

Для упрощения расчетов используются справочные данные организации IEEE, содержащие данные задержек распространения сигнала в повторителях, приемопередатчиках и различных физических средах.

Таблица 4 Данные для расчета PDV


Тип сегмента

База левого сегмента, bt

База промежуточного сегмента, bt

База правого сегмента, bt

Задержка среды на 1м,

bt

Максимальная длина сегмента, bt

10 Base -2

11,8

46,5

169,5

0,1026

185

10 Base – FB

-

24

-

0,1

2000


^ 4.5 Порядок расчета
- Для расчета на устойчивость рисуют участок с наиболее удаленными станциями.

- Левый сегмент – сегмент, откуда начинается прохождение сигнала.

- Правый сегмент – сегмент, куда приходит сигнал.

- Промежуточный сегмент – сегмент между левым и правым сегментами.

- Расчет должен проводиться дважды, при распространении сигнала в обе стороны, т.к. результат может быть разный в случае несимметричной сети. Если хотя бы в одном случае по PDV не выполняется, сеть будет терять кадры из-за пропуска коллизий.

- Расчет будем производить для двух самых удаленных друг от друга компьютеров из отдела маркетинга и из проектного отдела. Схематическое изображение показано на рисунке 13.

Произведем расчет устойчивости сети с использованием PDV и PVV


Рис 13– Участок сети между наиболее удаленными ПК
LS1-a = 11,8 + 84*0,1026 = 20,418 bt

LS1-в = 46,5 + 180*0,1026 = 64,968 bt

LS3 = 46,5 + 2*0,1026 = 46,705 bt

LSм = 24 + 320*0,1 = 56 bt

LS4 = 46,5 + 2*0,1026 = 46,705 bt

LS4-a = 169,5 + 48*0,1026 = 174,425 bt

Итого: PDV = 409,22 bt < 575 bt
Проведем расчет в обратную сторону:
LS4-а = 11,8 + 48*0,1026 = 16,725 bt

LS4 = 46,5 + 2*0,1026 = 46,705 bt

LSм = 24 + 320*0,1 = 56 bt

LS3 = 46,5 + 2*0,1026 = 46,705 bt

LS1-в = 46,5 + 180*0,1026 = 64,968 bt

LS1-а = 169,5 + 84*0,1026 = 178,118 bt
Итого: PDV = 409,221 bt < 575 bt
Таблица 5 Данные для расчета PVV

Тип сегмента

Передающей сегмент, bt

Промежуточный сегмент, bt

10 Base -2

16

11

10 Base – FB

-

2


PVV = 16bt + 11bt + 11bt + 2bt +11bt+0bt = 51bt > 49 bt
Вывод: расчет устойчивости по PVV не выполняется, но так как сеть построена на коммутаторах, а не на HUB, сеть будет работать устойчиво во всех отделах.

^ 5. Спецификация используемого оборудования с указанием условной стоимости и расчет общих затрат на оборудование.
Спецификация используемого оборудования с указанием условной стоимости и расчетом общих затрат на оборудование представлены в таблице 6:

Таблица 6

^ Используемое оборудование

Количество

Условная стоимость(y.e.)

Тонкий коаксильный кабель

1714 м

1714

Коммутатор на 8 портов с разъемом BNC

6 шт.

900

Источник бесперебойного питания на 800 ВА

5 шт.

1000

Файловый сервер

5 шт.

4500

Сетевой адаптер с разъемом BNC

94 шт.

6580

Двужильный оптоволоконный кабель

320 м

640

Двухпортовый мост

2 шт.

440

ИТОГО:

15774


6. Заключение
Согласно техническому заданию спроектирована локальная вычислительная сеть организации, располагающаяся в двух зданиях, удаленных друг от друга.

В ходе работы выявлено, что данная сеть будет работать устойчиво и в ней не произойдет потери кадров из- за необнаруженных коллизий, а так же, при передаче кадров, не будет происходить их искажение концентраторами.

Все сетевое и коммутационное оборудование, а так же файл – серверы отделов находятся в коммутационных шкафах. Данное оборудование защищено от пропадания сетевого напряжения с помощью подключения источников бесперебойного питания.

Скорость передачи данных сети не менее 10 Мбит/сек – это контролируется головным коммутатором.

Данная сеть удовлетворяет всем требованиям технического задания.

^ 7. Используемая литература


  1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 3-е изд. – СПб.: Питер.,2006.

  2. Конспекты по предмету “ВМСиС”



Скачать файл (323.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru