Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Серебряные руды - файл 1.doc


Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Серебряные руды
скачать (599 kb.)

Доступные файлы (1):

1.doc599kb.06.12.2011 13:51скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6
Реклама MarketGid:
Загрузка...


МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению Классификации запасов

месторождений и прогнозных ресурсов

твердых полезных ископаемых

Серебряные руды

Москва, 2007

Разработаны Федеральным государственным учреждением «Госу­дарственная комиссия по запасам полезных ископаемых» (ФГУ ГКЗ) по заказу Министерства природных ресурсов Российской Федерации и за счет средств федерального бюджета.
Утверждены распоряжением МПР России от 05.06.2007 г. № 37-р.
Методические рекомендации по применению Классификации запа­сов месторождений и прогнозных ресурсов твердых полезных иско­паемых. Серебряные руды.
Предназначены для работников предприятий и организаций, осу­ществляющих свою деятельность в сфере недропользования, неза­висимо от их ведомственной принадлежности и форм собственно­сти. Применение настоящих Методических рекомендаций обеспе­чит получение геологоразведочной информации, полнота и каче­ство которой достаточны для принятия решений о проведении дальнейших разведочных работ или о вовлечении запасов разведан­ных месторождений в промышленное освоение, а также о проекти­ровании новых или реконструкции существующих предприятий по добыче и переработке полезных ископаемых.


  1. ^

    Общие сведения



1. Настоящие Методические рекомендации по применению Классификации запасов к месторождениям серебрянных руд (далее – Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. № 370 (Собрание законодательства Российской Федерации, 2004, № 31, ст.3260; 2004, № 32, ст. 3347, 2005, № 52 (3ч.), ст. 5759; 2006, № 52 (3ч.), ст. 5597), Положением о Федеральном агентстве по недропользованию, утвержденным постановлением Правительства Российской Федерации от 17 июня 2004 г. № 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669; 2006, №25, ст.2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 11 декабря 2006 г. № 278, и содержат рекомендации по применению Классификации запасов к месторождениям серебряных руд.

2. Методические рекомендации направлены на оказание практической помощи недропользователям и организациям, осуществляющим подготовку материалов по подсчету запасов полезных ископаемых и представляющих их на государственную экспертизу.

3. С е р е б р о – металл из группы благородных, имеющий плотность 10,49 г/см3, температуру плавления 960,5–961 оС. Обладает наивысшей из всех металлов электропроводностью и теплопроводностью, высокой отражательной способностью и ковкостью (из серебра можно выковать пластинки толщиной до 0,00025 мм, а из 1 г металла вытянуть проволоку длиной 1800 м), относительной инертностью к химическим превращениям и способностью образовывать сплавы и химические соединения с алюминием, цинком, оловом, золотом, медью, бериллием, редкоземельными металлами, платиноидами и др.

Серебро – промышленный элемент, имеющий широкое применение в кино- и фотоиндустрии и разнообразных областях электротехники и электроники. В электротехнике серебро, являющееся наилучшим из всех проводников, используется для изготовления проводов, выключателей, контактов, предохранителей, экранирующих оплеток проводов, припоев для пайки и сварки, портативных элементов питания, солнечных батарей, обогревателей для стекол машин. В электронике серебро и серебросодержащие сплавы применяются для изготовления печатных плат, микросхем, мембранных выключателей, токопроводящих паст и клея. Уникальная отражательная способность серебра позволяет использовать его при изготовлении зеркальных покрытий на стекле, пластике и металлах. Значительное количество серебра расходуется на гальваническое покрытие деталей машин, работающих при повышенных нагрузках: так, в авиационных реактивных двигателях используются подшипники только с серебряным покрытием. Галогенные соединения серебра входят в состав фотохромного стекла, способного менять светопропускающую способность и блокирующего фиолетовые части солнечного спектра. Каталитические свойства и химическая стойкость серебра обусловили применение его в химической промышленности (для изготовления катализаторов, сосудов для хранения жидкостей и пр.).

Вместе с тем, возможности его использования не ограничиваются этими областями. Серебро сохраняет роль второго валютного металла и широко используется в ювелирной промышленности и в области тезаврации. Изделия из серебра во всем мире пользуются большим спросом. Ионы серебра, попадая в организм, оказывают на него благотворное, до конца не исследованное антибактерицидное воздействие. На этом основаны широкие перспективы применения серебра в медицине и фармацевтической промышленности. Помимо этого, серебро Сфера промышленного применения серебра непрерывно расширяется.

При сравнительно небольшой цене (15–20 центов США за 1 г.) потребность в серебре постоянно превышает его предложение.

4. Серебро – малораспространенный элемент земной коры, кларк его составляет 0,07 г/т. Его средние содержания таковы (г/т): в ультраосновных породах – 0,5, в основных – 0,1, в кислых – 0,05, в осадочных – 0,1–0,4.

В природе известно 60 серебряных и серебросодержащих минералов, подразделяемых обычно на шесть основных групп. Важнейшие промышленные минералы серебра приведены в табл. 1; наиболее часто встречающийся минерал – самородное серебро – содержит до 10 % золота, 6–7 % меди, до 1 % железа, иногда сурьму, висмут, ртуть.

В зоне гипергенеза серебряные руды легко окисляются с образованием галогенов (кераргирит) и вторичного самородного серебра; при этом нередко происходит обогащение серебром зоны окисления с образованием крупных его самородков.

Таблица 1

^ Важнейшие промышленные минералы серебра

Минерал

Химическая

формула

Содержание серебра, %

Плотность, г/см3




1

2

3

4

I. Минералы, в которых серебро присутствует в металлической форме

Самородное серебро

Ag

97,8–99,3

10,1–11,1

Электрум

Ag

30–70

12,5–15,6

Кюстелит

Ag3Au

62–80

11,32–13,10

II. Простые сульфиды

Аргентит (акантит)

Ag2S

87,1

7,2–7,4

III. Сложные сульфиды (сульфосоли)

Миаргирит

AgSbS2

36,72

5,1–5,3

Пираргирит

Ag3SbS3

59,76

5,77–5,86

Стефанит

Ag5SbS4

68,3

6,24–6,32

Прустит

Ag3AsS3

65,4–67,6

5,6

Полибазит

(Ag, Cu)16Sb2S11

62,1–74,9

6,27–6,33

Матильдит

AgBiS2

28,33

6,9

Штромейерит

CuAgS

53,0

6,15–6,3

Фрейбергит

(Ag, Cu,)10(Fe, Zn)2 Sb4 S13

до 17

4,4–5,1

IV. Антимониды

Дискразит

Ag3Sb

72,66

9,6–9,8

V. Теллуриды и селениды

Гессит

Ag2Te

63,3

8,24–8,45

Науманнит

Ag2Se

73,15

7,9

Петцит

Ag3AuTe2

42,0

8,74

VI. Галогены и сульфаты

Кераргирит

AgCl

75,3

5,55

Эмболит

Ag(Cl, Br)

65,2

5,55–6,35

Бромирит

AgBr

57,44

6,35

Йодирит

AgJ

45,95

5,7

Аргентоярозит

AgFe3(SO4)2·[OH]6

18,9

3,6–3,8

По особенностям вещественного состава руд и промышленной значимости слагающих руды металлов среди месторождений серебра принято выделять две большие группы: собственно серебряных и комплексных серебросодержащих руд.

5. Значительная часть мировой добычи серебра производится попутно – по некоторым оценкам от 70 до 80 % серебра добывается из комплексных серебросодержащих месторождений: свинцово-цинковых, меднопорфировых, золоторудных, колчеданных, золото-мышьяково-сульфидных и золото-серебро-марганцовистых. При этом граница между собственно серебряными и серебросодержащими комплексными месторождениями весьма условна: месторождения с содержаниями серебра около 100 г/т могут рассматриваться как собственно серебряные (например, Большой Канимансур в Таджикистане), в то же время месторождения с содержаниями серебра 200–300 г/т – как комплексные серебросодержащие (Брокен Хилл в Австралии). Основные страны – продуценты серебра – Мексика, Перу, США, Канада, Австралия и Россия.

Обычно к собственно серебряным относят месторождения, в рудах которых удельная стоимость серебра превышает 50 %.

6. Собственно серебряные месторождения представлены шестью основными типами руд (табл. 2), среди которых наиболее широко распространены золото-серебряные и свинцово-серебряные, связанные с риолитовыми, андезит-риолитовыми и гранит-порфировыми формациями вулканоплутонических поясов и зон тектоно-магматической активизации. В серебряных рудах всех типов месторождений в тех или иных количествах присутствуют золото, свинец, цинк, медь, олово и другие химические элементы в качестве попутных компонентов.

По масштабам выделяются месторождения: весьма крупные (более 10000 т серебра), крупные (2000–10000 т), средние (500–2000 т), мелкие (менее 500 т).



Таблица 2

^ Основные типы руд серебряных месторождений

Тип

руд

Геотектоническая позиция

Магматическая

формация, с которой ассоциируют месторождения

Породы,

вмещающие

оруденение

Рудные тела

Среднее

содержание

Аg, г/т

Масштаб

оруденения

Распределение оруденения и

характер

рудных тел

Попутные

полезные

ископаемые

и компоненты

Примеры

месторождений

(выделенные курсивом –

эксплуатируются)

Форма

Размеры,

м:

А – по про-

стиранию;

Б – по

падению;

В – мощность




1

2

3

4

5

6

7

8

9

10

11

Золото-

серебряный

Вулкано-

плутонические

пояса окраин

континентов

Риолитовая,

андезит-

риолитовая

Риолиты,

андезиты,

их туфы

Минерализо-ванные зоны дробления

А – 200–1000;

Б –до 1000;

В – 3–30

50–250

Крупный

Выдержанное,

с рудными

столбами

Au, Pb, Zn,

Cu

Дукатское

(Россия),

Гуанохуато

(Мексика)

Свинцово-

серебряный

Зоны тектоно-

магматической

активизации

Риолитовая,

гранит-

порфировая

Риолиты,

песчано-

сланцевые

и карбонат-но-сланцевые

Минерализованные зоны дробления,

залежи, линзы

А – от 200–500 до 1500;

Б –200–300;

В – 2–50

100–1000

«

Равномерное в пределах рудных тел

Pb, Zn

Maнгазейское,

Гольцовое

(Россия),

Перро-де-Паско

(Перу),

Высоковольтное

(Узбекистан)

Уран-

серебряный

То же

Монцонит-

диоритовая

Кристаллические

сланцы

Минерализованные зоны

А – 3000 и более;

Б – до 2000;

В – 3–20

60–1000

«

Равномерное

U, Pb, Zn

Кер д 'Ален

(США)


Арсенидно-

серебряный

Парагеосинк-

линальные

прогибы

обрамлений

щитов

Габбро-

диабазовая

То же

Жилы и жильные

зоны

А – 100–

500

Б – 200–

300;

В – 0,2–3

6000–30000

«

Неравно-мерное, гнездовое, столбо-образное

Co, Ni, Bi

Кобальт

(Канада)


Серебряно-

порфиро-

вый

Вулкано-

плутонические

пояса

Риолитовая


Риолиты

и их

туфы

Штокверки

А – 300–

1200;

Б – 100–

200;

В – 30–50

60–180

Средний

Равномерное

Se

Деламар

(США),

Реаль-де-Анхелес

(Мексика)


Серебряный стратифор-мный

То же



Песчаники,

сланцы,

туфы

липаритов

Стратифицированные залежи

прожилково-

вкрапленных руд

А – до

300;

Б – 100–

200;

В – от

первых метров до

100

70–100

«

«

Pb, Zn

Деламар

(США)




7. По геолого-структурным условиям, особенностям морфологии рудных тел, состава руд и рудовмещающих пород, определяющим методику разведки и разработку, месторождения серебряных руд подразделяются на следующие типы:

жильные в терригенных и терригенно-карбонатных толщах миогеосинклиналей;

жильные в вулканических поясах;

минерализованные и жильные зоны в вулканических поясах;

штокверки в вулканических поясах;

минерализованные зоны в терригенных и терригенно-карбонатных (углистых) толщах миогеосинклиналей;

залежи в вулканогенных и вулканогенно-осадочных толщах.

8. Жильные месторождения в терригенных и терригенно-карбонатных толщах миогеосинклиналей характеризуются кварцевыми и кварц-карбонатными трещинными жилами мощностью первые сантиметры – первые метры, протяженностью первые сотни метров – первые километры. Сближенные маломощные (0,1–0,15 м) ветвящиеся жилы иногда образуют жильные зоны.

По вещественному составу выделяются цинково-свинцово-серебряные, кобальт-никель-серебряные и кобальт-серебряные с ураном руды. К этому промышленному типу принадлежат уникальные по запасам месторождения, где помимо серебра добыто большое количество кобальта, меди, никеля, свинца, цинка, висмута, олова, мышьяка и урана. В связи со значительным вертикальным размахом оруденения (отдельные жилы с промышленными параметрами разведаны до глубины 1,6–1,9 км) и исключительно богатым содержанием серебра в рудах (500–1000 г/т, до 150 кг/т), эти месторождения разрабатываются шахтами на глубинах 600–700 м и более (Озерное-Асхатин, Верхнее Менкече – Россия; Ак-Тепе – Узбекистан).

9. Жильные месторождения в вулканических поясах приурочены преимущественно к третичным (крупнейшие месторождения мира), реже – к более древним вулканическим сооружениям, сложенным риолитовыми и риолит-андезитовыми комплексами. Рудные тела залегают или непосредственно в субвулканических интрузивах и вулканических толщах, или в терригенных комплексах субстрата.

По морфологии рудных тел выделяются месторождения, представленные протяженными ветвящимися жилами выполнения с четкими контактами и жилами замещения линзо-столбообразной и другой формы с неотчетливыми границами, определяемыми по данным опробования.

По составу руд (с учетом попутных компонентов) выделяются олово-серебряные, золото-серебряные, свинцово-серебряные и медно-висмутово-серебряные месторождения. В свинцово-серебряных значительную долю ценности руд составляют свинец и цинк, а также висмут, кадмий, сера сульфидная и олово, а в медно-висмутово-серебряных – медь, висмут и золото.

Содержание серебра по рудным телам изменяется в больших пределах, среднее по месторождению находится на уровне 200–500 г/т в сульфидных рудах, до 3 кг/т – в окисленных (Тидит, Арылахское, Гольцовое, Таежное – Россия).

10. Минерализованные и жильные зоны в вулканических поясах – крупные месторождения, приуроченные к вулкано-купольным поднятиям. Структура определяется системами разрывных нарушений; линейновытянутые мощные зоны разломов являются рудоконтролирующими и, как правило, рудовмещающими. Для данных месторождений характерны рудные тела следующих структурно-морфологических типов:

крупные крутопадающие минерализованные зоны протяженностью более 1 км и мощностью до 10 м, сложного строения, включающие осевые жилы и участки прожилково-вкрапленных руд; оконтуриваются, как правило, по опробованию;

минерализованные зоны меньшие по размерам, иногда согласные с рудовмещающими вулканитами; имеют более простую форму и строение; оконтуриваются в геологических границах и по данным опробования;

жильные зоны и жилы с четкими контактами; характеризуются небольшой протяженностью и мощностью 1–2 м.

Руды имеют преимущественно кварц-адуляровый состав, содержат марганцевые и марганценосные карбонаты, родонит и оксидные минералы марганца. Серебросодержащими минералами являются аргентит, самородное серебро и сульфосоли серебра, а также оксидные минералы марганца, сульфиды свинца и цинка. Содержание серебра в рудах составляет 200–500 г/т и более. По вещественному составу руды представлены собственно серебряным и золото-серебряным типами. Для руд собственно серебряного типа характерно незначительное содержание других полезных компонентов, в том числе золота, отношение которого к серебру обычно не превышает 1:200, а также свинца и цинка или меди и висмута. В золото-серебряных рудах важную роль приобретает золото (Дукатское, Агинское, Асачинское, Тарынское – Россия)

11. Штокверки в вулканических поясах образуют крупные месторождения. Рудные поля и месторождения размещены на пересечении протяженных зон разломов в пределах отрицательных структур, выполненных вулканогенно-осадочными породами, интрудированными многочисленными субвулканическими телами риолитов, гранит-порфиров, дацитов.

Форма штокверков определяется общей конфигурацией субвулканических сооружений и вулканических кальдер. К зонам разломов в пределах штокверков часто приурочены крупные, но весьма не выдержанные по мощности жилы сложной формы. Руды прожилково-вкрапленные и вкрапленные.

Участки с промышленными рудами не имеют четких геологических границ и выявляются по данным опробования. Серебро в рудах представлено самостоятельными ассоциациями самородного серебра, аргентита, пираргирита, прустита, науманнита, в меньшей степени микровключениями этих минералов в пирите, тетраэдрите – теннантите, халькопирите, галените и сфалерите. Содержания серебра 60–180 г/т.

Среди месторождений этого типа по составу руд выделяются золото-серебряные, свинцово-серебряные и олово-серебряные. Штокверковые месторождения серебряных руд по аналогии с меднопорфировыми, могут быть отнесены к серебропорфировым. (Б. Канимансур – Таджикистан, Деламар – США).

12. Минерализованные зоны в терригенных и терригенно-карбонатных толщах миогеосинклиналей размещены, как правило, в складчатых областях.

Все месторождения этого типа контролируются разрывными нарушениями и их сочленениями, которые определяют внутреннее строение месторождения – количество, морфологию и условия залегания рудных тел, их размеры, распределение в контуре минерализованной зоны.

По составу руд все известные месторождения этого типа являются золото-серебряными. Продуктивность месторождений определяется концентрацией самородного серебра, акантита, фрейбергита и серебросодержащих пирита и арсенопирита; содержание серебра находится на уровне 20–200 г/т. Характерно высокое фоновое содержание серебра, в связи с чем на морфологию рудных тел при их оконтуривании большое влияние оказывает бортовое содержание.

Рудные тела круто- и пологопадающие, простого и сложного строения. Рудные тела простого строения – линзы, пологие жилы – имеют протяженность в сотни метров по простиранию и десятки – первые сотни метров по падению, мощность их колеблется в пределах 5–15 м, редко достигая в раздувах 40–50 м. Характерной особенностью их является высокая сплошность при неравномерном распределении промышленной рудной минерализации в плоскости тела. Контуры рудных тел обычно простые, ровные.

Рудные тела сложного строения – типичные уплощенные столбообразные залежи различного падения крестообразной, серповидной, линзоподобной формы в плане; границы рудных тел очень сложные, извилистые. Размеры их значительны: по простиранию прослеживаются на сотни метров – первые километры, по падению – на десятки – сотни метров; мощность изменяется в широких пределах: от 1–2 до 70–80 м. Внутреннее строение характеризуется наличием обогащенных участков, приуроченных к линиям пересечения разнонаправленных разрывных структур. Нередко в контуре рудных тел фиксируются значительные по размерам участки некондиционных руд и пустых пород, что еще более осложняет их строение. (Мангазейское – Россия, Высоковольтное – Узбекистан).

13. Месторождения типа залежей локализуются в вулканогенных, реже вулканогенно-осадочных отложениях (фанерозойские) или кристаллических сланцах и амфиболитах (докембрийские), а также на контакте вулканогенно-осадочных толщ с массивами гранитоидов в зонах скарнирования. Залежи, выделяемые по данным опробования, представляют собой либо согласные с залеганием пород пластообразные, ленто- и линзовидные рудные тела, размещающиеся, как правило, на нескольких гипсометрических уровнях в пределах единой рудоносной зоны, либо секущие жилообразные, трубообразные и другой сложной формы. Преобладающими являются тела значительных размеров – от сотен до первых тысяч метров по простиранию, сотни метров по падению, первые метры – десятки метров мощностью; характерен большой диапазон колебаний мощности (от десятков сантиметров до 100 м в пределах отдельных участков месторождений).

Для месторождений этого типа характерен многокомпонентный состав руд, при этом концентрация серебра находится в прямой значимой корреляционной зависимости от содержания свинца и меди. Серебро в виде микровключений аргентита, полибазита, пираргирита, самородного серебра, электрума, стефанита распределяется в главных рудных минералах; наиболее сереброносными являются галенит и блеклые руды; самостоятельные ассоциации минералов серебра встречаются редко, образуя обогащенные серебром участки.

Содержания серебра в рудах варьируют в широких пределах: максимальное значение отмечается в барит-полиметаллических разностях руд. Часто обнаруживается тенденция неравномерного уменьшения содержания серебра с глубиной, что обусловлено изменениями в пространстве состава минеральных ассоциаций. (Деламар – США).

14. Интерес для освоения могут представлять техногенные месторождения. К ним относятся спецотвалы забалансовых руд, добытых в процессе разработки серебросодержащих месторождений, серебросодержащие отходы (хвосты, шламы), образующиеся в процессе обогащения руд или переработки серебросодержащих концентратов (огарки, пеки, золы) комплексных месторождений. Отличительные черты строения этих месторождений и состава серебросодержащего материала, сформировавшегося под влиянием техногенного и последующего гипергенного воздействия, требуют специфических подходов к их изучению и оценке, особенности которых изложены в соответствующих нормативно-методических документах.

15. В России промышленными источниками серебра являются комплексные руды (серебро-свинцово-цинковые; серебросодержащие медные, свинцовые и полиметаллические) и золото-серебряные. В малосульфидных золото-серебряных и серебряных рудах (доля сульфидов редко превышает 3–5 %) наряду с самородным серебром и кюстелитом присутствуют сульфиды – акантит, прустит, пирсеит, стефанит, полибазит, пираргирит и др. В небольших концентрациях встречаются селениды (агвиларит, науманнит) и теллуриды серебра (гессит, петцит, сильванит). Большинство этих руд сложено кварцем (до 80 %), полевыми шпатами (5–15 %), слюдами, силикатами (хлориты, родонит и др.) и карбонатами. В серебросодержащих рудах с большой (до 80 %) долей сульфидов (серебро-свинцовые, серебро-медно-свинцовые, серебро-свинцово-цинковые и др.) основная масса серебра представлена наряду с простыми сульфидами сульфосолями серебра и серебросодержащими блеклыми рудами. Меньшее значение в них имеют самородное серебро и теллуриды.
^

II. Группировка месторождений по сложности геологического строения для целей разведки


16. По размерам и форме рудных тел, изменчивости их мощности, внутреннего строения и особенностям распределения серебра месторождения серебряных руд соответствуют 2-, 3- и 4-й группам «Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых», утвержденной приказом МПР России от 11 декабря 2006 г. № 278.

Ко 2-й группе относятся месторождения (участки) сложного геологического строения, представленные крупными минерализованными зонами (протяженностью около 1 км и более, мощностью 5–10 м и более) или штокверками (площадью более 1 км2 ) сложного строения, а также; значительными по размерам (1–3 км по простиранию, первые сотни метров по падению, с устойчивыми мощностями от первых метров и более) пласто- и линзообразными залежами. Рудная минерализация распределена неравномерно. (Нежданинское, Карамкенское, Дукатское, Майское, Сибаевское, Блявинское и др. – Россия).

К 3-й группе относятся месторождения (участки) очень сложного геологического строения, представленные средними по размерам минерализованными и жильными зонами (протяженностью от сотен до тысячи метров), жилами с изменчивой мощностью (от нескольких сантиметров до 3 м), линзо- и столбообразными залежами (первые сотни метров по простиранию и падению, мощность 1–2 м) сложного строения. Распределение оруденения весьма неравномерное, нередко прерывистое. (Тидид, Гольцовое, Агинское, Аметистовое и др. – Россия; Большой Канимансур – Таджикистан).

К 4-й группе относятся месторождения (участки) весьма сложного геологического строения, представленные мелкими по размерам (протяженностью первые десятки метров) единичными или сближенными маломощными (до 0,3–0,4 м) жилами, линзообразными и столбообразными залежами или телами с чрезвычайно сложным прерывистым, гнездообразным распределением рудных скоплений (участки с высокими содержаниями серебра перемежаются с безрудными).

17. Принадлежность месторождения (участка) к той или иной группе устанавливается по степени сложности геологического строения основных рудных тел, заключающих не менее 70 % общих запасов месторождения.

18. При отнесении месторождений к той или иной группе в ряде случаев могут использоваться количественные характеристики изменчивости основных свойств оруденения (приложение 1).
^

III. Изучение геологического строения месторождений и
вещественного состава руд


19. По разведанному месторождению необходимо иметь топографическую основу, масштаб которой соответствовал бы его размерам, особенностям геологического строения и рельефу местности. Топографические карты и планы для месторождений серебряных руд обычно составляются в масштабах 1:1000–1:5000. Все разведочные и эксплуатационные выработки (канавы, шурфы, штольни, шахты, скважины), профили детальных геофизических наблюдений, а также естественные обнажения рудных тел или зон должны быть инструментально привязаны. Подземные горные выработки и скважины наносятся на планы по данным маркшейдерской съемки. Маркшейдерские планы горизонтов горных работ обычно составляются в масштабах 1:200 – 1:500; сводные планы – в масштабе не мельче 1:1000. Для скважин должны быть вычислены координаты точек пересечения ими кровли и подошвы рудного тела и построены проложения их стволов на плоскости планов и разрезов.

20. Геологическое строение месторождения должно быть детально изучено и отображено на геологической карте масштаба 1:1000–1:5000 (в зависимости от размеров и сложности месторождения), геологических разрезах, планах, проекциях, а в необходимых случаях – на блок-диаграммах и моделях. Геологические и геофизические материалы по месторождению должны давать представление о размерах и форме рудных тел, условиях их залегания, внутреннем строении и сплошности, наличии зональности в распределении оруденения, характере выклинивания рудных тел, особенностях изменения вмещающих пород и взаимоотношениях рудных тел с вмещающими породами, складчатыми структурами и разрывными нарушениями в степени, необходимой и достаточной для обоснования подсчета запасов. Следует также обосновать геологические границы месторождения и поисковые критерии, определяющие местоположение перспективных участков,

в пределах которых выявлены прогнозные ресурсы категории P1*.

21. Выходы на поверхность и приповерхностные части рудных тел и минерализованных зон должны быть изучены канавами, шурфами с рассечками, траншеями, расчистками, пройденными по простиранию рудных тел, неглубокими скважинами с применением геофизических и геохимических методов и опробованы с детальностью, позволяющей установить морфологию и условия залегания рудных тел, глубину развития и строение зоны окисления, степень обогащения ее серебром, ширину развалов окисленных руд, особенности изменения вещественного состава, технологических свойств руд и провести подсчет запасов первичных, смешанных и окисленных руд раздельно по промышленным (технологическим) типам.

22. Разведка месторождений серебряных руд на глубину проводится горными выработками и скважинами с использованием геофизических методов исследований – наземных, в скважинах и горных выработках.

Методика разведки – соотношение объемов горных работ и бурения, виды горных выработок и способы бурения, геометрия и плотность разведочной сети, методы и способы опробования – должна обеспечить возможность подсчета запасов на разведанном месторождении по категориям, соответствующим группе сложности. Она определяется исходя из геологических особенностей рудных тел с учетом возможностей горных, буровых и геофизических средств разведки и опыта разведки и разработки месторождений аналогичного типа.

При выборе оптимального варианта разведки следует учитывать характер пространственного распределения минералов серебра, текстурно-структурные особенности руд (главным образом наличие крупных выделений рудных минералов), а также возможное избирательное истирание при бурении скважин и выкрашивание при опробовании в горных выработках серебросодержащих или породообразующих минералов.

23. По скважинам колонкового бурения должен быть получен максимальный выход керна хорошей сохранности в объеме, обеспечивающем выяснение с необходимой полнотой особенностей залегания рудных тел и вмещающих пород, их мощности, внутреннего строения рудных тел, характера околорудных изменений, распределения природных разновидностей руд, их текстуры и структуры, а также представительность материала для опробования.

Практикой геологоразведочных работ установлено, что выход керна для этих целей должен быть не менее 70 % по каждому рейсу бурения. Достоверность определения выхода керна линейным методом следует систематически контролировать весовым или объемным способом.

Величина представительного выхода керна для определения содержаний полезных компонентов и мощностей рудных интервалов должна быть подтверждена исследованиями возможности его избирательного истирания. Для этого необходимо по основным типам руд сопоставить результаты опробования керна и шлама (по интервалам с их различным выходом) с данными опробования горных выработок, скважин ударного, пневмоударного, шарошечного бурения, а также колонковых скважин, пробуренных с применением съемных керноприемников. При бурении по окисленным рудам, обладающим повышенной склонностью к избирательному истиранию, должны быть приняты меры, обеспечивающие достоверное определение содержаний серебра и мощностей рудных интервалов в зоне окисления. При низком выходе керна или избирательном его истирании, существенно искажающем результаты опробования, следует применять другие технические средства разведки. При существенном искажении содержания серебра в керновых пробах необходимо обосновать величину поправочного коэффициента к результатам кернового опробования на основе данных контрольных выработок.

Для повышения достоверности и информативности бурения необходимо использовать методы геофизических исследований в скважинах, рациональный комплекс которых определяется исходя из поставленных задач, конкретных геолого-геофизических условий месторождения и современных возможностей геофизических методов. Комплекс каротажа, эффективный для выделения рудных интервалов и установления их параметров, рекомендуется выполнять во всех скважинах, пробуренных на месторождении; при этом необходимо обеспечить возможность дифференциальной интерпретации результатов измерений с целью последующего использования их для оценки неравномерности оруденения в недрах.

В вертикальных скважинах глубиной более 100 м и во всех наклонных, включая подземные, не более чем через каждые 20 м должны быть определены и подтверждены контрольными замерами азимутальные и зенитные углы их стволов. Результаты этих измерений используются при построении геологических разрезов, погоризонтных планов и расчете мощностей рудных интервалов. При наличии подсечений стволов скважин горными выработками результаты замеров заверяются данными маркшейдерской привязки. Для скважин необходимо обеспечить пересечение ими рудных тел под углами не менее 30о.

Для пересечения крутопадаюших рудных тел под большими углами целесообразно производить искусственное искривление скважин. С целью повышения эффективности разведки бурением рекомендуется применять многозабойные скважины и веера подземных скважин. Бурение по руде целесообразно производить одним диаметром.

24. Горные выработки являются основным средством детального изучения условий залегания, морфологии и внутреннего строения рудных тел, их сплошности, вещественного состава руд, распределения в них серебра, а также контроля данных бурения, геофизических исследований и отбора технологических проб. Горные выработки следует проходить на участках детализации, а также на горизонтах месторождения, намеченных к первоочередной отработке.

Сплошность рудных тел и изменчивость оруденения по их простиранию и падению должна быть изучена в достаточном объеме на представительных участках по маломощным рудным телам непрерывным прослеживанием штреками и восстающими, а по мощным рудным телам и штокверкам – сгущением сети ортов, квершлагов, подземных горизонтальных скважин.

25. Расположение разведочных выработок и расстояния между ними должны быть определены для каждого структурно-морфологического типа рудных тел, исходя из их размеров, мощности, внутреннего строения, минеральной формы и характера распределения серебра; при этом следует учитывать возможное столбообразное размещение обогащенных участков.

Приведенные в табл. 3 обобщенные сведения о плотности сетей разведочных выработок даны по ограниченному кругу разведанных серебряных месторождений в России и других странах СНГ. Эти сведения могут учитываться при проектировании геологоразведочных работ, но их нельзя рассматривать как обязательные. Для каждого месторождения обосновываются наиболее рациональные геометрия и плотность сети разведочных выработок на основании изучения особенностей геологического строения на участках детализации и тщательного анализа всех имеющихся геологических, геофизических и эксплуатационных материалов по данному или аналогичным месторождениям. При разведке месторождений, характеризующихся комплексным составом руд, следует учитывать возможность распространения серебряной минерализации за контуром рудных тел ведущего металла.

26. Для подтверждения достоверности запасов, подсчитанных на разведанных месторождениях, отдельные их участки должны быть разведаны более детально. Число и размеры участков детализации определяются недропользователем и обосновываются в ТЭО разведочных кондиций. Эти участки следует изучать и опробовать по более плотной разведочной сети, по сравнению с принятой на остальной части месторождения. На разведанных месторождениях запасы на таких участках или горизонтах месторождений 2-й группы должны быть разведаны по категории В, а на месторождениях 3-й и 4-й групп – по категории С1. На разведанных месторождениях 3-й группы сеть разведочных выработок на участках детализации целесообразно сгущать, как правило, не менее чем в 2 раза по сравнению с принятой для категории С1.

При использовании интерполяционных методов подсчета запасов (геостатистика, метод обратных расстояний и др.) на участках детализации необходимо обеспечить плотность разведочных пересечений, достаточную для обоснования оптимальных интерполяционных формул.

Участки детализации должны отражать особенности условий залегания и форму рудных тел, вмещающих основные запасы месторождения, а также преобладающее качество руд. По возможности они располагаются в контуре запасов, подлежащих первоочередной отработке. В тех случаях, когда такие участки не характерны для всего месторождения по особенностям геологического строения, качеству руд и горно-геологическим условиям, должны быть детально изучены также участки, удовлетворяющие этому требованию.

Для месторождений с прерывистым оруденением, оценка запасов которых производится без геометризации конкретных рудных тел, в обобщенном контуре с использованием коэффициентов рудоносности, на основании определения пространственного положения, типичных форм и размеров участков балансовых руд, а также распределения запасов по мощности рудных интервалов должна быть оценена возможность их селективной выемки.

Полученная на участках детализации информация используется для обоснования группы сложности месторождения, подтверждения соответствия принятых геометрии и плотности разведочной сети и выбранных технических средств разведки особенностям его геологического строения, для оценки достоверности результатов опробования и подсчетных параметров, принятых при подсчете запасов на остальной части месторождения, и условий разработки месторождения в целом. На разрабатываемых месторождениях для этих целей используются результаты эксплуатационной разведки и разработки.


Таблица 3

^ Сведения о плотности сетей разведочных выработок, применявшихся при разведке некоторых месторождений серебряных руд в России и других странах СНГ



Группа месторождений

Характеристика

месторождений

Формы

рудных тел

Виды

выработок

Расстояние между пересечениями рудных тел выработками (в м) для категорий запасов

В

С1

по падению

по простиранию

по падению

по простиранию




1

2

3

4

5

6

7

8

2-я

Кярупные минерализованные зоны, штокверки, значительные по размерам залежи сложного строения

Минерализованные зоны

Штреки

40–60

Непрерывное прослеживание

80–120

Непрерывное прослеживание

Восстающие

Непрерывное прослеживание

80–120

Непрерывное прослеживание

120

Рассечки, квершлги



20–30



40–60

Скважины

20–40

40–60

40–80

80–120

Штокверки

Штреки

40–60

Непрерывное прослеживание



Непрерывное прослеживание

Квершлаги, горизонтальные скважины



20–40



40–80

Скважины

20–40

40–60

40–80

80–120







Залежи

Штреки

50–60

Непрерывное прослеживание



Непрерывное прослеживание

Восстающие

Непрерывное прослеживание

80–120

Непрерывное прослеживание

120




Орты, горизонтальные скважины



20–30



40–60

Скважины

30–40

40–50

50–75

75–100

3-я

Средние минерализованные и жильные зоны, жилы, залежи сложного строения

Минерализованные и жильные зоны

Штреки





40–60

Непрерывное прослеживание

Восстающие





Непрерывное прослеживание

80–120

Рассечки







20–30

Скважины





20–30

40–60

Жилы

Штреки





40–60

Непрерывное прослеживание

Восстающие





Непрерывное прослеживание

80–120

Рассечки







10–20

Скважины





40–60

40–60

Залежи

Штреки





40–60

Непрерывное прослеживание

Восстающие





Непрерывное прослеживание

80–120

Орты, горизонтальные скважины







20–30

Скважины





30–40

50–60

П р и м е ч а н и е. На оцененных месторождениях разведочная сеть для категории С2 по сравнению с сетью для категории С1 разрежается в 2–4 раза в зависимости от сложности геологического строения месторождения.

27. Все разведочные выработки и выходы рудных тел или зон на поверхность должны быть задокументированы. Результаты опробования выносятся на первичную документацию и сверяются с геологическим описанием.

Полнота и качество первичной документации, соответствие ее геологическим особенностям месторождения, правильность определения пространственного положения структурных элементов, составления зарисовок и их описаний должны систематически контролироваться сличением с натурой специально назначенными комиссиями в установленном порядке. Следует также оценивать качество геологического и геофизического опробования (выдержанность сечения и массы проб, соответствие их положения особенностям геологического строения участка, полноту и непрерывность отбора проб, наличие и результаты контрольного опробования), представительность минералого-технологических и инженерно-гидрогеологических исследований, качество определений объемной массы, обработки проб и аналитических работ.

28. Для изучения качества полезного ископаемого, оконтуривания рудных тел и подсчета запасов все рудные интервалы, вскрытые разведочными выработками или установленные в естественных обнажениях, должны быть опробованы.

29. Выбор методов (геологических, геофизических) и способов опробования производится на ранних стадиях оценочных и разведочных работ, исходя из конкретных геологических особенностей месторождения и физических свойств полезного ископаемого и вмещающих пород, а также применяемых технических средств разведки.

Целесообразность применение ядерно-геофизических методов в качестве рядового опробования* на месторождениях серебряных руд подтверждена положительным опытом использования рентгенорадиометрического метода при опробовании подземных горных выработок на Дукатском месторождении. Применение геофизических методов опробования и использование их результатов при подсчете запасов регламентируется соответствующими нормативно-методическими документами.

Принятые метод и способ опробования должны обеспечивать наибольшую достоверность результатов при достаточной производительности и экономичности. В случае применения нескольких способов опробования они должны быть сопоставлены по точности результатов и достоверности, руководствуясь соответствующими нормативно-методическими документами.

Для сокращения нерациональных затрат труда и средств на отбор и обработку проб рекомендуется интервалы, подлежащие опробованию, предварительно наметить по данным каротажа или замерам ядерно-геофизическими, магнитным и другими методами.

30. Опробование разведочных сечений следует производить с соблюдением следующих обязательных условий:

сеть опробования должна быть выдержанной, плотность ее определяется геологическими особенностями изучаемых участков месторождения и обычно устанавливается исходя из опыта разведки месторождений-аналогов, а на новых объектах – экспериментальным путем. Пробы необходимо отбирать в направлении максимальной изменчивости оруденения; в случае пересечения рудных тел разведочными выработками (в особенности скважинами) под острым углом к направлению максимальной изменчивости (если при этом возникают сомнения в представительности опробования) контрольными работами или сопоставлением должна быть доказана возможность использования при подсчете запасов результатов опробования этих сечений;

опробование следует проводить непрерывно, на полную мощность рудного тела с выходом во вмещающие породы на величину, превышающую мощность пустого или некондиционного прослоя, включаемого в соответствии с кондициями в промышленный контур: для рудных тел без видимых геологических границ – во всех разведочных сечениях, а для рудных тел с четкими геологическими границами – по разреженной сети выработок. В разведочных выработках кроме коренных выходов руд должны быть опробованы и продукты их выветривания;

природные разновидности руд и минерализованных пород должны опробоваться раздельно – секциями; длина каждой секции (рядовой пробы) определяется внутренним строением рудного тела, изменчивостью вещественного состава, текстурно-структурных особенностей, физико-механических и других свойств руд, а в скважинах – также длиной рейса, который не должен превышать установленную кондициями минимальную мощность для выделения типов или сортов руд, а также максимальную мощность внутренних пустых и некондиционных прослоев, включаемых в контур руд.

Способ отбора проб в буровых скважинах (керновый, шламовый) зависит от используемого вида и качества бурения. При этом интервалы с разным выходом керна (шлама) опробуются раздельно; при наличии избирательного истирания керна опробованию подвергается как керн, так и измельченные продукты бурения (шлам, пыль и др.); мелкие продукты отбираются в самостоятельную пробу с того же интервала, что и керновая проба, обрабатываются и анализируются отдельно. При небольшом диаметре бурения и весьма неравномерном распределении минералов серебра деление керна при опробовании на половинки не производится.

Горные выработки, намечаемые для вскрытия и пересечения мощных рудных тел (орты, квершлаги), следует ориентировать перпендикулярно направлению максимальной изменчивости оруденения. Выработки, намечаемые для прослеживания маломощных рудных тел (штреки, восстающие), полностью вскрываемых их забоями – вдоль этого направления; для скважин необходимо обеспечить пересечения ими рудных тел под углом не менее 30о.

В горных выработках, пересекающих рудное тело на всю мощность, и в восстающих опробование должно проводиться по двум стенкам выработки; в выработках, пройденных по простиранию рудного тела, – в забоях. Расстояние между опробуемыми забоями в прослеживающих выработках обычно не превышает 2–4 м (рациональный шаг опробования должен быть подтвержден экспериментальными данными). В горизонтальных горных выработках при крутом залегании рудных тел все пробы размещаются на постоянной, заранее определенной высоте от подошвы выработки. Принятые параметры проб должны быть обоснованы экспериментальными работами.

Данные опробования штреков и восстающих, не вскрывающих рудные тела на всю мощность, не могут быть использованы при подсчете запасов; возможность использования данных опробования восстающих, вскрывающих рудные тела на полную мощность, должна быть в каждом случае обоснована исходя из особенностей распределения обогащенных серебром участков (рудных столбов).

Результаты геологического и геофизического опробования скважин и горных выработок следует использовать в качестве основы для оценки неравномерности оруденения в естественном залегании и прогнозирования показателей радиометрического обогащения, руководствуясь соответствующими методическими документами.. При этом для прогнозирования результатов крупнопорционной сортировки целесообразно принять постоянным шаг опробования при длине каждой секции (рядовой пробы), кратной 1 м. Показатели радиометрической сепарации прогнозируются по результатам дифференциальной интерпретации геофизических данных при линейных размерах пробы, соответствующих куску максимальной крупности 100–200мм.

31. Качество опробования по каждому принятому методу и способу и по основным разновидностям руд необходимо систематически контролировать, оценивая точность и достоверность результатов. Следует своевременно проверять положение проб относительно элементов геологического строения и надежность оконтуривания рудных тел по мощности, выдержанность принятых параметров проб и соответствие фактической массы пробы расчетной, исходя из принятого сечения борозды или фактического диаметра и выхода керна (отклонения не должны превышать ± 10–20 % с учетом изменчивости плотности руд).

Точность бороздового опробования следует контролировать сопряженными бороздами того же сечения, кернового опробования в случае деления керна на половинки — отбором проб из вторых половинок керна.

При геофизическом опробовании в естественном залегании контролируются стабильность работы аппаратуры и воспроизводимость метода при одинаковых условиях рядовых и контрольных измерений. В случае выявления недостатков, влияющих на точность опробования, следует производить переопробование рудного интервала. Достоверность геофизического опробования определяется сопоставлением данных бороздового и геофизического опробования по интервалам, для которых доказано отсутствие выкрашивания серебросодержащих или породообразующих минералов при отборе проб.

Достоверность принятых методов и способов опробования контролируется более представительным способом, как правило валовым, руководствуясь соответствующими нормативно-методическими документами. Для этой цели рекомендуется также использовать данные технологических проб, валовых проб, отобранных для определения плотности в целиках, и результаты отработки месторождения.

Объем контрольного опробования должен быть достаточным для статистической обработки результатов и обоснованных выводов об отсутствии или наличии систематических ошибок, а в случае необходимости – и для введения поправочных коэффициентов.

32. Обработка проб производится по схемам, разработанным для каждого месторождения, с учетом минеральной формы серебра, крупности выделений и характера его распределения. Основные и контрольные пробы обрабатываются по одной схеме. Качество обработки следует систематически контролировать по всем операциям в части обоснованности коэффициента К и соблюдения схемы обработки. Необходимо регулярно контролировать чистоту поверхностей дробильного оборудования.

Обработка контрольных крупнообъемных проб производится по специально составленным программам, включающим проведение экспериментальных работ по определению минимальных массы и количества отбираемых на анализ навесок.

33. Химический состав руд должен изучаться с полнотой, обеспечивающей выявление всех основных, попутных полезных компонентов и вредных примесей. Содержание их в руде определяется анализами проб химическими, пробирным, спектральным, физическими или другими методами, установленными государственными стандартами или Научным советом по аналитическим методам (НСАМ) и Научным советом по методам минералогических исследований (НСОММИ).

Изучение в серебряных рудах попутных компонентов производится в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке.

.

Все рядовые пробы руд анализируются на серебро, а также на попутные компоненты (свинец, цинк, золото, медь, серу, олово, висмут), содержание которых может учитываться при выделении рудных интервалов и оконтуривании рудных тел. Другие полезные компоненты (селен, теллур и др.) и вредные примеси (мышьяк, углерод и др.) определяются обычно по групповым пробам.

Порядок объединения рядовых проб в групповые, их размещение и общее количество должны обеспечивать равномерное опробование основных разновидностей руд на попутные компоненты и вредные примеси и выяснение закономерностей изменения их содержаний по простиранию и падению рудных тел.

Для выяснения степени окисления первичных руд и установления границы зоны окисления должны выполняться фазовые анализы.

34. Качество анализов проб необходимо систематически проверять, а результаты контроля своевременно обрабатывать в соответствии с методическими указаниями НСАМ и НСОММИ. Геологический контроль анализов проб следует осуществлять независимо от лабораторного контроля в течение всего периода разведки месторождения. Контролю подлежат результаты анализов на все основные и попутные компоненты и вредные примеси.

35. Для определения величин случайных погрешностей необходимо проводить внутренний контроль путем анализа зашифрованных контрольных проб, отобранных из дубликатов аналитических проб, в той же лаборатории, которая выполняет основные анализы, не позднее следующего квартала.

Для выявления и оценки возможных систематических погрешностей должен осуществляться внешний контроль в лаборатории, имеющей статус контрольной. На внешний контроль направляются дубликаты аналитических проб, хранящиеся в основной лаборатории и прошедшие внутренний контроль. При наличии стандартных образцов состава (СОС), аналогичных исследуемым пробам, внешний контроль следует осуществлять, включая их в зашифрованном виде в партию проб, которые сдаются на анализ в основную лабораторию.

Пробы, направляемые на внутренний и внешний контроль, должны характеризовать все разновидности руд месторождения и классы содержаний. В обязательном порядке на внутренний контроль направляются все пробы, показавшие аномально высокие содержания анализируемых компонентов.

36. Объем внутреннего и внешнего контроля должен обес­печить представительность выборки по каждому классу содержаний и периоду выполнения анализов (квартал, полугодие, год).

При выделении классов следует учитывать параметры кондиций для подсчета запасов (бортовое и минимальное промышленное содержания). В случае большого числа анализируемых проб (2000 и более в год) на контрольные анализы направляется 5 % их общего количества, но в любом случае должно быть выполнено не менее 30 контрольных анализов за контролируемый период по каждому классу содержаний.

В практике некоторых зарубежных компаний, занимающихся разведкой и разработкой сереброрудных месторождений, используется более простая, но достаточно эффективная, процедура контроля за качеством отбора, подготовки и анализа проб, основанная на систематическом включении в каждую партию из 20 поступающих в лабораторию рядовых проб по одной пустой, дубликатной и эталонной пробе, формируемых в следующем порядке.

Пустые пробы отбираются из подготовленной на начальной стадии разведки месторождения гомогенизированной валовой пробы массой не менее 20 кг, близкой по составу к серебро-вмещающим породам месторождения. Материалом для валовой пробы служит безрудный керн или породы соответствующего обнажения. Отсутствие значимых количеств серебра в валовой пробе подтверждается многочисленными анализами не менее чем в двух различных лабораториях. Пустая проба включается в начало потока подготовки проб и имеет номер, последовательный с другими пробами.

Дубликатные пробы выбираются в полевых условиях произвольно. При опробовании бурового шлама они готовятся путем его деления. При опробовании керна деление производится после первичной стадии дробления.

Эталонные пробы, содержание серебра в которых известно с приемлемым уровнем точности, должны быть, насколько это возможно, близки к литологическому и минеральному составу вмещающих пород и рудной минерализации месторождения. Концентрация серебра в эталонных пробах должна соответствовать трем основным выделяемым на месторождении классам содержаний, близким к экономически обоснованным величинам содержаний – бортового, среднего и высокого. Эталонные пробы отбираются из заранее подготовленных валовых проб массой не менее 20 кг, составленных из крупнозернистого материала, остающегося от ранее анализированных проб керна или бурового шлама. Истертый и гомогенизированный материал валовых проб, должен быть проанализирован по меньшей мере в пяти независимых лабораториях. Эталонные пробы имеют последовательные с рядовыми пробами номера, которые не должны быть известны для лиц, проводящих анализы.

Использование пустых, дубликатных и эталонных проб обеспечивает регулярный и достаточно эффективный контроль за качеством подготовки рядовых проб (возможное заражение) и проведения анализов (выявление систематических и установление величины случайных погрешностей) в течении всего срока разведки и в основном средствами собственной лаборатории.

37. Обработка данных внешнего и внутреннего контроля по каждому классу содержаний производится по периодам (квартал, полугодие, год), раздельно по каждому методу анализа и лаборатории, выполняющей основные анализы. Оценка систематических расхождений по результатам анализа СОС выполняется в соответствии с методическими указаниями НСАМ по статистической обработке аналитических данных.

Относительная среднеквадратическая погрешность, определенная по результатам внутреннего, контроля, не должна превышать значений, указанных в табл. 4. В противном случае результаты основных анализов для данного класса содержаний и периода работы лаборатории бракуются и все пробы подлежат повторному анализу с выполнением внутреннего геологического контроля. Одновременно основной лабораторией должны быть выяснены причины брака и приняты меры по его устранению.

38. При выявлении по данным внешнего контроля систематических расхождений между результатами анализов основной и контролирующей лабораторий проводится арбитражный контроль. Этот контроль выполняется в лаборатории, имеющей статус арбитражной. На арбитражный контроль направляются хранящиеся в лаборатории аналитические дубликаты рядовых проб (в исключительных случаях остатки – аналитических проб), по которым имеются результаты рядовых и внешних контрольных анализов. Контролю подлежат 30–40 проб по каждому классу содержаний, по которому выявлены систематические расхождения. При наличии СОС, аналогичных исследуемым пробам, их также следует включать в зашифрованном виде в партию проб, сдаваемых на арбитраж. Для каждого СОС должно быть получено 10–15 контрольных анализов.

Таблица 4

^ Предельно допустимые среднеквадратические погрешности по классам содержаний

Компонент

Класс

содержаний компонентов в руде, % (Ag, Аu, Se и Те, г/т)*

Предельно допустимая относительная среднеквадратическая погрешность, %

Компонент

Класс

содержаний компонентов в руде, % (Ag, Аu, Se и Те, г/т)*

Предельно допустимая относительная среднеквадратическая погрешность, %
  1   2   3   4   5   6



Скачать файл (599 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru