Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по ТЭС - файл Гл 1-2.doc


Лекции по ТЭС
скачать (1089.8 kb.)

Доступные файлы (5):

Гл 1-2.doc866kb.30.05.2008 23:13скачать
Гл 2 прод!!!.doc805kb.30.05.2008 23:24скачать
Гл 3.doc556kb.15.05.2008 12:28скачать
Гл 3 прод1.doc245kb.15.05.2008 12:28скачать
Гл 3 прод2.doc439kb.15.05.2008 12:28скачать

содержание
Загрузка...

Гл 1-2.doc

  1   2   3
Реклама MarketGid:
Загрузка...

ПРЕДИСЛОВИЕ


Существование современного человеческого общества немыслимо без высокоорганизованных средств связи и управления. Объемы информации, которые необходимо передавать в настоящее время по различным каналам связи, резко возрастают. При этом постоянно повышаются требования к достоверности и надежности передачи сообщений. Существующая сеть связи - это сеть, единая в организационном и техническом отношениях, позволяющая вести передачу между любыми точками страны любого вида сообщений: телефонных, телеграфных, фототелеграфных, вещания, телевидения, цифровой информации для вычислительных я управляющих машин и систем, разнообразной экономической информации и т.д.

Разработка систем связи, удовлетворяющих современным требованиям, базируется на фундаменте современной общей теории связи, которую часто называют еще статистической теорией связи, обшей теорией информации, теорией передачи и сообщений и т.д.

Теория передачи сообщений изучает общие закономерности, присущие как самим сообщениям, так и их передаче при наличии помех. Основы этой теории были заложены в работах советского ученого В.А. Котельникова по теории помехоустойчивости в 1947г. и американского ученого Клода Шеннона по теории информации в 1949 г.

Теория электрической связи является обобщающей теоретической дисциплиной, основой современной техники связи. Появление этой теории было обусловлено наличием большого количества накопленных и ожидающих обобщения частных знаний в теории и технике связи. Она ставит и решает основные вопросы в общем виде, позволяя не только обозреть, но и предсказать заслуживающие внимания направления дальнейшего развития техники связи.

В настоящем выпуске, являвшемся первой частью учебного пособия по курсу ''Теория электрической связи", рассматриваются сигналы связи и способы их математического описания. Случайный характер принимаемых сигналов делает необходимым использование вероятностных и статистических методов для анализа и синтеза систем связи и их элементов.


^ ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

§ 1.1. СИГНАЛЫ, СООБЩЕНИЯ, СИСТЕМЫ СВЯЗИ

Любая система связи является системой передачи, в которой объектом передачи являются сообщения. Всякое сообщение есть совокупность сведений о состоянии какой-либо материальной системы, которые передаются человеком (устройством), наблюдающим эту систему, другому человеку (устройству), не имеющему возможности получить эти сведения путем непосредственных наблюдений. Материальная система вместе с наблюдателем представляет собой источник сообщений (корреспондент).

Источник выдает сообщения из некоторого множества возможных сообщений. Это множество может быть конечным (например, буквенный текст) или бесконечным (например, телефонное сообщение). Каждая буква, например, принадлежит конечному множеству, образующему алфавит, а каждое слово – конечному множеству, образующему словарь. Множество сообщений совместно с их вероятностями появления (априорными вероятностями) называется ансамблем сообщений.

С математической точки зрения всякое сообщение можно представить в виде некоторой функции времени т(t), которая может быть как непрерывной функцией непрерывного времени (например, при передаче речи), так и последовательностью чисел (слов, букв), т.е. функцией дискретного времени.

Чтобы сообщение могло быть передано получателю, необходимо воспользоваться каким-либо переносчиком. В качестве переносчика можно использовать любой физический процесс, например, электрический ток в проводе (проводная связь), электромагнитное поле (радиосвязь), звуковые волны, световой луч и т.д.

Изменяющаяся физическая величина s(t), отображающая передаваемое сообщение m(t), называется сигналом. Очевидно, что каждому сообщению должен соответствовать свой сигнал, чтобы на приемной стороне по принятому сигналу можно было однозначно определить переданное сообщение. Типовая блок-схема передачи сообщений приведена на рис. 1.1.

Канал связи













Источник сообщений


Передатчик


Линия связи


приемник


Получатель сообщения



















Источник сообщений



Получатель сообщения


помехи




Рис.1.1 Блок-схема системы связи
Процесс преобразования сообщений в сигналы осуществляется передающим устройством и состоит из одной или нескольких следующих операций: преобразования неэлектрической величины в электрическую, кодирования и модуляции. Первая операция необходима при передаче любых сообщений – дискретных и непрерывных. Например, при передаче речи она состоит в преобразовании звукового давления в пропорционально изменяющийся электрический ток микрофона.

Дискретные сообщения представляют собой случайную последовательность некоторых элементов .Эта последовательность на передающей стороне может быть преобразована по определенному закону в другую последовательность более удобную с технической точки зрения. Операция преобразования последовательности {mп} в последовательность al называется кодированием и осуществляется кодирующим устройством. Способы и цели кодирования могут быть различными.

Чаще всего кодирование состоят в дополнительном расчленении каждого элемента последовательности. При передаче письменного текста, например, каждой букве соответствует некоторая новая последовательность символов , называемая кодовой комбинацией. Если кодовая комбинация содержит n символов, каждый из которых принимает одно из m возможных значений, то число возможных комбинаций будет равно . Число т называется основанием, а n – значностью кода. Если m=2, то код называется двоичным. При передаче дискретных сообщений в телеграфии широко используется, например, пятизначный двоичный код ( m=2, n=5). Этот код обеспечивает передачу сообщений с объемом алфавита буквы. Каждая буква при этом передается последовательностью из пяти токовых или бестоковых посылок (''нулей'' и ''единиц''). Коды, в которых все кодовые комбинации содержат одинаковое число элементов, называются равномерными. Иногда используются и неравномерные коды, каковым является, например, код Морзе.

Выше говорилось о так называемом примитивном кодировании, целью которого является упрощение используемой аппаратуры. В последнее время начинает широко использоваться помехоустойчивое кодирование, целью которого является повышение надежности работы систем связи при наличии помех.

При передаче непрерывных сообщений операция кодирования часто отсутствует. Однако в последнее время начинают применяться различные виды импульсной модуляции. При этом в качестве первичного переносчика используется периодическая последовательность импульсов. В этом случае оказываются возможными дискретные способы передачи и кодирования непрерывных сообщений.

Операции кодирования обычно осуществляются электрическими схемами. Различным последовательностям кодовых символов будут соответствовать последовательности элементов первичных электрических сигналов U(t), которые называют немодулированными или видеосигналами.

Процесс преобразования сообщений в сигналы s(t) заканчивается модуляцией некоторого переносчика. Модуляция заключается в изменении какого-либо параметра переносчика . Модулированный параметр а получает приращение, пропорциональное модулирующему сигналу:



где - максимальное абсолютное приращение модулируемся параметра, а величина представляет собой относительное изменение этого параметра и называется коэффициентом модуляции. При передаче дискретных сообщения модулируемый параметр принимает одно из нескольких возможных дискретных значений. В этом случае вместо термина "модуляция'' часто используется термин "манипуляция". Число возможных видов модуляции равно числу параметров переносчика. Например, в случае синусоидального переносчика возможны амплитудная, фазовая и частотная виды модуляции.

Операцию формирования сигнала кратко можно представить в виде

(1.1.1)

где F - нелинейная операция, включающая в себя операции кодирования и модуляции.

Сформированный таким образом сигнал с выхода передатчика поступает в линию связи. Линней связи называется физическая среда, используемая для передача сигналов от передатчика к приемнику. Этой средой может быть физическая цепь (пара проводов, кабель в проводной связи) или область пространства, в котором распространяются электромагнитные волны (радиосвязь в любом диапазоне частот, в том числе и оптическом).

В реальных линиях связи всегда присутствуют помехи ξ(t) различного происхождения. Взаимодействие сигнала и помехи можно представить в виде некоторой линейной или нелинейной операции

(1.1.2)

На вход приемника поступает искаженный помехой сигнал х(t), по которому необходимо определить переданное сообщение. Следовательно, приемник должен осуществить операции, обратные операциям на передающей стороне: демодуляцию и декодирование. Демодуляцию принятого сигнала осуществляет демодулятор, который обрабатывает принятые сигналы по определенным правилам и производит опознавание переданных элементов сигнала (кодовых символов). Декодирующие устройство преобразует кодовые комбинации в элементы сообщения. В целом действие системы связи можно описать выражением:

(1.1.3)

где W - нелинейный оператор, включающий в себя операции демодуляции и декодирования.

Очевидно, что в идеальном случае принятое сообщение должно точно соответствовать переданному, т.е. . Однако наличие помех в линии связи вызывает принципиальную неоднозначность при восстановлении сообщения на приемной стороне. Поэтому всегда .

Введем еще некоторые определения.

Совокупность технических средств, предназначенных для передачи сообщения от источника к получателю, называется каналом связи. В него входят передатчик, линия связи и приемник. Любой канал характеризуется тремя основными параметрами:

а) полосой частот , которую может пропустить канал,

б) временем Т, в течение которого канал предоставлен для работы,

в) допустимым диапазоном уровней сигнала в канале (динамический диапазон).

Канал связи вместе с источником и получателем сообщений образует систему связи. Системы связи друг от друга могут отличаться типом передаваемых сообщений, методами преобразования сообщений в сигналы и восстановления сообщений по принятым сигналам физической средой, используемой в качестве линии связи, и т.д.

По типу передаваемых сообщений системы связи могут быть непрерывными и дискретными. Телеграфные системы связи являются типичным примером дискретных систем. Системы телефонии, радиотелефонии, телевидения при аналоговых (непрерывных) способах модуляции относятся к непрерывным системам связи. В последнее время для передачи непрерывных сообщений используются системы с различными видами импульсной модуляции. Такие системы можно отнести к типу смешанных систем.

В дискретных системах связи при демодуляции и декодировании сигналов необходимо знание длительности, начала и конца каждого элемента комбинации и всей комбинации в целом, т.е. необходима синфазность работы передающего и приемного устройств. По способу поддержания синфазности дискретные системы связи можно разделить на синхронные и асинхронные. В синхронных системах связи передатчик и приемник работают синхронно, для чего используется специальный канал синхронизации. Примером синхронных систем являются телеграфные системы связи, использующие пятизначный двоичный код Бодо. Примером асинхронных систем связи являются стартстопные системы, в которых фазирование работы приемника и передатчика осуществляется специальными дополнительными элементами в начале (стартовый) и в конце (стоповый) каждой кодовой комбинации.

Если по системе связи передается несколько сообщений от различных источников, то она называется многоканальной.

Если по каналу связи сигналы могут передаваться только в одном направлении, то канал называется симплексным. Если же сигналы могут одновременно передаваться в обоих направлениях, то канал называется дуплексным. Дуплексные системы связи по сути дела имеют два канала (прямой и обратный), в общем случае не идентичных. В некоторых случаях в таких системах передача сообщений осуществляется лишь в одном направлении, а обратный канал используется для контроля и защиты от ошибок при передаче сообщений в прямом направлении. Такие системы называются системами с обратной связью. Обратная связь позволяет значительно повысить надежность работы и используется в системах связи и автоматического управления. В последних сигнал обратного канала воздействует на некоторое устройство для подстройки его параметров.

§ 1.2 ХАРАКТЕРИСТИКИ СИГНАЛОВ СВЯЗИ

Как уже отмечалось выше, передаваемые сигналы однозначно связаны с передаваемыми сообщениями. Математическим описанием сигнала является некоторая функция времени s(t). Сигналы связи можно классифицировать по нескольким признакам.

В теории сообщений сигналы в первую очередь принято делить на детерминированные (регулярные) и случайные. Сигнал называется детерминированным, если он может быть описан известной функцией времени. Следовательно, под детерминированным понимается такой сигнал, который соответствует известному передаваемому сообщению и который можно точно предсказать заранее за сколь угодно большой промежуток времени. Детерминированные сигналы принято подразделять на периодические, почти периодические и непериодические.

В реальных условиях сигнал в месте приема заранее неизвестен и не может быть описан определенной функцией времени. Принимаемые сигналы имеют непредсказуемый, случайный характер вследствие нескольких причин. Во-первых, потому, что регулярный сигнал не может нести информации. Действительно, если бы о передаваемом сигнале было известно все, то его незачем было бы передавать. Обычно на приемной стороне известны лишь некоторые параметры сигнала. Во-вторых, сигналы имеют случайный характер вследствие различного рода помех как внешних (космических, атмосферных, индустриальных и др.), так и внутренних (шумы ламп, сопротивлений и т.д.). Принимаемый сигнал искажается также вследствие прохождения через линию связи, параметры которой часто являются случайной функцией времени.

Моделью сигнала связи является не одна функция времени s(t), а набор некоторых функций, представляющих собой случайный процесс. Каждый конкретный сигнал является одной из реализаций случайного процесса, которую можно описать детерминированной функцией времени. Часто ансамбль возможных сообщений (сигналов) получателю известен. Задача состоит в том, чтобы по принятой реализации смеси сигнала с помехами определить, какое сообщение из заданного ансамбля было передано.

Таким образом, передаваемый сигнал необходимо рассматривать как множество функций, являющихся реализациями случайного процесса. Статистические характеристики этого процесса полностью описывают свойства сигнала. Однако решение многих конкретных задач становится в этом случае затруднительным. Поэтому изучение сигналов и их прохождение через различные цепи целесообразно начинать с отдельных реализации как детерминированных функций.

Полное описание сигнала не всегда необходимо. Иногда для анализа бывает достаточно нескольких обобщенных характеристик, наиболее полно отражающих свойства сигнала. Одной из важнейших характеристик сигнала является его длительность Т, которая определяет необходимое время работы канала и просто связана с количеством сведений, передаваемых этим сигналом. Второй характеристикой является ширина спектра сигнала F, которая характеризует поведение сигнала на протяжении его длительности, скорость его изменения. В качестве третьей характеристики можно было бы ввести такую, которая определяла бы амплитуду сигнала на протяжении его существования, например, мощность. Однако мощность сигнала Рс сама по себе не определяет условия его передачи по реальным каналам связи с помехами. Поэтому сигнал принято характеризовать отношением мощностей сигнала и помехи:



которое называют превышением сигнала над помехой или отношением сигнал/шум.

Часто используется также характеристика сигнала, называемая динамическим диапазоном,



которая определяет интервал изменения уровней сигнала (например, громкости при передаче телефонных сообщения) и предъявляет соответствующее требования к линейности тракта. С этой стороны сигнал можно охарактеризовать так называемым пикфактором



представляющим собой отношение максимального значения сигнала к действующему. Чем больше пикфактор сигнала, тем хуже будут энергетические показатели радиотехнического устройства.

С точки зрения произведенных над сообщениями преобразований сигналы принято делить на видеосигналы (немодулированные) и радиосигналы (модулированные). Обычно спектр видеосигнал сосредоточен в низкочастотной области. При использовании модуляции видеосигнал называют модулирующим. Спектр радиосигнала сосредоточен около некоторой средней частоты в области высоких частот. Радиосигналы могут передаваться в виде электромагнитных волн.

В заключение параграфа коротко охарактеризуем сигналы, используемые при различных видах связи. На рис. 1.2 показан видеосигнал в виде непрерывной импульсной последовательности. Такой сигнал формируется при телеграфных видах работы с использованием пятизначного двоичного кода. Ширина полосы частот, используемая для передачи таких сигналов, зависит от скорости телеграфирования и равна, например, 150-200 Гц при использовании телеграфного аппарата СТ-35 и передаче 50 знаков в секунду. При передаче телефонных сообщений сигнал представляет собой непрерывную ф
ункцию времена, как это показано на рис. 1.2 б.

В
коммерческой телефонии сигнал обычно передается в полосе частот от 300 Гц до 3400 Гц. В вещании для качественной передачи речи и музыки требуется полоса частот примерно от 40 Гц до 10 кГц. При передаче неподвижных изображений с помощью фототелеграфа сигнал имеет вид, показанный на рис. 1.З а.

Он представляет собой ступенчатую функцию. Число возможных уровней равно числу передаваемых томов и полутонов. Для передачи используют один или несколько стандартных телефонных каналов. При передаче подвижных изображений в телевидении с использованием 625 строк разложения требуется полоса частот от 50 Гц до 6 МГц. Сигнал при этом имеет сложную дискретно – непрерывную структуру. Модулированные сигналы имеют вид, показанный на рис.1.3 б (при амплитудной модуляции).

§ 1.3 ЗАДАЧИ И МЕТОДЫ ТЕОРИИ ПЕРЕДАЧИ СИГНАЛОВ

Как уже отмечалось выше, объектом передачи в системах связи являются сообщения, которые значительно отличаются от других объектов передачи, например, электрической энергии в системах электропередачи. В последних основная задача заключается в передаче энергии потребителю с минимальными потерями. Передача сообщения также сопровождается передачей энергии, но не в передаче энергии состоит основное назначение системы связи. Энергетический коэффициент полезного действия систем связи (особенно радиосвязи) исчезающе мал. Очевидно, что для оценки эффективности систем связи нужны особые критерии. Одним из таких критериев может служить количество сведений, содержащихся в сообщении. Рассмотрим несколько примеров.

В телеграфных системах связи сообщения представляют собой некоторый текст. Мерой количества сведений в этом случае может служить количество слов или букв. При передаче телефонных сообщений количество сведений будет определяться не только количеством слов, но и интонацией, тембром речи, диапазонов громкости звука. Аналогично, в телевизионном сообщении количество сведений будет определяться степенью сложности изображения. Определить количество сведений в любом сообщении позволяет теория информация, которая составляет часть курса теории передачи сигналов. Одной из характеристик системы связи является максимально возможное количество сведений, передаваемых (или принимаемых) в единицу времени. Определенная таким образом величина называется пропускной способностью системы связи.

При наличии помех передаваемые сообщения искажаются. Большой уровень помех может привести к невозможности приема переданного сообщения. С этой точки зрения к системам связи предъявляется требование верности передачи или степени соответствия принятого сигнале переданному. Последняя зависит, во-первых, от исправности аппаратуры, учет которой не является предметом изучения курса теории передачи сигналов, и во-вторых, от собственных свойств системы связи, определяемых способами передачи и приема сигналов. Способность системы связи противостоять вредному влиянию помех, обусловленная ее собственными свойствами, называется помехоустойчивостью системы связи. Помехоустойчивость систем связи является другой важнейшей характеристикой системы связи. В качестве количественной меры помехоустойчивости при передаче дискретных сообщений принято использовать вероятность ошибки, которая определяет относительное число неправильно принятых элементов сигнала. При передаче непрерывных сообщений помехоустойчивость оценивают величиной уклонения принятого сообщения от переданного. Величина уклонения определяется при этом по какому-либо критерию, например среднеквадратичному:



где волнистая черта сверху означает усреднение по времени.

Таким образом, основные требования, предъявляемые к системам связи, заключаются в повышении пропускной способности и помехоустойчивости. Эти требования противоречивы, так как можно повысить пропускную способность в ущерб помехоустойчивости и наоборот. По-видимому, принципиально можно спроектировать такую оптимальную систему связи, которая по некоторому критерию лучше других будет удовлетворять поставленным требованиям.

Проектирование системы связи, обеспечивающей наибольшие пропускную способность и помехоустойчивость, требует учета многих факторов. В общей постановке задача состоит согласно (1.1.3) в выборе такого алгоритма (правила) работы системы,



чтобы при максимальной пропускной способности получить выходное сообщение, минимально отличающееся от переданного с точки зрения некоторого критерия. Синтез такой оптимальной системы требует совместного выбора системы сигналов (операций кодирования и способа модуляции) и способов приема (демодуляции и декодирования). В таком общем виде данная задача еще не решена.

Поэтому для получения практических результатов данную задачу приходится расчленять и синтезировать систему по частям при некоторых фиксированных параметрах. Например, при заданном произвольно способе приема можно выбрать оптимальную систему сигналов, т.е. способы кодирования и модуляции. При выбранной системе сигналов задача сводится к построению оптимального приемника. Искомым является оператор W.

При раздельном выборе операторов F и W необходимо руководствоваться следующими принципами. Во-первых, приемник должен наилучшим образом подавлять помехи, т.е. обеспечивать максимальную помехоустойчивость. Система сигналов должна выбираться такой, чтобы сигналы, отображающие различные сообщения, как можно более отличались друг от друга, чтобы помехи как можно менее влияли на их различие. Таким способом можно выбрать наилучшие коды, наиболее помехоустойчивые виды модуляции, построить оптимальный приемник, т.е. получить оптимальные решения для отдельных звеньев системы связи. Такой способ позволяет синтезировать если не наилучшие теоретически, то, по крайней мере, хорошие и работоспособные системы связи.

Именно в таком направлении и развивалась общая или статистическая теория связи. В 1941 г. советский математик А.Н.Колмогоров разработал математические основы теории оптимальных по критерию минимума среднеквадратичной ошибки линейных цепей (фильтров), развитой в дальнейшем Н.Винером. В 1947 г. В.А. Котельников заложил основы теории помехоустойчивости в своей выдающейся работе ''Теория потенциальной помехоустойчивости''. В этой работе впервые была поставлена и решена задача построения идеального приемника, который обеспечивает потенциальную, т.е. максимально возможную помехоустойчивость. В 1949 г. американский ученый К.Шеннон положил начало теории информации. Он доказал возможность такого кодирования, которое позволяет получить максимально возможную скорость передачи сообщений со сколь угодно малой вероятностью ошибочного приема всего сообщения.

Эти работы и положили начало новой науке – общей теории связи или обшей теории информации. Теория информации возит благодаря проникновению в теорию и технику связи точных математических методов. В узком смысле слова теория информации занимается отысканием оптимальных способов кодирования. В широком смысле слова теория информации - это теория, использующая вероятностные и статистические методы для анализа и синтеза систем связи и их элементов. Использование этих методов в качестве основного математического инструмента объясняется тем, что сигналы связи являются не регулярными, а случайными процессами.

Теория вероятностей и теория случайных процессов являются главным математическим инструментом при анализе прохождения сигналов и помех через системы связи и их элементы. Методы математической статистики, особенно теории статистических решений и теории опенок, являются основными при синтезе и сравнении систем связи, удовлетворяющих определенным критериям качества.

Как отмечалось выше, отдельные реализации сигнала можно описать детерминированными (регулярными) функциями времени. Поэтому для первоначального исследования физических процессов в устройствах передачи и приема электрических сигналов используются также и классические методы, например, метод гармонического анализа (ряды и интеграл Фурье).

Ниже рассматриваются методы математического описания сигналов связи.
  1   2   3



Скачать файл (1089.8 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru