Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Презентация - Системы мониторинга ВОЛС - файл Системы мониторинга ВОЛС.doc


Презентация - Системы мониторинга ВОЛС
скачать (962.7 kb.)

Доступные файлы (2):

Системы мониторинга ВОЛС.doc479kb.21.01.2011 15:55скачать
Системы мониторинга ВОЛС.pptxскачать

содержание
Загрузка...

Системы мониторинга ВОЛС.doc

Реклама MarketGid:
Загрузка...
Федеральное агентство связи

ГОУ ВПО “СибГУТИ”




Реферат на тему

Системы мониторинга ВОЛС


Выполнил: ФИО

Проверил: доцент кафедры АЭС





г. Екатеринбург 2010

СОДЕРЖАНИЕ

Введение

  1. Мониторинг ВОЛС……………………………………………………………….5

  2. Функции, назначение и требования к системам мониторинга………………………………………………………………...…….6

  3. Архитектура систем мониторинга …………………………………….…..……9

  4. Система RFTS в корпоративной сети связи…………………………...………11

4.1 Специальные требования для систем RFTS корпоративных сетей……....…13

  1. Сравнение существующих RFTS…………………..………….….……………14

Заключение

Список литературы

ВВЕДЕНИЕ

Интенсивное развитие современных телекоммуникационных сетей, их мультисервисная многоуровневая структура и сложная разветвленная топология, выдвигают новые требования к принципам эксплуатации сетей связи. Наиболее эффективно задачи эксплуатации решают автоматизированные системы мониторинга телекоммуникаций, обеспечивающие в реальном режиме времени централизованный контроль работоспособности сети, обнаружение неисправностей с возможностью их прогнозирования и минимизации времени устранения.

Волоконно-оптические сети связи (ВОСС) уверенно наращивают свою мощь и, как любая другая сложная техническая система, для нормального функционирования требуют измерения и контроля своих параметров. В настоящее время решение задач измерения параметров волоконно-оптических линий связи (ВОЛС) обеспечивают оптические рефлектометры, мультиметры и другие измерительные приборы, которые находятся на вооружении монтажных и эксплуатирующих подразделений.

Однако в современных ВОСС для этих целей все шире используются автоматизированные системы мониторинга.

В первую очередь, необходимо отметить, что объем передаваемой информации непрерывно увеличивается. Современная техника временного и спектрального мультиплексирования обеспечивает скорость передачи в канале более 40 Гбит/с, а число каналов передачи в одном оптическом волокне (0В) может достигать до 100 спектрально-мультиплексированных каналов.

Вторым важнейшим следствием развития ВОЛС является увеличение длины регенерационных участков за счет развития техники широкополосных усилителей оптического сигнала,

Информационная емкость современного информационного канала на основе ВОЛС может составлять 1 Тбит/с для одного оптического волокна при расстояниях между регенераторами 200 км.

Совершенствование технологии увеличило срок службы ВОЛС, что при постоянном высоком приросте и минимальном выводе из эксплуатации обеспечило непрерывный количественный их рост.

Суммируя, отметим следующие особенности современного состояния ВОСС:

-наблюдается значительный рост числа функционирующих ВОЛС;

-усложняется топология волоконно-оптических сетей;

- информационная емкость ВОЛС непрерывно увеличивается;

-увеличиваются доля информации и значимость трафика, передаваемых по ВОЛС;

-растет цена простоя ВОЛС при авариях.
ВОЛС становятся всеобъемлющими, все. более сложными, увеличивается значимость этих систем. Поэтому повышение их надежности приобретает все более важное значение.

Проблема надежности ВОЛС охватывает широкий круг вопросов и по своей сути является комплексной. Ее решение требует применения соответствующих методик оценки, расчета и контроля различных параметров оптических кабелей (ОК) и показателей надежности ВОЛС. Надежность ВОЛС зависит от различных конструктивно-производственных и эксплуатационных факторов. К первым относят факторы, связанные с разработкой, проектированием и изготовлением ОК и других вспомогательных изделий и устройств, входящих в состав ВОЛС. Ко вторым - все факторы, влияющие на надежность ОК в процессе его прокладки, монтажа и последующей эксплуатации.

Одним из основных эксплуатационных факторов, позволяющих прогнозировать ухудшение характеристик оптических волокон и обеспечивать требуемый уровень надежности ВОЛС, является непрерывный мониторинг ОК ВОЛС. При этом системы мониторинга ОК ВОЛС должны предусматриваться уже на этапе планирования и проектирования современных цифровых сетей связи . Это особенно важно и актуально для ВОЛС на воздушных линиях электропередачи (ВОЛС-ВЛ), применяемых при создании больших корпоративных сетей связи крупными энергокомпаниями. Такие ВОЛС-ВЛ имеют очень высокую надежность, но при этом в случае аварии требуют значительных затрат времени и материально-технических ресурсов на проведение аварийно-восстановительных работ.

В настоящее время ОК с одномодовыми оптическими волокнами различного типа являются наиболее совершенной средой для передачи информации. По полосе пропускания (скорость передачи свыше 10 Гбит/с), линейным потерям (затухание 0,2-0,25 дБ/км) и дальности передачи (свыше 150 км) ОК не имеют себе равных . Одна из важнейших задач - поддержание характеристик волокна на надлежащем уровне. Именно поэтому системы непрерывного мониторинга оптических волокон в ОК ВОЛС приобретают особую значимость при построении современных цифровых мультисервисных сетей.

Такие системы - системы дистанционного тестирования волокон RFTS (Remote Fiber Test System) - в настоящее время выпускаются рядом зарубежных компаний. Однако для практического применения подобных систем при построении больших протяженных сетей связи требуется серьезный сравнительный анализ возможностей различных систем RFTS и изучение проблемы их интеграции с системами информационной поддержки и управления такими сетями.


  1. М^ ОНИТОРИНГ ВОЛС


Контролировать состояние и измерять параметры ВОЛС необходимо как в процессе монтажа, так и во время эксплуатации. Кроме того это требуется делать при авариях - для определения их причины и места, при ремонтных работах - для определения качества проведенных ремонтных работ, для профилактики - с целью предупреждения аварий и повышения надежности ВОЛС.

В процессе эксплуатации возникает необходимость контроля полного затухания тракта и затухания, вносимого сростками. В случае аварии, при обрыве ОК или ОВ, требуется быстро и точно определить место обрыва.

Для прогнозирования аварийных ситуаций необходимо проводить мониторинг состояния тракта и анализировать изменение его состояния, находить и анализировать существующие в нем неоднородности.

В настоящее время при измерении параметров оптического тракта наиболее распространенным является рефлектометрический метод. В методе импульсной рефлектометрии (OTDR) формируется короткий зондирующий оптический сигнал, который через оптический разветвитель вводится в исследуемое ОВ. Сигнал, отраженный на неоднородностях, поступает на фотоприемное устройство рефлектометра. Временной анализ отраженного сигнала обеспечивает фиксацию эволюции зондирующего сигнала вдоль ВОЛС с последующим определением параметров тракта.

Оптические рефлектометры позволяют измерять: общее затухание (дБ) и распределение затухания - погонное затухание в ОВ (дБ/км); затухания, вносимые неоднородностями (разъемные и неразъемные соединения, прочие неоднородности); координаты неоднородностей.

Следует отметить основные характеристики оптических рефлектометров:

-диапазон длин волн зондирующего излучения лямбда s: 0,85 и 1,31 мкм - для многомодовых 0В; 1,31, 1,55 и 1,625 мкм -для одномодовых ОВ;

-динамический диапазон измерений, который определяет максимальное затухание в измеряемом 0В при заданном времени усреднения;

-разрешение по расстоянию, обеспечивающее возможность различить две неоднородности на ОВ;

-ближняя зона нечувствительности;

Современные оптические рефлектометры представляют собой измерительные устройства с возможностями мощного персонального компьютера и обеспечивают измерение, обработку и накопление первичного отраженного сигнала; обработку, анализ и хранение рефлектограмм, а также возможность обмена информацией и дистанционного управления с помощью сетевых решений. С их помощью можно успешно решать задачи измерения параметров ВОЛС


  1. Ф^ УНКЦИИ, НАЗНАЧЕНИЕ И ТРЕБОВАНИЕ К СИСТЕМАМ МОНИТОРИНГА

К основным функциями системы мониторинга относятся:

  • Дистанционный контроль пассивных и активных волокон оптических кабелей;

  • Точное и своевременное документирование и составление отчетности;

  • Автоматическое обнаружение неисправностей с указанием их точного место положения;

  • Контроль и управление процессом оповещения о повреждении оптических кабелей;

  • Проведение измерений параметров оптических волокон в ручном режиме;

  • Возможность расширения функциональности системы при внедрении новых технологий передачи на сети связи.

Важнейшей функции системы RFTS является то, что она постоянно автоматически ведет сбор и статистический анализ результатов тестирования оптических волокон сети. Статистический анализ с использованием корреляционных, многофакторных методов, а также современных нейросетевых методов дает возможность обнаруживать и прогнозировать неполадки волокна задолго до того, как они приведут к серьезным проблемам в сети.

На основе мониторинга сети при помощи RFTS можно проводить плановый и профилактический ремонт ОК в сети, не дожидаясь появления серьезных повреждений и аварий в кабельной системе.

Система RFTS значительно повышает безопасность сети - любое несанкционированное подключение к волокну неизбежно приводит к дополнительным потерям в оптическом канале, а значит, будет обнаружено и зафиксировано системой в реальном масштабе времени.

Другое не менее важное качество системы RFTS – графическое представление информации о состоянии сети. На центральном сервере системы установлена профессиональная ГИС, которая содержит точную электронную карту цифровой сети на местности. Вся информация о состоянии сети и документация по ОК хранится в базе данных SQL и может быть графически представлена на карте. Также на карту выводится полная информация о неисправностях волокон в ОК, включая их точное физическое местоположение.

Таким образом, система RFTS позволяет обслуживающему персоналу в реальном масштабе времени (практически мгновенно) узнавать, где произошел сбой и каков уровень потерь в волокне ОК ВОЛС. Это намного сокращает время поиска неисправностей и упрощает проведение профилактического обслуживания ВОЛС. Учитывая размеры современных цифровых волоконно-оптических сетей, важность и объемы передаваемой по ним информации, экономическую эффективность применения системы RFTS трудно переоценить.

Существуют как общие требования к системам RFTS, так и специальные требования к системам RFTS крупных корпораций.

Система RFTS должна предусматривать возможность наращивания (вместе с развитием сети) и перехода на новые методы измерений при использовании новых сетевых технологий, например, технологии плотного волнового мультиплексирования DWDM (Dense Wave Division Multiplexing). Поэтому система RFTS должна иметь полностью модульную архитектуру.

Система RFTS должна предусматривать возможность альтернативной передачи результатов тестирования волокон ОК по резервным каналам, например - уже существующим низкоскоростным каналам связи, а модули RTU системы должны “уметь” работать в автономном режиме, сохраняя локально результаты измерений каждого волокна и передавая информацию на центральный сервер периодически по независимым каналам связи по заранее заданной программе.

Важна возможность гибкой и экономичной организации системы RFTS для больших сетей. Потому предпочтительны системы, позволяющие устанавливать в узлах RTU сети как оптические рефлектометры, совмещенные с оптическими коммутаторами, так и только оптические рефлектометры или только оптические коммутаторы.

Система RFTS должна предусматривать возможность локального управления узлами. Для обслуживания большой сети требуется значительное количество персонал. Поэтому важна возможность локального управления модулями системы RFTS, без использования внешнего компьютера (notebook). Это позволяет не только снизить затраты на установку системы RFTS, но и упростить обслуживание такой системы, так как обслуживающему персоналу не потребуется носить с собой дополнительное оборудование.

Система RFTS должна иметь возможность распределенного управления со станций ONT, подключенных к сети управления - конфигурирование всех или определенных узлов RTU и получение всей или частичной информации от центрального блока управления TSC в зависимости от прав доступа.

Специальный требования для корпоративных сетей.

Компания или корпорация, устанавливающая систему RTFS, может использовать для своей корпоративной сети различные ГИС. Поэтому необходимо, чтобы система RFTS поддерживала не только свой внутренний формат электронных карт, но и все форматы, поддерживаемые основными ГИС..

Для массового обучения обслуживающего персонала работе с центральным сервером и узлами системы RFTS необходимо, чтобы станции ONT системы RFTS работали под широко распространенными операционными системами семейства Win32.

Следует отметить, что с практической точки зрения очень важной является возможность автономной работы модулей и узлов системы RFTS и сохранение результатов измерений каждого волокна в собственной памяти с последующей периодической передачей информации на центральный сервер по заданной программе. Например, узел системы может запоминать по одной рефлектограмме в день за последний месяц, по одной в час – за последнюю неделю и с интервалом в 10 минут за последние сутки. При такой схеме в любой момент можно восстановить всю динамику отказов и аварий ОК, как развивавшихся в течение долгого периода времени, так и произошедших внезапно (например, вследствие обледенения ОК в грозозащитном тросе, подвешенном на опорах воздушных линий электропередачи). Результаты измерений волокон в ОК в течение времени непосредственно перед отказом ОК являются незаменимым материалом для анализа причин возникновения отказов ОК и предотвращения подобных отказов в масштабах всей сети.

В системе RFTS можно реализовывать различные схемы и методы наблюдения за состоянием волокон и ОК. Свыше 90% неисправностей связаны с повреждением ОК в целом и будут обнаружены, если тестируется хотя бы одно оптическое волокно в кабеле. Это означает, что при относительно невысоких требованиях к надежности ВОЛС можно постоянно вести тестирование только одного волокна в ОК.

Допускается тестирование как "темных" волокон ОК, т. е. волокон, по которым не передаются данные цифровой сети связи в момент тестирования, так и активных волокон. При этом тестирование активных волокон проводится на длине волны излучения вне рабочей полосы пропускания и никак не влияет на качество передачи. Однако для тестирования активных волокон требуется установка на ВОЛС в сети спектральных мультиплексоров WDM (Wavelength Division Multiplexer) и обводных фильтров (см. рис. 1). Поэтому метод тестирования активных оптических волокон в сети требует больших затрат, и имеет смысл его применять только для волокон, на которых установлены цифровые системы передачи с особо важными каналами повышенной надежности, или в случае отсутствия темных волокон в ОК.



Рис. 1 Общая схема тестирования темных и активных волокон

Возможны самые различные конфигурации системы RFTS и разные варианты тестирования волокон – одно темное волокно ОК, все волокна ОК, выделенные активные (самые важные) волокна ОК и тд.

  1. А^ РХИТЕКТУРА СИСТЕМ МОНИТОРИНГА

Автоматизированные системы администрирования ВОК включает в себя:

  • Систему удаленного контроля ОВ (RFTS).

  • Программу привязки топологии сети к электронной карте местности (ГИС).

  • База данных результатов контроля, кретериев и оптических компонентов.

Все системы RFTS, как правило, строятся по одной и той же схеме. При этом выделяют следующие функциональные элементы и устройства :

-аппаратную часть;

-систему управления;

-а также интегрированные элементы:

-геоинформационную систему (ГИС) привязки топологии сети к карте местности;

-базы данных ОК, оборудования сети, критериев и результатов тестирования ОК ВОЛС и сети в целом, и другие внешние базы данных.

Аппаратная часть включает:

блоки дистанционного тестирования волокон RTU (Remote Test Unit), в которые могут устанавливаться модули оптических рефлектометров OTDR (Optical Time Domain Reflectometer), модули доступа для тестирования волокон OTAU (Optical Test Access Unit) - оптические коммутаторы и другие модули;

-центральный блок управления TSC (Test System Control) системой RFTS - центральный сервер;

-станции контроля сети ONT (Optical Network Terminal).

Элементами системы управления RFTS являются: станции контроля сети ONT (notebook или стационарные рабочие станции); соответствующее программное обеспечение; блоки управления в RTU; центральный блок управления TSC и сетевое оборудование, обеспечивающее связь между компонентами управления RFTS.

В стратегически важных точках сети устанавливаются блоки RTU. Конфигурация системы RFTS (выбор блоков RTU, их размещение по узлам сети и комплектация модулями OTDR, OTAU и др.) оптимизируется исходя из топологии сети, стоимости оборудования, требований надежности системы RFTS и других критериев. При этом тестироваться могут как пассивные волокна ВОЛС (метод тестирования пассивных оптических сетей), так и активные волокна (метод тестирования активных оптических сетей).

Дистанционный контроль осуществляется оптическим импульсным рефлектометром, диагностирующим состояние волокна по обратному рассеянию световой волны при введении в волокно зондирующих импульсов. OTDR является самым важным компонентом в RFTS, позволяет обрабатывать, анализировать и проводить измерения и возможность идентификации текущей рефлектограммы относительно эталонной.

Оптический рефлектометр периодически снимает данные по затуханию с подключаемых к нему оптических волокон сети. Каждая полученная рефлектограмма сравнивается с эталонной, отражающей обычно исходное состояние волокна. Если отклонение от нормы превышает определенные, заранее установленные пороги (предупреждающий или аварийный), то соответствующий блок RTU автоматически посылает на центральный сервер системы предупреждение или сообщение о неисправности. Все рефлектограммы также поступают на центральный сервер, который сохраняет их в базе данных для дальнейшей обработки. Центральный сервер системы обеспечивает доступ ко всем результатам тестирования волокон для любой станции контроля сети и автоматически рассылает сообщения о неисправностях в зависимости от уровня серьезности события на заранее заданные IP- или электронные адреса, пейджеры и телефоны, узлы обслуживания ВОЛС.



Рис.2 Архитектура системы RFTS


  1. С^ ИСТЕМА RFTS В КОРПОРАТИВНОЙ СЕТИ СВЯЗИ



Установка системы RFTS на крупных корпоративных сетях, как было показано выше, сегодня уже не является роскошью. Более того, именно коммерческие соображения диктуют корпорациям и операторам связи необходимость постоянно следить за состоянием всей сети, проводить плановые обследования и документировать состояние оптических волокон в ОК сети. Это позволяет заранее выявлять места возможной деградации волокна и не допускать перерывов связи в сети, а в случае аварии ОК – получать оперативную информацию о месте и характере повреждения ОК и как можно быстрее устранять ее последствия.

Типичным примером крупной корпоративной сети является цифровая сеть связи АО "Мосэнерго". Эта крупнейшая энергокомпания России в течение ряда лет реализует проект создания единой информационной сети связи (ЕИСС), полностью охватывающей Москву и Московскую область [6]. ЕИСС станет основой развития информатизации компании, а также будет использоваться в коммерческих целях при сотрудничестве с различными операторами связи. Цифровая первичная сеть связи, выполняющая функции транспортной сети, полностью базируется на волоконно-оптической инфраструктуре и цифровых системах передачи синхронной цифровой иерархии (СЦИ/SDH). При этом в пределах города такая сеть имеет разветвленную структуру и состоит из ВОЛС с ОК с достаточно большим числом оптических волокон (обычно до 32-х волокон).

В корпоративной сети, как правило, 4-8 волокон магистрального ОК образуют транспортную сеть (backbone), остальные волокна - либо темные, либо используются для построения вторичных сетей, а именно абонентских сетей доступа (“последних миль”). При наличии резервных маршрутов, например при кольцевой топологии сети, обрыв ОК не повлияет на передачу трафика в магистралях сети - он просто будет направлен по другому пути. Но абоненты, подключенные к сети через волокна поврежденного кабеля, связь потеряют, так как подключены без резервирования ОК (см. рис. 3,а). Подобная ситуация наблюдается также в процессе строительства сегментов ВОЛС большой корпоративной сети, которая некоторое время (иногда продолжительное) может не иметь резервирования по каналам связи, например, нет замыкания кольца SDH (см. рис. 3,б). В то же время поэтапное подключение узлов к сети связи вполне допустимо и часто происходит на практике.








Рис.3. Сети без резервирования и с резервированием каналов связи

а) Разные уровни резервирования магистральной сети и абонентских сетей доступа;

б) Поэтапный ввод в эксплуатацию сегментов сети (полное резервирование

возможно только по завершению последнего этапа строительства ВОЛС).
Мониторинг волокон ОК в больших протяженных сетях связи крайне необходим и для прогнозирования ухудшения характеристик волокна, чтобы до появления необратимых изменений провести своевременный профилактический ремонт этих участков ВОЛС. В конечном итоге это намного дешевле, чем устранять последствия аварии ОК.

Для больших корпоративных сетей со сложной топологией и протяженными ВОЛС невозможно регулярно проводить полное тестирование всех ОК сети вручную. Постоянный мониторинг ОК большой разветвленной сети должен вестись дистанционно и непрерывно интеллектуальной автоматической системой с централизованным управлением.

    1. Специальные требования для систем RFTS корпоративных сетей


Компания или корпорация, устанавливающая систему RTFS, может использовать для своей корпоративной сети различные ГИС. Поэтому необходимо, чтобы система RFTS поддерживала не только свой внутренний формат электронных карт, но и все форматы, поддерживаемые основными ГИС..

Для массового обучения обслуживающего персонала работе с центральным сервером и узлами системы RFTS необходимо, чтобы станции ONT системы RFTS работали под широко распространенными операционными системами семейства Win32.

Система управления RTFS должна интегрироваться в общую систему управления цифровой корпоративной сети.

Следует отметить, что с практической точки зрения очень важной является возможность автономной работы модулей и узлов системы RFTS и сохранение результатов измерений каждого волокна в собственной памяти с последующей периодической передачей информации на центральный сервер по заданной программе. Например, узел системы может запоминать по одной рефлектограмме в день за последний месяц, по одной в час – за последнюю неделю и с интервалом в 10 минут за последние сутки. При такой схеме в любой момент можно восстановить всю динамику отказов и аварий ОК, как развивавшихся в течение долгого периода времени, так и произошедших внезапно (например, вследствие обледенения ОК в грозозащитном тросе, подвешенном на опорах воздушных линий электропередачи). Результаты измерений волокон в ОК в течение времени непосредственно перед отказом ОК являются незаменимым материалом для анализа причин возникновения отказов ОК и предотвращения подобных отказов в масштабах всей сети.

  1. С^ РАВНЕНИЕ СУЩЕСТВУЮЩИХ RFTS

Автоматизированные системы непрерывного мониторинга ОК сетей связи выпускаются рядом зарубежных компаний. В настоящее время на российском рынке представлены четыре системы RFTS, выпускаемые ведущими мировыми производителями подобного оборудования:

-AccessFiber (компания Agilent Technologies, бывшая Hewlett-Packard, HP);

-Atlas (компания Wavetek Wandel&Goltermann);

-FiberVisor (компания EXFO);

-Orion (компания GN Nettest).

Известны также системы RFTS SmartLGX (Lucent Technologies), OCN-MS (Nicotra Sistemi) и некоторые другие, но они слабо представлены на отечественном рынке.

Сравнительный анализ систем автоматизированного мониторинга волокон в ОК ВОЛС основан на результатах, опубликованных в технической периодике и на Web-сайтах основных производителей систем RFTS . В таблицах 1 и 2 представлены функциональные и технические характеристики систем RFTS для мониторинга ОК ВОЛС.

Для удобства сравнения систем RFTS по функциональным, техническим и другим характеристикам результаты сравнительного обобщающего анализа рассматриваемых систем представлены в таблице 3.

Сравнительный анализ различных систем RFTS показывает, что для практического применения лучшими в функциональном и техническом плане являются системы FiberVisor (EXFO), Orion (GN Nettest) и Atlas (Wavetek Wandel&Goltermann). С учетом требований расширяемости, масштабируемости и возможности интеграции с различными ГИС предпочтение следует отдать системе FiberVisor (EXFO).

Окончательный выбор той или иной системы должен производиться с учетом стоимости конкретной системы мониторинга ОК для всей планируемой сети и с учетом ее дальнейшего развития.
Таблица 1.



Таблица 2.


ЗАКЛЮЧЕНИЕ

Сравнительный анализ различных систем RFTS показывает, что для практического применения лучшими в функциональном и техническом плане являются системы FiberVisor (EXFO), Orion (GN Nettest) и Atlas (Wavetek Wandel&Goltermann). С учетом требований расширяемости, масштабируемости и возможности интеграции с различными ГИС предпочтение следует отдать системе FiberVisor (EXFO).

Очевидно, что применение данных систем позволяет по новому подойти к вопросу тестирования ОК и обслуживанию оптических сетей, обеспечивая:

  1. Среднее время локализации и идентификации неисправности ВОЛП не превышающее 10 минут, в то время как при традиционном способе оно измеряется часами;

  2. Отображение обнаруженной неисправности на географической карте, что благодаря базе данных топологии оптической сети, упрощает обслуживание последней;

  3. Прогноз возможных неисправностей сети, так как осуществляется систематическое накопление результатов измерений, что гарантирует подлинность накопления данных;

  4. Возможность проведения испытаний сети одним квалифицированным пользователем, что повышает эффективность обслуживания большой сетевой зоны при меньшем количестве персонала;

  5. Значительное сокращение парка оборудования, необходимого для обслуживания участков сети, что устраняет проблемы, свойственные использованию этого оборудования;

  6. Упрощение проектирования, строительства и сдачи в эксплуатацию новых сетей благодаря стандартизированной документации используемой совместно с накопленным опытом эксплуатации системы.

Построение и развитие крупных корпоративных сетей показывает, что систему мониторинга ОК ВОЛС желательно планировать на этапе общего проектирования самой цифровой сети. При развитии большой и протяженной сети до некоторого уровня, когда необходимость установки систем RFTS становится очевидной как по техническим, так и экономическим соображениям, очень важно сделать правильный выбор системы мониторинга ОК ВОЛС. Результаты сравнительного анализа систем RFTS показывают, что на российском рынке имеется достойный выбор многофункциональных, надежных и гибких систем дистанционного и непрерывного мониторинга ОК ВОЛС для современных сетей связи.

С^ ПИСОК ЛИТЕРАТУРЫ

1) Хволес Е.А., Ходатай В.Г., Шмалько А.В. Волоконно-оптические линии связи и проблемы их надежности. - ВКСС. Connect! 2000, №4.

2) Иванов А.Б. Контроль соответствия в телекоммуникациях и связи. Часть 1. - М.: Сайрус Системс, 2000. –376 с.

3) Шмалько А.В. Планирование и построение современных цифровых корпоративных сетей связи. – Вестник связи, 2000, №4, с. 58-65.

Шмалько А.В. Построение современных цифровых сетей связи: основные понятия, принципы и вопросы терминологии. – ВКСС. Connect! 2000, №2, с. 61-69.

4) Шмалько А.В., Сабинин Н.К. ВОЛС на воздушных линиях электропередачи. - ВКСС. Connect! 2000, №3, с. 50-62.

5) Симичев Н.И., Ермашов А.А., Шмалько А.В. Единая информационная сеть связи АО “Мосэнерго”. Рубежи и перспективы. - ИнформКурьер-Связь, 2000, №11, с. 47-50.

6) Правила проектирования, строительства и эксплуатации волоконно-оптических линий связи на воздушных линиях электропередачи напряжением 110 кВ и выше. – М.: РАО “ЕЭС России” , 1999. –108 с.

7) Волоконно-оптическая техника; история, достижения, перспективы // Сб. статей под ред. Дмитриева С.А., Слепова Н.Н. – М.: Изд. Connect, 2000. -376 с.


Скачать файл (962.7 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru