Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Шпоры по цитологии и гистологии на телефон. Основные вопросы строения клетки и ее органоидов, ткань и типы тканей - файл рибосома.txt


Загрузка...
Шпоры по цитологии и гистологии на телефон. Основные вопросы строения клетки и ее органоидов, ткань и типы тканей
скачать (97.8 kb.)

Доступные файлы (36):

аппарат гольджи.qri
аппарат гольджи.txt8kb.28.12.2009 12:54скачать
гистология в кратце.txt9kb.31.12.2009 18:33скачать
жизненный цикл.qri
жизненный цикл.txt13kb.31.12.2009 01:26скачать
история.qri
история.txt12kb.27.12.2009 16:23скачать
костная ткань.qri
костная ткань.txt6kb.01.01.2010 13:45скачать
кровь как ткань.txt11kb.01.01.2010 14:02скачать
лизосома.qri
лизосома.txt10kb.28.12.2009 14:24скачать
методы и организация.qri
методы и организация.txt7kb.27.12.2009 17:06скачать
митохондрии.qri
митохондрии.txt16kb.28.12.2009 19:19скачать
мышечная ткань.txt13kb.01.01.2010 14:52скачать
нервная ткань.qri
нервная ткань.txt12kb.01.01.2010 16:19скачать
плазматич мембрана.qri
плазматич мембрана.txt20kb.28.12.2009 01:24скачать
рибосома.qri
рибосома.txt11kb.28.12.2009 02:32скачать
собственно-соединительная ткань.qri
собственно-соединительная ткань.txt10kb.01.01.2010 13:26скачать
ткани внутренне среды.txt5kb.31.12.2009 19:34скачать
хрящевая ткань.qri
хрящевая ткань.txt8kb.01.01.2010 13:38скачать
цитоскелет.qri
цитоскелет.txt15kb.31.12.2009 01:26скачать
эпителиальная ткань.qri
эпителиальная ткань.txt17kb.31.12.2009 18:33скачать
ЭПС.qri
ЭПС.txt9kb.28.12.2009 01:45скачать
ядро.qri
ядро.txt12kb.31.12.2009 01:26скачать

рибосома.txt


Рибосомы
Рибосома — важнейший органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100—200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
Рибосомы - мелкие (диаметр - 15-30 нм) плотные немембранные органеллы, обеспечивающие синтез белка путем соединения аминокислот в полипептидные цепочки. Информация о синтезе приносится к рибосомами информационной РНК (иРНК), которая образуется в ядре в ходе считывания (транскрипции) фрагментов генетической информа¬ции с ДНК. Синтетически активная клетка содержит несколько миллионов рибосом (например, в клетке печени их число составляет 107), на которые приходится около 5% ее сухой массы. Каждая рибосома состоит из двух асимметричных субъединиц: малой, связывающей РНК, и большой, катализирующей образование пептидных цепей. По форме малая субъединица напоминает телефонную трубку, большая - ковш. Субъединицы образованы рибосомальными РНК (рРНК), на которые приходится около 50% их массы, и особыми белками (до 80 различных видов). Первые образуются в ядрышке, белки же синтезируются в цитоплазме, после чего транспортируются в ядро, где связываются с рРНК. В дальнейшем субъединицы поотдельности через ядерные поры направляются из ядра в цитоплазму, где они участвуют в синтезе белка. Рибосомы могут встречаться в цитоплазме поодиночке (в этом случае они функционально неактивны) или формировать скопления, которые называются полирибосомами (полисомами). В последних отдельные рибосомы (в количестве 3-30) удерживаются общей нитью иРНК толщиной 1.5 нм. Информация, переносимая ИРНК, кодирует последовательность аминокислот в белке соответствующей последовательностью нуклеотидов. Рибосомы переводят (транслируют) эту генетическую информацию в реальную последовательность аминокислот в ходе белкового синтеза.
Функционально неактивные (нетранслирующие) рибосомы постоян¬но обмениваются своими субъединицами; их сборка происходит в нача¬ле синтеза белка, а по завершении синтеза одного полипептида они вновь обратимо диссоциируют. Синтез белка рибосомой начинается со связывания малой субъединицы с участком иРНК; далее рибосома передвигается вдоль цепи ИРНК, причем на каждом этапе происходит специфическое присоединение к рибосоме молекулы транспортной РНК (тРНК), антикодон которой комплементарен соответствующему кодону иРНК. В полипептид включается около 20 аминокислот в 1 секунду; белковая молекула среднего размера синтезируется за 20-60 с. Когда образование белковой цепочки завершается, субъединицы диссоциируют, освобождаясь от иРНК. Пока продолжается синтез белка данной рибосомой, новая рибосома занимает освобождающееся на иРНК место. По этой причине активно транслируемая ИРНК находится в полисомах. Средняя продолжительность существования синтезированной белковой молекулы варьирует от нескольких минут до нескольких месяцев и даже лет, составляя в среднем около 2 сут.
Белки, которые после синтеза остаются в гиалоплазме (цитоплазматическом матриксе) клетки и далее используются ею, обычно синтезируются на свободных полисомах. Полисомы, которые своими большими субъединицами прикреплены к мембранам ЭПС, синтезируют белки, накапливающиеся в просвете цистерн ЭПС и в дальнейшем либо секретируемые клеткой, либо запасаемые ею внутри гранул (например, лизосомальные ферменты). На полисомах, связанных с мембранами ЭПС, синтезируется также большая часть интегральных мембранных белков. Будет ли белок синтезироваться на ЭПС или на свободных полисомах, зависит от характера начально образуемого отдела полипептидной цепи (сигнальной последовательности или пептида).
Присутствие значительного числа рибосом в цитоплазме клеток, активно синтезирующих белок, придает ей при исследовании на свето-оптическом уровне базофилию.

Уже в 50-х годах при изучении ультраструктуры ядрышек в их составе были обнаружены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы, с рибосомами. Следующим этапом
в изучении ядрышка было открытие принципиального факта – «ядрышковый организатор» является вместилищем генов рибосомных РНК.
Строение рибосом
Рибосома представляет собой элементарную клеточную машину синтеза любых белков клетки. Все они построены в клетке одинаково, имеют одинаковую молекулярную композицию, выполняют одинаковую функцию –
синтез белка – поэтому их можно так же считать клеточными органоидами. В отличие от других органоидов цитоплазмы (пластид, митохондрий, клеточного центра, мембранной вакуолярной системы и др.) они представлены в клетке
огромным числом: за клеточный цикл их образуется 1 х 107 штук. Поэтому основная масса клеточной РНК представляет собой именно рибосомную РНК.РНК рибосом относительно стабильна, рибосомы могут существовать в клетках
культуры ткани в течение нескольких клеточных циклов. В печеночных клетках время полужизни рибосом составляет 50-120 часов.Рибосомы – это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК, Рибосомы прокариот и эукариот по своим размерам и
молекулярным характеристикам отличаются, хотя и обладают общими принципами организации и функционирования. К настоящему времени методомрентгеноструктурного анализа высокого разрешения полностью расшифрована структура рибосом.Полная, работающая рибосома, состоит из двух неравных субъединиц,которые легко обратимо диссоциируют на большую субъединицу и малую.Размер полной прокариотической рибосомы составляет 20 х 17 х 17 нм, эукариотической – 25 х 20 х 20. Полная прокариотическая рибосома имееткоэффициент седиментации 70S и диссоциирует на две субъединицы: 50S и 30S.Полная эукариотическая рибосома, 80S рибосома, диссоциирует на 60S и 40S субъединицы. Форма и детальные очертания рибосом из разнообразных организмов и клеток, включая как прокариотические, так и эукариотические,поразительно похожи, хотя и отличаются рядом деталей. Малая рибосомная субъединица имеет палочковидную форму с несколькими небольшими выступами (см. рис. 81), ее длина составляет около 23 нм, а ширина – 12 нм. Большая субъединица похожа на полусферу с тремя торчащими выступами. При ассоциации в полную 70S рибосому малая субчастица ложится одним концом на один из выступов 50S частицы, а другим в ее желобок. В состав малых субъединиц входит по одной молекуле РНК, а в состав большой – несколько: у прокариот – две, а у эукариот – 3 молекулы.

Молекулярная характеристика рибосом
Объект Коэффициент седиментации полной рибосомы и ее субъединиц Кол-во молекул РНК на субъединицу Молекулярный вес РНК Коэффициент седиментации РНК Кол-во белковых молекул на субъединицу 
30S 1 0,56 х 106 16S 21
Рибосомы 70S
Прокариот 50S 2 1,2 х 106 23S 34
4,0 х 104 5S
40S 1 0,6 х 106 18S
Рибосомы 80S
Эукариот 60S 3 1,6 х 106 28S Всего
4,0 х 104 5S около
4,5 х 104 5,8S 80
158
Таким образом в состав эукариотической рибосомы входят четыре молекулы РНК разной длины: 28S РНК содержит 5000 нуклеотидов, 18SРНК – 2000, 5,8S РНК – 160, 5SРНК – 120.Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя сложные петли и шпильки на комплементарных участках, что приводит к самоупаковке, самоорганизации этих молекул в сложное по форме тело. Так, например, сама по себе молекула 18S РНК в физиологических ионных условиях образует палочковидную частицу, определяющую форму малой субъединицы рибосом.

Протеасо?ма — (от англ. protease — протеиназа и лат. soma — тело) — белковый комплекс, осуществляющий разрушение белков в конце их жизненного цикла. В эукариотических клетках протеасома содержится и в ядре и в цитоплазме клеток[1]. В её состав входит белок убиквитин. Протеасомы встречаются также у архей и некоторых бактерий. Нуклеосомы обеспечивают убиквитин-зависимую деградацию белков цитоплазмы и нуклеоплазмы. В частности, в протеасомах разрушаются метаболические ферменты (короткоживущие из-за регуляторной функции), реплицирующие ДНК белки (нужны только на период S-фазы клеточного цикла), гемоглобин, структурные белки и др.
Деградация циклина В в анафазе вызывается сложной цепочкой белковых взаимодействий, которая приводит к его расщеплению с помощью сложных белковых протеолитических комплексов – протеосом.Ингибиторы MG132 

Котрансляционный синтез растворимых белков
Пути синтеза белков на рибосомах ЭР можно представить в следующем виде (рис. 167). Еще в гиалоплазме происходит связывание иРНК,кодирующей секреторный белок, с рибосомой и начинается синтез белковой цепи. Важным является то, что сначала синтезируется “сигнальная последовательность” , богатая гидрофобными аминокислотами. В нее входит
16-30 аминокислот. Эта “сигнальная последовательность” в цитозоле узнается и связывается с “узнающей сигнал частицей” (SRP-частица),состоящей из одной молекулы 7S РНК и 6 различных полипептидных цепей. SRP-частица связывается после узнавания сигнального конца синтезирующейся молекулы белка с рибосомой, что приводит к полной
остановке синтеза белка. На поверхности же мембраны ЭР, обращенной к гиалоплазме расположены интегральные рецепторные белки,связывающиеся с SRP-частицами. В результате SRP-частица связывается со своим рецептором и одновременно связывает данную рибосому с мембраной ЭР. Такая “заякоренная” рибосома с SRP-частицей, блокирующей дальнейший рост полипептидной цепи, взаимодействует с большим белковым комплексом, транслаконом. После связывания рибосомы с транслаконом происходит отделение SRP-частицы и синтезированный первичный пептид входит в канал диметром около 2 нм, который образует транслакон. После этого возобновляется синтез полипептида, он удлиняется и его сигнальная последовательность, вместе с растущей цепочкой оказывается внутри полости цистерны ЭР. Таким образом синтезируемый белок проходит сквозь мембрану ЭР во время его синтеза, т.е. котрансляционно, одновременно с его трансляцией. Внутри полости ЭР с помощью фермента (сигнальная петидаза) сигнальная последовательность отщепляется. После окончания синтеза вся белковая молекула оказывается в полости ЭР и в это время рибосома отделяется от транслакона и диссоциирует. После этого в транслаконе канал закрывается.

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru