Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции - файл 1.doc


Лекции
скачать (358 kb.)

Доступные файлы (1):

1.doc358kb.16.11.2011 10:22скачать

содержание
Загрузка...

1.doc

  1   2   3   4
Реклама MarketGid:
Загрузка...
Ламаш Б.Е.
Лекции по БИОМЕХАНИКЕ


Содержание

Лекция № 1. Предмет и история биомеханики
Лекция № 2. Кинематика движений человека
Лекция № 3. Динамика движений человека
Лекция № 4. Механическая работа и энергия при движениях человека
Лекция № 5. Движения вокруг осей
Лекция № 6. Локомоторные движения
Лекция № 7. Локомоторные движения (окончание)
Лекция № 8. Перемещающиеся движения
Лекция № 9. Ударные действия
Лекция № 10. Индивидуальные и групповые особенности моторики

 

Лекция № 1
Предмет и история биомеханики


Для правильной подготовки спортсменов высокой квалификации тренер должен владеть глубокими знаниями по основным естественным дисциплинам. К их числу относятся: физика, биология и химия. Со стороны социальных наук необходимо изучение психологии.

Любой тренер должен разбираться в биологии, точнее в ее разделе анатомии, чтобы правильно представлять себе внутреннее строение атлета, работу его мышечного аппарата и, если возникнет необходимость, локализацию того или иного заболевшего органа.

Для работы мышц нужна энергия. Ей можно взяться только за счет химических процессов, протекающих в организме спортсмена во время выполнения упражнений. Чтобы яснее представлять преобладание аэробных или анаэробных процессов для конкретных видов спорта необходимо знание биохимии.

Любое соревнование – это борьба индивидуумов. Немалую роль в победе играет не только физическая выносливость, но и психологическая устойчивость. Недаром великие тренеры всегда уделяют большое внимание тактической и психологической подготовке своих воспитанников. По этой причине обучение психологии является обязательным компонентом в подготовке тренера.

Любой вид спорта сопряжен с преодолением спортсменом сил трения, тяготения и других сил физической природы. Чтобы свести к минимуму паразитную или вредную часть этих сил тренер должен разбираться в физике. Кроме того, движение крови в организме также подчиняется физическим законам. При изучении характера таких движений и возникла наука, которую принято называть биомеханика.

Термин биомеханика составлен из двух греческих слов: bios – жизнь и mechanike – наука о машинах. Эта наука характеризуется применением основных принципов механики, т.е. науки о механических движениях материальных тел и взаимодействиях, происходящих при этом между ними, к живым организмам. Область исследований, связанная с приложением механических и биомеханических закономерностей применительно к спорту, стала называться спортивная биомеханика в отличие от других разделов биомеханики, которые имеют скорее медицинское применение.

Все виды спорта тесно связаны с движением тел. В некоторых видах основным движущим объектом является сам спортсмен, в котором сочетаются различные формы перемещающихся объектов, как, например, кости и мышцы. Спринтерский бег и прыжки в высоту, например, являются теми видами спорта, в которых спортсмену необходимо как можно быстрее перемещаться или как можно выше прыгнуть. Однако в приведенном примере мы сталкиваемся и с перемещением других предметов, таких как обувь спортсмена или его одежда.

В некоторых видах спорта самое главное заставить перемещаться с максимальной скоростью на возможно дальнее расстояние или же с максимальной скоростью не тело спортсмена, а другие предметы (снаряды – диск, ядро, мяч). В спорте используется большое разнообразие таких предметов, для каждого из которых характерны свои типовые, количественные и конструкторские характеристики. В разных видах спорта встречается много типов мячей.

В одних видах предметы перемещаются не непосредственно, а при помощи различных приспособлений, например при помощи бейсбольной биты, теннисной ракетки или винтовки. В других же видах спорта спортсмену самому требуется приводить в движение и управлять предметами, являющимися специальными атрибутами в конкретном виде спорта (например, велосипед или яхта).

Сила способна вызвать или остановить движение. Энергетические системы обеспечивают превращение химической энергии в механическую, что проявляется в развитии мышцами сократительной активности и, как следствие,- проявлении силы. Во всех видах спорта кто-то (или что-то) может препятствовать поставленной цели. Спорт не может существовать без соревнований, в связи с чем всегда присутствуют факторы, требующие их преодоления. В некоторых видах спорта эти факторы не связаны с непосредственным контактом с соперником. Однако в других видах, таких как силовые единоборства, такой контакт имеет прямое отношение к взаимодействию сил.

Во многих видах спорта показатели специальной работоспособности спортсмена зависят от способности развиваемых им мышечных напряжений преодолевать внешние естественные сопротивления, препятствующие выполнению движений. Наиболее значимые из таких сил являются гравитация, силы трения и силы физического сопротивления движению тел в воде и в воздухе. В некоторых видах спорта рациональное использование этих сил может способствовать улучшению спортивной работоспособности. Например, во время спуск велосипедиста после преодоления горного подъема гравитация служит ему помощником.

Перемещающаяся окружающая среда (вода, воздух) может способствовать повышению показателей спортивной работоспособности (при сопутствующем потоке воздуха или воды). Поэтому, например, рекордные результаты в беге на короткие дистанции или в прыжках в длину фиксируются только при скорости попутного ветра не более 2 м/с. В некоторых видах спорта такие потоки служат основным фактором, на котором базируется тренировочная и соревновательная деятельность. Прыгуны на лыжах и горнолыжники тесно зависимы от гравитационных сил и потоков воздуха, а вот яхтсмены – от течения воды, от ветра и создаваемых им волн.

Как правило, внешние силы сопротивления препятствуют достижению успеха в спорте. Так прыгуны в высоту и с шестом, по существу, соревнуются с гравитацией. Горнолыжник испытывает значительное сопротивление встречному потоку воздуха, тогда как пловец-спринтер должен преодолеть значительное сопротивление воды. Существенно повлиять на спортивный результат могут и силы трения, как в случае ухудшения скольжения лыж при таянии снега.

Поэтому в видах спорта, где результат во многом зависит от воздействия внешних сил на движение, как, например, в парусном спорте, некоторые исследователи акцентируют свое внимание на путях повышения эффективности использования этих сил (например, путем улучшения конструкции яхты). Однако чаще изучаются возможности снижения сопротивления воды, воздуха, сил гравитации и трения.

Немного подробнее затронем каждую из внешних сил.

Наиболее значительная сила, действующая на нас,- это сила земного притяжения. Величина этой силы зависит, в основном, от двух факторов. Первый – это расстояние от тела до центра Земли. Чем ближе к центру, тем сила притяжения больше. Следовательно, на значительной высоте над уровнем моря и на определенных географических широтах спортивные результаты в отдельных видах спорта могут быть улучшены просто из-за меньшей силы тяготения.

Второй фактор – масса тела, включая одежду. С увеличением массы возрастает и гравитационная сила, поэтому для ее преодоления необходимо развивать большее усилие.

Сопротивление жидкой и газообразной среды зависит от многих факторов. Одним из них является природа жидкости или газа. Все спортивные упражнения выполняются в воздушной или водной среде, и поскольку плотность воздуха меньше плотности воды, то сопротивление воздуха также меньше.

Однако некоторые внешние факторы могут повлиять на плотность этих сред. На значительных высотах над уровнем моря плотность воздуха намного меньше, а значит его сопротивление движению также меньше. Поскольку с высотой снижается и сила тяготения, то такое сочетание способствует улучшению спортивных результатов. Наглядный пример – рекорд Боба Бимона в прыжках в длину на Олимпийских играх 1968 года в Мехико. Мехико расположен на высоте 2 300 метров над уровнем моря.

Таким образом, для установления личного рекорда спортсмен может участвовать в соревнованиях, которые проводятся в подходящих для этого условиях окружающей среды. Правда для победы этого может оказаться недостаточно, потому что соперники будут находиться в аналогичных условиях.

Сопротивление окружающей среды приобретает особое значение для спортсменов, которые перемещаются с высокой скоростью. Сопротивление воздуха и воды возрастает не прямо пропорционально увеличению скорости движения спортсмена, а пропорционально квадрату скорости. Таким образом, при увеличении скорости бега в два раза с 5 м/с до 10 м/с сопротивление воздуха возрастет в 4 раза. Это не означает, что спортсмену необходимо увеличить общую энергопродукцию в 4 раза, а следует иметь в виду, что возрастающая часть вырабатываемой организмом энергии будет расходоваться на преодоление растущего сопротивления воздуха. Хотя количество этой энергии и незначительно при умеренной скорости бега, однако при высоких спринтерских скоростях, как, например, в велосипедном спорте или скоростном беге на коньках, этот фактор приобретает чрезвычайно важное значение.

Сопротивление жидкости или воздуха часто называют торможением. Два вида торможения, взаимосвязанных со скоростью, имеют важное значение в спорте. Первый вид – торможение, обусловленное площадью сечения предмета, перпендикулярной силе воздействующего сопротивления. Если высунуть руку из окна движущегося автомобиля и поставить ее ребром к встречному потоку, то движение воздуха не доставит большого беспокойства. Если же ладонь развернуть на всю поверхность перпендикулярно движению потока воздуха, то сила сопротивления заставит убрать руку из окна. Этот простой пример демонстрирует, как форма объекта может повлиять на сопротивление воздуха.

Поверхностное торможение представляет собой второй вид сопротивления, во многом зависящего от размеров и структуры поверхности тел. Как правило, чем больше и грубее поверхность, тем сильнее тормозной эффект. Это сопротивление можно снизить, уменьшая площадь поверхности движущихся тел или конструктивно уменьшая поверхностное торможение. Для этого создавались, например, специальные костюмы для спринтеров бегунов и пловцов.

Еще одна сила сопротивления, возникающая уже не между газообразной или жид­кой средой и твердым телом, а между твердыми телами,- это сила трения. Вместе с тем, оба вида сил сопротивления имеют место в различных видах спорта. Так, например, велосипедисту приходится преодолевать не только сопротивление воздуха, препятствующее движению спортсмена и велосипеда, но и сопротивление сил трения между деталями самого велосипеда и между колесом и поверхностью дороги.

Сила трения зависит, главным образом, от двух факторов. Одним из них является масса одного предмета, приложенного к поверхности другого. При этом, чем больше масса (а точнее физически – вес), тем выше сила трения.

Вторым фактором, влияющим на силу трения, является качество двух соприкасающихся поверхностей: чем грубее поверхности, тем сила трения больше.

В спорте трение несет двойную нагрузку. В одних случаях оно должно быть возможно большим, а в других, наоборот, - возможно меньшим. Так, например, для спринтера важно, чтобы между подошвой обуви и поверхностью беговой дорожки существовало определенное трение, позволяющее спортсмену эффективно перемещаться вперед. Если это трение очень низкое, например, из-за износа шипов или из-за покрытия дорожки песком или водой, то нога может проскальзывать, и эффективность продвижения вперед снижается. В то же время, если шипы кроссовок будут слишком длинными, то это приведет к значительному увеличению сил трения, что также отрицательно отразится на скорости бега.

Мы показали механическую составляющую науки, называемой спортивная биомеханика. Теперь рассмотрим ее биологическую часть.

Теоретически, существуют два основных способа повышения спортивной работоспособности за счет модификации биомеханических характеристик организма спортсмена. Во-первых, этого можно добиться за счет эффективного использования силы более совершенным способом. Спортсмен может обладать высокоразвитыми физиологическими системами, но если вырабатываемая в его организме энергия используется малоэффективно, то и уровень проявления спортивной работоспособности также окажется невысоким. Можно обладать высокой мощностью лактатной энергетической системы, которая позволяет достигнуть превосходных результатов в плавании, однако если человек не умеет плавать, то вся эта его энергия будет потрачена только на то, чтобы не утонуть.

Второй способ улучшения спортивной работоспособности заключается в придании телу спортсмена такого положения, которой бы максимально способствовало снижению сопротивления воздуха или воды, препятствующих движению. Совершенствование положения тела пловца в воде в различные фазы гребка может уменьшить сопротивление воды. Уменьшение массы тела снижает влияние гравитации, что может благоприятно отразиться на показателях спортивной работоспособности в таком виде спорта, как спортивная гимнастика, где спортсмену приходится постоянно удерживать или преодолевать свой вес. Увеличение же массы тела способствует возрастанию сил трения и гравитации, а это важно в таком виде спорта как борьба сумо.

Одним из главных направлений в современных биомеханических исследованиях является разработка особой спортивной техники для того, чтобы вырабатываемая спортсменом энергия наиболее эффективно трансформировалась в его двигательную функцию. Простые примеры такого развития: переход от высокого к низкому старту при спринтерском беге, смена двухударного кроля на шестиударный, прыжок в высоту «флоп» вместо «перекидного».

Анализ механических усилий рук пловца и гребца, взаимосвязи движений ног и рук у лыжника-гонщика, старта легкоатлета-спринтера, последовательности движений ног и рук у прыгуна в высоту во время выполнения прыжка – вот несколько примеров исследований, которые могут способствовать становлению более эффективной техники спортивных упражнений. Так, например, положение кисти и предплечья у пловца в различные фазы гребка анализируется для того, чтобы обеспечить наиболее эффективную площадь поверхности и угла во время гребка. Это позволяет максимально использовать прилагаемую силу и обеспечить оптимальный подъемный эффект.

В зависимости от вида спорта результаты исследований, проведенных с использованием аэродинамической трубы, моделирующей движение в заданном потоке воздуха, свидетельствуют о том, что положение или площадь поверхности тела может способствовать снижению сопротивления движению. В высокоскоростных видах спорта, таких как велосипедный спорт, скоростной бег на коньках, скоростной спуск на лыжах и бобслей, выбор обтекаемого потоком воздуха оптимального положения спортсмена может значительно уменьшить сопротивление. В некоторых видах спорта спортсмены стараются придать своему телу изогнутую форму, аналогичную падающей капле. Такая конфигурация сводит к минимуму площадь поверхности, подставленную ветру, вследствие чего поток воздуха плавно огибает поверхность тела спортсмена и встречное сопротивление воздуха при этом снижается.

В высокоскоростных видах спорта использование такой техники приобретает чрезвычайно важное значение, поскольку около 90% общего сопротивления движению может приходиться на сопротивление воздушному потоку.

Эксперименты показывают, что сопротивление воздуха можно снизить и другими способами, применение которых в некоторых видах спорта может оказаться довольно эффективным. При езде на высокой скорости велосипедист, едущий за спиной ведущего спортсмена, может развивать на 30% меньше мощности, чем идущий впереди, который принимает главный удар воздушного потока на себя. Результаты исследований свидетельствуют о том, тактика за спиной ведущего может создавать определенное преимущество и в беге, в частности при беге по шоссе против ветра. В среднем при таком беге для преодоления сопротивления воздуха требуется около 6-7% общих энергозатрат, однако сильный встречный ветер может значительно их увеличить. В таком случае спортсмен, находящийся позади или в середине многочисленной группы бегунов, пребывает в более благоприятных условиях, поскольку будет испытывать меньшее сопротивление воздуха.

Помимо технических аспектов как уже говорилось немалую роль играет масса истроение тела. Организм человека состоит из различных тканей, но с точки зрения биомеханики рассматриваются только два основных компонента – жировая и обезжиренная масса. Большая часть обезжиренного компонента представлена мышечной массой, которая приблизительно на 70% состоит из воды. Таким образом, воду можно рассматривать как третий компонент, определяющий массу тела.

Хотя результаты научных исследований и не выявили какой-то особой специфичности процентного соотношения жира и обезжиренной массы, идеального для конкретного вида спорта, все же накоплено достаточное количество данных для того, чтобы можно было сделать некоторые обобщенные выводы. Научные компоненты говорят о том, что избыток жирового компонента тела отрицательно влияет на показатели спортивной работоспособности в тех видах спорта, где требуется совершать движения быстро и эффективно, как, например, в прыжках в высоту или в беге на длинные дистанции. Массовые обследования выявили низкий процент жирового компонента у таких спортсменов как бегуны на длинные дистанции, прыгуны в высоту, гимнасты, спринтеры и другие, для которых избыток жира может оказаться помехой.

Хотя определенное количество жира и необходимо для поддержания оптимального уровня здоровья и нормального протекания физиологических процессов, все же его избыток в организме является, в лучшем случае, просто лишним багажом. Так, например, в проведенном исследовании было установлено, что для марафонца, имеющего массу тела 72 кг, чтобы улучшить результат в марафоне на 6 минут, необходимо похудеть на 5%, что эквивалентно потере 3,6 кг жира.

Однако, резкий сгон веса может привести к выраженному снижению спортивной работоспособности, особенно в видах, требующих выносливости. При этом уменьшается масса жирового компонента и заметно снижается мышечная масса. Следовательно, и в тех видах спорта, в которых ведущими двигательными качествами являются сила и анаэробная выносливость, быстрое снижение спортсменом массы своего тела может отрицательно отразиться на показателях спортивной работоспособности.

В то же время в спортивных упражнениях взрывного характера, в которых развиваемая спортсменом мощность направлена на перемещение его тела в пространстве, как, например, в прыжках в высоту, резкое снижение содержание воды в организме при дегидратации может оказать благоприятное влияние на спортивный результат.

Таким образом, спортивная биомеханика является достаточно многогранной наукой, охватывающей различные области тренировочной и соревновательной подготовки спортсмена.

Основы биомеханики были заложены еще в далекой древности. Архимед вывел свой закон о равновесии плавающих тел, Аристотель и Демокрит пытались объяснить органическую жизнь с точки зрения атомизма. Эти исследования относятся к III-IV векам до н.э.

Затем был длительный перерыв, характерный почти для всех наук. В XV веке Леонардо да Винчи описывает механику человеческого тела в движении. Немного позднее Галилей закладывает основы механики, а Гарвей объясняет механизм кровообращения в организме животного и человека. Эти исследования стали источником идей сравнения живого организма с машинами, работающими по законам механики. В конце XVI века Гук формулирует закон механики о зависимости между деформацией и напряжением идеально-упругого тела, который лег в основу биомеханического объяснения работы мышц. В 1679 году века Джованни Борелли выпускает первую книгу по биомеханике «О движениях животных».

<>Открытие Ньютоном трех основных законов механики завершило формирование базиса для биомеханических исследований. Дальнейшее развитие биомеханики пошло по нескольким направлениям, среди которых, помимо спортивной биомеханики, можно выделить:

  • инженерная биомеханика, связанная с роботостроением;

  • медицинская биомеханика, исследующая причины, последствия и способы профилактики травматизма, прочность опорно-двигательного аппарата, вопросы протезостроения;

  • эргономическая биомеханика, изучающая взаимодействие человека с окружающими предметами с целью их оптимизации.

В нескольких странах созданы научные институты биомеханики. Выпускается журнал “Biomechanics”, в котором публикуются последние исследования по этой науке.

 

^ Лекция № 2
Кинематика движений человека


Механика занимается рассмотрением простейшей формы движения материи – механической. Такое движение состоит в изменении взаимного расположения тел или их частей в пространстве с течением времени. При анализе необходимо исходить из ряда основных понятий. Рассмотрим их в отдельности.

^ Материальной точкой называется тело, размеры и форма которого несущественны в рассматриваемой задаче. Например, при изучении скорости прохождения дистанции марафонцем нет никакой необходимости рассматривать части тела спортсмена в отдельности, поскольку размеры атлета и расстояние, им пройденной, отличаются на четыре порядка величины.

^ Системой материальных точек или тел (механической системой) называется мысленно выделенная совокупность материальных точек или тел, которые в общем случае взаимодействуют как друг с другом, так и с телами, не включенными в состав этой системы. При определенных условиям биомеханика рассматривает тело спортсмена именно как систему материальных тел.

Классическая механика, т.е. механика, имеющая дело с телами, движущимися с малыми скоростями, в отличие от релятивистской или квантовой механик, рассматривающих движение тел с околосветовыми скоростями или движение элементарных частиц, состоит из трех основных отделов: статики, кинематики и динамики.

В статике исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел. В кинематике изучается механическое движение тел вне связи с определяющим его взаимодействием между телами. В динамике рассматривается влияние взаимодействия между телами на их механическое движение.

Существенной характеристикой движения является перемещение точки. В зависимости от размерности пространства оно может одно-, двух- или трехмерным (или объем­ным). Траекторией называется линия, описываемая в пространстве движущейся точкой. Эта линия определяется поведением векторной величины – радиус-вектором – из некоторой точки отсчета.

Положение движущейся точки и некоторый фиксированный момент времени t=t0 называется ее начальным положением. Длина пути пути точки определяется расстоянием между начальным положением и положением ее в некоторый момент времени t и является скалярной функцией s=s(t).

Движение материальной точки характеризуется ее скоростью. В случае равномерного движения (т.е. когда точка за равные промежутки времени проходит равный путь) скорость определеяется длиной пути, пройденного за все время движения. В общем случае, когда движение неравномерное и меняет свое направление, скорость определяется как векторная величина v, равная первой производной от радиус-вектора r движущейся точки:

.

Скорость направлена по касательной к траектории в сторону движения точки и численно равна первой производной от длины пути по времени:

.

Если точка движется в трехмерном пространстве, описываемом декартовой системой координат, то необходимо рассматривать по отдельности проекции вектора скорости на каждую из осей (x, y, z). В этом случае

.

Быстрота изменения скорости при неравномерном движении характеризуется ускорением a, которое определяется по формуле

.

Вектор ускорения проходит через главную нормаль и касательную к траектории и направ­лен в сторону вогнутости траектории. Для трехмерного движения как и в случае со скоростью необходимо работать с каждой из координат.

Движение точки называется ускоренным, если численное значение ее скорости возрастает с течением времени и ускорение имеет положительное значение. Движение точки называется замедленным, если численное значение ее скорости убывает с течением времени и ускорение имеет отрицательное значение.

Если во время движения тела взаимное расположение материальных точек, составляющих его, не меняется, оно не деформируется (не меняет форму и объем) и называется абсолютно твердым телом. Для такого тела характерны следующие виды движения:

  • поступательное, когда все точки имеют одинаковые траектории перемещения;

  • вращательное, когда движение происходит вокруг оси вращения;

  • сложное, когда движение состоит из двух и более простых движений; например, тело может совершать вращательное движение, а ось вращения может двигаться тем временем поступательно.

Для поступательного движения абсолютно твердого тела справедливы законы, приведенные выше. Вращательное движение разбивается на линейную и угловую составляющие.

^ Угловой скоростью вращения твердого тела называется вектор w, численно равный первой производной от угла поворота по времени,

.

Направление вектора w совпадает с направлением поступательного движения рукоятки буравчика.

Линейная скорость v произвольной точки вращающегося тела определяется по формуле Эйлера

v=[wr], или v = wR в скалярном виде,

где R – расстояние от оси вращения до точки.

Применительно к спортивной биомеханике законы кинематики действуют в полном объеме. В этом случае мы, как правило, сталкиваемся со сложным движением, связанным с тем, что тело спортсмена представляет собой сложный механизм. При рассмотрении кинематики встречается и сложное движение в суставах при выполнении того или иного упражнения, и переменное движение при беге, когда спортсмен рассматривается как материальная точка.

 

^ Лекция № 3
Динамика движений человека


Как мы узнали на прошлой лекции, динамика рассматривает влияние взаимодействия между телами на их механическое движение. При этом надо различать:

  • динамику поступательного движения, или динамику материальной точки, и

  • динамику вращательного движения, или динамику твердого тела.

Силой называется некоторая физическая величина, выражающая взаимодействие между рассматриваемым телом и другими телами или полями. Поэтому все силы можно разделить на две основных категории: силы, проявляющиеся при непосредственном взаимодействии тел, и силы, которые действуют без непосредственного контакта. Ко второй категории относятся силы от полей: гравитационного, электромагнитного и других.

Ускорение тела пропорционально силе, действующей на тело: F ~ a. Тогда отношение величины силы, действующей на тело, к приобретенному телом ускорению, постоянно для данного тела и называется массой тела: масса = сила/ускорение.

Масса тела является неизменной характеристикой данного тела, не зависящей от его местоположения. Масса характеризует два свойства тела:

  • Инерцию: тело изменяет состояние своего движения только под воздействием внешней силы.

  • Тяготение: между телами действуют силы гравитационного притяжения.

Не путать массу тела (мера инертности) с весом тела (силой с которой оно давит на опору). Простой пример – поведение тел в невесомости. Тогда тела не имеют веса (невесомость), но наличие массы не отменяет выполнения законов Ньютона.

Масса характеризует инертность тела при поступательном движении. При вращении инертность зависит не только от массы, но и от того, как распределена эта масса относительно оси вращения. Чем больше расстояние до оси вращения, тем больше вклад в инертность тела. Количественной мерой инертности тела при вращательном движении служит момент инерции:

,

где Rин – радиус инерции – среднее расстояние от оси вращения (например, от оси сустава) до материальных точек тела.

Сила, приложенная к твердому телу, которое может вращаться вокруг некоторой точки, создает момент силы. Момент силы M равен векторному произведению радиус-вектора r на силу F:

M = r x F = rF sin (r;F) .

Если на тело, которое может вращаться вокруг какой-либо точки, действуют одновременно несколько сил, то для сложения моментов этих сил следует воспользоваться правилом сложения моментов.

Другой физической величиной, связывающей движение тела с его инертностью, является импульс тела – произведение массы тела на его скорость p=mv. Для импульса справедлив закон сохранения, т.е. полный импульс замкнутой системы остается постоянным. Полный импульс такой системы представляет векторную сумму всех импульсов.

Для твердого тела вследствие вращения вокруг некоторой оси появляется момент количества движения (угловой момент, момент импульса) – произведение момента инерции тела на его угловую скорость: L = J w. Изменение углового момента (при неизменном моменте инерции тела) может произойти только вследствие изменения угловой скорости и всегда обусловлено действием момента силы.

Центром масс называется точка, где пересекаются линии действия всех сил, не вызывающих вращение тела. В поле тяготения центр масс совпадает с центром тяжести. Положение общего центра масс тела определяется тем, где находятся центры масс отдельных звеньев. Для человека это зависит от его позы, т.е. пространственного положения элементов тела.

В человеческом теле около 70 звеньев, но для биомеханического моделирования чаще всего достаточно 15-звенной модели человеческого тела (например, голова, бедро, стопа, кисть и т.д.). Зная, каковы массы и моменты инерции звеньев тела и где расположены их центры масс, можно решить многие задачи биомеханики, в том числе:

  • определить импульс тела;

  • определить момент количества движения, при этом надо учитывать, что величины моментов относительно разных осей неодинаковы;

  • оценить, легко или трудно управлять скоростью тела или отдельного звена;

  • определить степень устойчивости тела и т.д.

Простой пример применения этой теории. Фигурист может заставить себя вращаться быстрее, обнимая себя руками, или медленнее, расставляя руки в стороны. Во втором случае масса тела остается постоянной, но увеличивается радиус инерции и, следовательно, момент инерции и общая инертность тела.

^ Звенья тела как рычаги и маятники

Разбиение тела человека на звенья позволяет представить эти звенья как механические рычаги и маятники, потому что все эти звенья имеют точки соединения, которые можно рассматривать либо как точки опоры (для рычага), либо как точки отвеса (для маятника).

Рычаг характеризуется расстоянием между точкой приложения силы и точкой вращения. Рычаги бывают первого и второго рода.

Рычаг первого рода или рычаг равновесия состоит только из одного звена. Пример – крепление черепа к позвоночнику.

Рычаг второго рода характеризуется наличием двух звеньев. Условно можно выделить рычаг скорости и рычаг силы в зависимости от того, что преобладает в их действиях. Рычаг скорости дает выигрыш в скорости при совершенствовании работы. Пример – локтевой сустав с грузом на ладони. Рычаг силы дает выигрыш в силе. Пример – стопа на пальцах.

Поскольку тело человека выполняет свои движения в трехмерном пространстве, то его звенья характеризуются степенями свободы, т.е. возможностью совершать поступательные и вращательные движения во всех измерениях. Если звено закреплено в одной точке, то оно способно совершать вращательные движения и мы можем сказать, что оно имеет три степени свободы.

Закрепление звена приводит к образованию связи, т.е. связанному движению закрепленного звена с точкой закрепления.

Поскольку руки и ноги человека могут совершать колебательные движения, то к механике их движения применимы те же формулы, что и для простых механических маятников. Основные вывод их них – собственная частота колебаний не зависит от массы качающегося тела, но зависит от его длины (при увеличении длины частота колебаний уменьшается).

Делая частоту шагов при ходьбе или беге или гребков при плавании или гребле резонансной (т.е. близкой к собственной частоте колебаний руки или ноги), удается минимизировать затраты энергии. При наиболее экономичном сочетании частоты и длины шагов или гребков человек демонстрирует существенный рост работоспособности. Простой пример: при беге высокий спортсмен имеет большую длину шага и меньшую частоту шагов, чем более низкорослый спортсмен, при равной с ним скорости передвижения.

^ Механические свойства костей и суставов

Механические свойства костей определяются их разнообразными функциями; кроме двигательной, они выполняют защитную и опорную функции. Так кости черепа и грудной клетки защищают внутренние органы, а кости позвоночника и конечностей выполняют опорную функцию.

Выделяют 4 вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.

Установлено, что прочность кости на растяжение почти равна прочности чугуна. При сжатии прочность костей еще выше. Самая массивная кость – большеберцовая (основная кость бедра) выдерживает силу сжатия в 16-18 кН.

Менее прочны кости на изгиб и кручение. Однако регулярные тренировки приводят к гипертрофии костей. Так, у штангистов утолщаются кости ног и позвоночника, у теннисистов – кости предплечья и т.п.

^ Механические свойства суставов зависят от их строения. Суставная поверхность смачивается синовиальной жидкостью, которую хранит суставная сумка. Синовиальная жидкость обеспечивает уменьшение трения в суставе примерно в 20 раз. При этом при снижении нагрузки на сустав жидкость поглощается губчатыми образованиями сустава, а при увеличении нагрузки она выжимается для смачивания поверхности сустава и уменьшения коэффициента трения.

Прочность суставов, как и прочность костей, небеспредельна. Так, давление в суставном хряще не должно превышать 350 Н/см2. При более высоком давлении прекращается смазка суставного хряща и увеличивается опасность его механического стирания.

^ Биомеханические свойства мышц

Двигательная деятельность человека происходит при помощи мышечной ткани, обладающей сократительными структурами. Работа мышц осуществляется благодаря сокращению (укорачиванию с утолщением) миофибрилл, которые находятся в мышечных клетках. Работа мышц осуществляется посредством их присоединения к скелету при помощи сухожилий.

К биомеханическим свойствам мышц относят сократимость, упругость, жесткость, прочность и релаксацию.

Сократимость – это способность мышцы сокращаться при возбуждении. В резуль­тате сокращения происходит укорочение мышцы и возникает сила тяги.

Упругость мышцы состоит в ее способности восстанавливать первоначальную длину после устранения деформирующей силы. Существование упругих свойств объясняется тем, что при растяжении в мышце возникает энергия упругой деформации. При этом мышцу можно сравнить с пружиной: чем сильнее растянута пружина, тем большая энергия в ней запасена. Это явление широко используется в спорте. Например, в хлесте предварительно растягиваются и параллельный, и последовательный упругий компонент мышц, чем накапливается энергия. Запасенная таким образом энергия в финальной части движения (толкания, метания и т.д.) преобразуется в энергию движения (кинетическую энергию).

Аналогия мышцы с пружиной позволяет применить к ее работе закон Гука, согласно которому удлинение пружины нелинейно зависит от величины растягивающей силы. Кривую поведения мышцы в этом случае называют «сила-длина». Зависимость между силой и скоростью мышечного сокращения («сила-скорость») называют кривой Хилла.

Жесткость – это способность противодействовать прикладываемым силам. Коэффициент жесткости определяется как отношение приращения восстанавливающей силы к приращению длины мышцы под действием внешней силы: Кж=DF/Dl (Н/м).

Величина, обратная жесткости, называется податливостью мышцы. Коэффициент податливости: Кп=Dl /DF (м/Н) – показывает, насколько удлинится мышца при изменении внешней силы. Например, податливость сгибателя предплечья близка к 1 мм/Н.

Прочность мышцы оценивается величиной растягивающей силы, при которой происходит разрыв мышцы. Сила, при которой происходит разрыв мышцы составляет от 0.1 до 0.3 Н/мм2. Предел прочности сухожилий на два порядка величины больше и составляет 50 Н/мм2. Однако, при очень быстрых движениях возможен разрыв более прочного сухожилия, а мышца остается целой, успев самортизировать.

Релаксация – свойство мышца, проявляющееся в постепенном уменьшении силы тяги при постоянной длине мышцы. Релаксация проявляется, например, при прыжке вверх, если во время глубокого приседа спортсмен делает паузу. Чем пауза длительнее, тем сила отталкивания и высота выпрыгивания меньше.

Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, при сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плече-лучевая мышцы и т.д. Результатом синергического взаимодействия мышц служит увеличение результирующей силы действия. При наличии травмы, а также при локальном утомлении какой-либо мышцы ее синергисты обеспечивают выполнение двигательного действия.

Мышцы-антагонисты имеют, наоборот, разнонаправленное действие. Так, если одна из них выполняет преодолевающую работу, то другая – уступающую. Существованием мышц-антагонистов обеспечивается:

  1. высокая точность двигательных действий;

  2. снижение травматизма.

 

^ Лекция № 4
Механическая работа и энергия при движениях человека


Если на частицу подействовать силой F и переместить ее на расстояние s, то сила совершит работу A = Fs = F s cos(F;s) (угол (F;s) между направлением силы и перемещения рассматривается тогда, когда эти вектора не совпадают по направлению). Единицей измерения работы является Джоуль (в системе СИ) или киловатт-час.

Мощностью называется работа, совершаемая за единицу времени, или W=A/t =Fv.  По последней формуле можно определить мощность коротких интенсивных движений (ударов по мячу, боксерских ударов и других ударных действий), когда механическую работу определить трудно, но можно измерить силу и скорость. Единица измерения мощности – ватт (Дж/с) (СИ) или лошадиная сила.

Если материальная точка находится в поле (гравитационном, электромагнитном), на нее действует сила F от этого поля, имеющая возможность совершать определенную работу. Этот запас работы, предопределяемый положением точки в поле, является ее потенциальной энергией. Принято считать, что если силы, действующие на материальную точку, совершают положительную работу, то ее потенциальная энергия убывает.

При рассмотрении деформируемого тела часто используют понятие «внутренней потенциальной энергии», которая равна работе деформации, взятой с обратным знаком.

Любое движущееся с поступательной скоростью v тело массой m обладает кинетической энергией, равной Ek=(1/2)mv2.

Аналогичную формулу можно записать для вращающегося с угловой скоростью w твердого тела с центром инерции J: Ekвр=(1/2) J w2.

Полная энергия движущегося тела равна сумме его потенциальной энергии и кинетической энергии в поступательном и вращательном движениях:

 .

Если мы рассматриваем замкнутую систему, т.е. систему, а которую не оказывают влияние внешние силы, то для такой системы справедливо первое начало термодинамики: энергия в заданной замкнутой механической системе сохраняется. Иначе – это закон сохранения энергии.

Если на систему действуют внешние силы и она переходит из одного состояния в другое, то изменение полной механической энергии при этом переходе равно работе внешних сил. В деформируемых телах полная энергия равна сумме внутренней и кинетической энергий.

Переход одного вида механической энергии в другой называется рекуперацией механической энергии. Простой пример – вращение гимнаста на перекладине, когда вращательная кинетическая энергия переходит целиком в потенциальную в верхней точке и наоборот – в нижней.

Оценка энергетических показателей деятельности спортсмена осуществляется с использованием различного рода датчиков и тестов. С их помощью можно оценить физическое состояние спортсмена и уровень его потенциальных возможностей.

 

^ Лекция № 5
Движения вокруг осей


Как мы уже знаем, тело человека можно разбить на 15 звеньев, которые имеют ме­жду собой сочленения и представляются рычагами или маятниками. Поэтому одним из основных является интерес биомеханики к движению звена в точке сочленения – суставе.

Рассмотрим рычаг первого рода. В этом случае его движение можно описать как вращательное движение вокруг точки, при котором одна его точка О (точка сочленения) остается неподвижной, а все другие точки движутся по поверхностям сфер, имеющих центр в точке О. При таком вращательном движении тела любое его элементарное перемещение представляет собой элементарный поворот вокруг некоторой оси, проходящей через точку О и называемой мгновенной осью вращения. Поскольку сочленение относится к телу спортсмена, то оно непрерывно изменяет свое положение в пространстве. В результате вращательное движение тела складывается из серии элементарных поворотов вокруг непрерывно меняющих свое направление мгновенных осей.

Подобно тому как причиной ускоренного движения материальной точки или ускоренного поступательного движения твердого тела может быть только приложенная к ним сила, причиной начала, изменения или прекращения вращательного движения твердого тела (при этом вращательное ускорение не равно нулю) относительно какой-либо оси является момент силы М относительно этой оси.

Пусть имеется тело, которое может вращаться вокруг неподвижной оси, и к нему в какой-то точке приложена сила F. Найдем проекцию Fn приложенной к телу силы F на плоскость, проходящую через точку приложения силы перпендикулярно к оси вращения, а также кратчайшее расстояние r от оси вращения до линии действия силы Fn, которое носит название плеча силы. Момент силы F относительно оси вращения определяется как физическая величина, численное значение которой равно произведению проекции Fn действующей на тело силы на длину плеча r : M = Fn r.

Если проекция приложенной к телу силы F на плоскость, перпендикулярную к оси вращения, равна нулю (Fn = 0), что возможно, когда сила F параллельна оси вращения, или если линия действия силы F пересекает ось вращения, то в этих случаях силы не смо­гут изменить вращательного движения тела, не смогут явиться причинами отличного от нуля углового ускорения.

Таким образом, сила не является величиной, достаточной для описания и расчета вращательного движения тела. Необходимо рассматривать также ее пространственное направление.

Условием равновесия твердого тела, которое может совершать вращательное движение вокруг какой-либо оси, является равенство сумм моментов сил, вращающих тело вокруг этой оси по направлению движения Мi и в противоположном направлении Mj : М1 + М2 + М3 + … = M1 + M2 + M3 + … 

Таким образом, из вышесказанного можно сделать простой вывод: чтобы звено человеческого тела привести во вращательное движение, то направление действия силы не должно быть параллельно оси вращения этого звена или проходить через точку сочленения.

Другим важным понятием является центр тяжести тела или системы тел – единственная точка, относительно которой сумма моментов сил тяжести всех частиц тела или системы тел равна нулю. При этом нельзя забывать, что центр тяжести иногда находится вне геометрических пределов тела. Центр тяжести имеет большое значение при оценке вида равновесия тела. В зависимости от расположения точки опоры или опорной поверхности по отношению к центру тяжести различают устойчивое, неустойчивое и безразличное равновесие.

Опорной поверхностью будем называть поверхность того тела, равновесием которого мы интересуемся, а не поверхность какого-либо другого тела, с которым первое соприкасается. (Например, опорной поверхностью для тяжелоатлета будет поверхность подошв обуви, а не вся поверхность помоста.) Тело находится в устойчивом равновесии, если его центр тяжести располагается ниже точки опоры или ниже горизонтальной опорной поверхности, причем линия действия силы тяжести проходит через точку опоры или пересекает горизонтальную опорную поверхность; в неустойчивом равновесии, если центр тяжести находится выше горизонтальной опорной поверхности, причем линия действия силы тяжести не пересекает опорной поверхности, и в безразличном равновесии, если центр тяжести совпадает с точкой опоры. Равновесие тела будет устойчивым и в том случае, если центр тяжести находится выше горизонтальной опорной плоскости, но линия действия силы тяжести тела пересекает эту плоскость.

Таким образом, если спортсмен стоит, то равновесие его тела будет устойчивым, поскольку хотя центр тяжести и находится выше опорной плоскости, но линия действия силы тяжести проходит через центр тяжести спортсмена. При отклонении от вертикального положения, особенно с нагрузкой в руках, равновесие спортсмена из устойчивого переходит в неустойчивое из-за изменения линии действия силы тяжести относительно центра тяжести.

Для вращающегося твердого тела через центр тяжести (центр масс) можно провести сколь угодно много осей вращения. Однако, исходя из геометрической формы тела и распределения массы в нем, можно выделить две взаимно перпендикулярных оси с наибольшим и наименьшим моментами инерции. Устойчивое вращение незакрепленного тела возможно только вокруг этих осей. Устойчивое вращение тела вокруг оси, перпендикулярной двум первым, невозможно. Все три оси называются главными осями инерции данного тела.

Любой контакт с опорной поверхностью добавляет дополнительную точку или ось вращения, что сказывается на характер движения спортсмена.

 

^ Лекция № 6
Локомоторные движения


У всех локомоторных движений общая двигательная задача – усилиями мышц передвигать тело человека относительно опоры или среды. Среди передвижений относительно опоры (наземных передвижений) наибольшее распространение имеют шагательные. В водной среде применяется как отталкивание, так и притягивание. В некоторых видах спорта (спортивных играх, единоборствах, гимнастике и др.) локомоторные движения играют вспомогательную роль.

Отталкивание от опоры выполняется посредством:
а) собственно отталкивания ногами от опоры и
б) маховых движений свободными конечностями и другими звеньями.
Эти движения тесно взаимосвязаны в едином действии – отталкивании. От их согласования в значительной мере зависит совершенство отталкивания.

При отталкивании опорные звенья неподвижны относительно опоры, а подвижные звенья под действием силы тяги мышц передвигаются в общем направлении отталкивания. Во время отталкивания легкоатлета от опоры стопа зафиксирована на опоре неподвижно. Шипы туфель, погружаясь в покрытие дорожки или брусок, обеспечивают надежное соединение с опорой. На стопу как на опорное звено со стороны голени действует давление ускоряемых звеньев тела, направленное назад и вниз. Через стопу оно передается на опору. Противодействием этому давлению служит реакция опоры. Она приложена к стопе в направлении вперед и вверх.

Силы мышечных тяг толчковой ноги выпрямляют ее. Поскольку стопа фиксирована на опоре, голень и бедро передают ускоряющее воздействие отталкивания через таз остальным звеньям тела. При ускоренном движении подвижных звеньев на них воздействуют тормозящие силы (тяжести и инерции) других звеньев, а также силы сопротивления мышц-антагонистов. Реакция опоры при отталкивании является той внешней силой, которая обеспечивает ускорение телу спортсмена и передвижение его центра масс.

Однако, тело человека – это самодвижущаяся система. В такой системе силы тяги мышц приложены к подвижным звеньям. Относительно каждого звена сила тяги мышцы, приложенная к нему извне, служит внешней силой. Следовательно, ускорения центров масс подвижных звеньев обусловлены соответствующими внешними для них силами, т.е. тягой мышц.

Реакция опоры не является источником работы. По закону сохранения кинетической энергии изменение кинетической энергии равно сумме работ внешних и внутренних сил. Поскольку работа внешних сил (опоры) равна нулю, то кинетическую энергию спортсмена изменяет только работа внутренних сил (мышц).

Реакция опоры при отталкивании под углом, отличающегося от прямого (не перпендикулярно к опорной поверхности), наклонены к опорной поверхности и имеют вертикальные и горизонтальные составляющие. Вертикальные составляющие обусловлены динамическим весом, т.е. суммой веса и сил инерции подвижных звеньев, имеющих ускорение (или его составляющую), направленное вертикально вверх от опоры. Горизонтальные составляющие реакций опоры обусловлены горизонтальными составляющими сил инерции подвижных звеньев. Контакт опорных звеньев с опорой не точечный, поэтому могут появиться и вращательные усилия, что усложнит схему реакции опоры.

Маховые движения при отталкивании – это быстрые движения свободных звеньев тела в основном по направлению с отталкиванием ногой от опоры. При маховых движениях перемещаются центры масс соответствующих звеньев тела, что ведет к перемещению общего центра масс (ОЦМ) всего тела. Так, при прыжках в высоту в результате маховых движений руками и свободной ногой ОЦМ к моменту отрыва от опоры поднимается выше, чем без маховых движений. Если ускорение звеньев тела, выполняющих маховые движения, увеличивается, то и ускорение ОЦМ увеличивается. Таким образом, маховые движения, как и отталкивание ногой, осуществляют перемещение и ускорение ОЦМ.

В маховых движениях в фазе разгона скорость звеньев увеличивается до максимума. С нарастанием ее нарастает и скорость ЦМ всего тела. Следовательно, чем выше скорость маховых звеньев, тем она больше сказывается на скорости ОЦМ. В фазе торможения мышцы-антагонисты, растягиваясь, напрягаются и этим замедляют движения маховых звеньев, совершая отрицательную работу (в уступающем режиме), скорость их уменьшается до нуля.

Мышечные тяги перераспределяют скорости звеньев тела; движение внутри системы передается от одних звеньев к другим. Поэтому для достижения более высокой скорости ОЦМ нужно стараться продлить фазу разгона на большей части пути матового перемещения.

Когда ускорения маховых звеньев направлены от опоры, возникают силы инерции этих звеньев, направленные к опоре. Совместно с весом тела они на­гружают мышцы опорной ноги и этим увеличивают их напряжение. Дополнительная нагрузка замедляет сокращение мышц и увеличивает их силу тяги, в результате чего мышцы толчковой ноги напрягаются больше и сокращаются относительно дольше. В связи с этим увеличивается и импульс силы, равный произведению силы на время ее действия, а больший импульс силы дает больший прирост количества движения, т. е. больше увеличивает скорость.

В фазе торможения маховых звеньев их ускорения направлены к опоре, а силы инерции – от нее. Следовательно, нагрузка на мышцы толчковой ноги в это время уменьшается, их сила тяги падает, но быстрота сокращения увеличивается. Сокращаясь быстрее, они могут добавлять скорость в последние моменты отталкивания.

Так, маховые движения способствуют продвижению ОЦМ тела при отталкивании, увеличивают скорость ЦМ, увеличивают силу и удлиняют время отталкивания ногой и, наконец, создают условия для быстрого завершающего отталкивания.

Угол наклона динамической опорной реакции дает представление о некоторых особенностях направления отталкивания от опоры в данный момент времени.

При выпрямлении ноги во время отталкивания от опоры происходит сложение вращательных движений звеньев тела.

По координатам ОЦМ тела человека за время отталкивания можно рассчитать линейное ускорение ОЦМ в каждый момент времени. Однако сопутствующие движения, в том числе маховые, обусловливают кроме линейного ускорения ОЦМ еще и угловые ускорения многих звеньев.

Поэтому угол отталкивания как угол наклона динамической составляющей реакции опоры характеризует не полностью общее направление отталкивания в каждый данный момент времени. Если бы существовала внешняя движущая сила отталкивания, то угол ее наклона к горизонту можно было бы считать углом отталкивания. Однако в самодвижущейся системе к каждому звену приложены силы, которые в совокупности определяют движения именно данного звена. Заменить всю систему множества сил, приложенных к разным звеньям, равнодействующей движущей силой в этом случае невозможно.

При движении по повороту в наземных локомоциях спортсмен находится в наклоне внутрь поворота. Прижимающая сила D, приложенная к опоре под острым углом (a), может быть разложена на вертикальную составляющую (Dy) и горизонтальную составляющую (Dx), направленную по радиусу от центра поворота (рисунок). Противодействие последней и есть центростремительная сила (Fцс), вызывающая центростремительное ускорение и искривляющая траекторию в движении по повороту. В инерциальной системе отсчета (Земля) центробежная сила – реальная сила инерции (Fцб) – и есть уже названная составляющая прижимающей силы, приложенная к опоре. В неинерциальной системе отсчета (тело спортсмена) центробежная сила – фиктивная сила инерции (Fин) – приложена к ОЦМ. Она образует относительно опоры момент силы (Fин h), который уравновешивает момент силы тяжести (Gd). Угол наклона тела (a) зависит от соотношения силы тяжести (G=mg) и центробежной силы (Fцб = ) :

 ,

где r – радиус кривизны поворота, v – линейная скорость тела.

Рассмотрим также стартовые действия с точки зрения локомоторики. Стартовые действия обычно направлены на то, чтобы начать передвижение и быстро увеличить скорость. Стартовыми действиями начинается преодоление всех дистанций, а также передвижения в единоборствах, спортивных играх и других группах видов спорта.

Стартовые положения – это исходные позы для последующего передвижения, которые обеспечивают лучшие условия развития стартового ускорения. Стартовые действия (при старте с места) начинают из стартового положения. Оно обычно определено правилами соревнований и соответствует биомеханическим требованиям, вытекающим из задач старта.

Стартовое положение обеспечивает возникновение с первым движением ускорения ОЦМ тела в заданном направлении. Для этого проекция ОЦМ тела на горизонтальную поверхность приближена к передней границе площади опоры. При прочих равных условиях выдвижение ОЦМ тела вперед и более низкое его положение увеличивают горизонтальную составляющую начальной скорости. Так, в низком старте для бега угол начальной скорости ОЦМ тела меньше, чем в высоком.

Суставные углы в стартовом положении должны отвечать индивидуальным особенностям соотношения рычагов, силовой подготовленности спортсмена и условиям стартового действия. Расположение всех звеньев тела зависит от условия стартового действия.

Стартовые движения – это первые движения из стартового положения, которые обеспечивают прирост скорости и переход к последующему стартовому разгону. При старте ОЦМ тела спортсмена имеет ускорение, обусловленное мышечными усилиями. Как внутренние силы направлены в противоположные стороны: вперед – ускоряя подвижные звенья, назад – прижимая опорные звенья к опоре. Это можно сделать лишь допустив условно, что биомеханическая система тела человека отвердела, а реакция опоры играет роль внешней движущей силы (рисунок). Перенесенная сила здесь условно рассматривается как стартовая сила (S), вызывающая стартовое ускорение ОЦМ. По правилу приведения силы к заданной точке надо при переносе силы в ОЦМ прибавить пару сил (R и S'), которая создает стартовый момент. Его действие направлено на уменьшение наклона тела (например, у спринтера в стартовом разгоне). Уже говорилось, что сама опорная реакция, как и реакция связи, положительной работы не совершает. Стартовая сила и момент – это только условные меры воздействия, которое вызывает сложное движение всей биомеханической системы.

Стартовый разгон обеспечивает увеличение скорости до такой, какая требуется для передвижения по дистанции. В спринтерских дистанциях за время стартового разгона скорость увеличивают до максимальной. В связи с этим разгон в спринте осуществляется дольше и на большем расстоянии, чем на более длинных дистанциях, где задача разгона – достижение только оптимальной для данной дистанции скорости, и поэтому необходимая скорость достигается на первых же шагах. В стартовом разгоне от цикла к циклу происходит изменение системы движений от стартовых до оптимальных для заданной скорости. В беге, например, это проявляется в увеличении длины шагов и уменьшении общего наклона тела. Все стартовые действия отличаются частными особенностями движений, за­висящими от вида локомоций.

^ ВИДЫ СПОРТИВНЫХ ЛОКОМОЦИЙ

Видов локомоций зависят от видов спорта и биодинамики передвижений спортсмена в движениях ациклического характера (прыжки) и циклического: с фиксированной опорой (ходьба и бег), со скольжением (лыжный ход), в водной среде (плавание), а также с механическим преобразованием движений на опоре (велосипед) и на воде (академиче­ская лодка).

Рассмотрим в отдельности некоторые из этих движений.
  1   2   3   4



Скачать файл (358 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru