Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по графическим редактором - файл Лекция 1 Граф.ред..doc


Лекции по графическим редактором
скачать (3939.7 kb.)

Доступные файлы (7):

Лекция 1 Граф.ред..doc200kb.16.12.2009 13:02скачать
Лекция 2 Граф.ред. 3D - модель.doc1080kb.16.12.2009 13:02скачать
Лекция 3 Граф. ред.doc1485kb.15.12.2009 22:05скачать
Лекция 4 Граф. ред..doc634kb.15.12.2009 22:06скачать
Лекция 6.docскачать
Лекция 7AutoCAD 3D-модель.doc1173kb.15.12.2009 22:06скачать
Лекц Параметризация.doc416kb.15.12.2009 22:03скачать

содержание
Загрузка...

Лекция 1 Граф.ред..doc

Реклама MarketGid:
Загрузка...
Лекция 1

Тема:

Предмет Графические редакторы (ГР). . Основные пакеты графических программ, их особенности и применимость для различных областей сервиса.. Основные понятия.

Графические редакторы (ГР). Компьютерная графика (КГ) – это дисциплина представляющая синтез информатики и графических дисциплин, рассматривающая и изучающая средства представления графической информации при помощи компьютера.



Введение



Представление данных на мониторе компьютера в графическом виде впервые было реализовано в середине 50-х годов для больших ЭВМ, применявшихся в научных и военных исследованиях. С тех пор графический способ отображения данных стал неотъемлемой принадлежностью подавляющего числа компьютерных систем, в особенности персональных. Графический интерфейс пользователя сегодня является стандартом “де-факто” для программного обеспечения разных классов, начиная с операционных систем.

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычислительных комплексов, – компьютерная графика.

Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.
^

Виды КГ различают


по назначению (области применения):

    1. Научная графика – видуализация результатов научных исследований;

    2. Деловая графика – представление различных данных в виде схем, диаграмм, гистограмм и т.п.;

    3. Инженерная графика – представляет большие возможности для систем автоматизации проектирования, моделирования и наглядного представления изделий и услуг, любых инженерных расчетов, сопутствующих проектированию;

    4. Иллюстративная графика – произвольные рисунки необходимые в рекламной, издательской деятельности и в индустрии развлечений;

5. Мультимедийная графика – комплекс программных средств, объединяющих в одном документе разнородную информацию: текстовую, графическую и звук (анимация видеорядов, создание рекламных роликов изделий и услуг, а также обучающих систем)

На специализацию в отдельных областях указывают сами названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие.


по способу формирования изображения:

Несмотря на то что для работы с компьютерной графикой существует множество классов программного обеспечения, различают всего три вида компьютерной графики. Это растровая графика, векторная графика и фрактальная графика. Они отличаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

 

^ Растровая компьютерная графика.

Растровую графику применяют при разработке электронных (мулътимедийных ) и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели используют сканированные иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических растровых редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображений, сколько на их обработку. В Интернете пока применяются только растровые иллюстрации.

 

^ Векторная компьютерная графика.

Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще. Существуют примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило, поскольку художественная подготовка иллюстраций средствами векторной графики чрезвычайно сложна.

 

^ Фрактальная компьютерная графика.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

 

Вывод:


        1. Растровая КГ – используется в иллюстративной графике;

        2. Векторная КГ – оперирует геометрическими объектами и используется в конструкторских документах, плакатах, шрифтах;

        3. Фрактальная КГ – (используется ограниченно) создает образы на основании математического аппарата.

по способу отображения объекта:

            1. 2D-графика – двухмерная модель (чертежи, плакаты);

2. 3D-графика – трехмерная модель (наглядное изображение изделия)
Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических

объектов.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика.

^

Растровая графика



Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При

этом следует различать:

· разрешение оригинала;

· разрешение экранного изображения;

· разрешение печатного изображения.

^ Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch – dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

^ Разрешение экранного изображения. Для экранных копий изображения элементарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20–21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640х480,

800х600,1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек.

Расстояние между соседними точками люминофора у качественного монитора составляет 0,22–0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150–200 dpi, для вывода на фотоэкспонирующем устройстве 200–300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с

оригиналом, эти величины следует умножить на коэффициент масштабирования.

^ Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется

числом линий на дюйм (lines per inch – Ipi) и называется

линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией (AM).

^ Интенсивность тона (так называемую светлоту) принято подразделять на 256 уровней. Большее число градаций не воспринимается зрением человека и является избыточным. Меньшее число ухудшает восприятие изображения (минимально допустимым для качественной полутоновой иллюстрации принято значение 150 уровней). Нетрудно подсчитать, что для воспроизведения 256 уровней тона достаточно иметь размер ячейки растра 256 = 16 х 16 точек.

При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов. Для лазерных принтеров рекомендуемая линиатура составляет 65-100 Ipi, для газетного производства – 65-85 lpi, для книжно-журнального – 85-133 lpi, для художественных и рекламных работ – 133-300 lpi.

При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол.

Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 lpi уже недостаточно разрешения 16х150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра.

Таким образом, коэффициент, учитывающий поправку на угол поворота растра, для цветных изображений составляет 1,06.

^ Динамический диапазон. Качество воспроизведения тоновых изображений

принято оценивать динамическим диапазоном (D). Это оптическая плотность, численно равная десятичному логарифму величины, обратной коэффициенту пропускания (для оригиналов, рассматриваемых “на просвет”, например слайдов) или коэффициенту отражения (для прочих оригиналов, например полиграфических отпечатков).

Для оптических сред, пропускающих свет, динамический диапазон лежит в пределах от 0 до 4. Для поверхностей, отражающих свет, значение динамического диапазона составляет от 0 до 2. Чем выше динамический диапазон, тем большее число полутонов присутствует в изображении и тем лучше качество его восприятия.

^ Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в передаче цветов и полутонов. Однако размеры файлов растровых иллюстраций стремительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего промотра (стандартный размер 10х15 см, оцифрованный с разрешением 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с включенным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4

занимает 120-150 Мбайт.

^ Масштабирование растровых изображений. Одним из недостатков растровой графики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует

определенное количество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточным для качественной визуализации при масштабировании.

Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселизации в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера

иллюстрации происходит не за счет масштабирования точек, а путем добавления необходимого числа промежуточных точек.



Рисунок 4 Эффект пикселизации при масштабировании растрового изображения


^

Векторная графика



Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения.

Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства,

параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий.

Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

^ Математические основы векторной графики

Рассмотрим подробнее способы представления различных объектов в векторной графике.

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.



Рисунок 5 Объекты векторной графики

^ Прямая линия. Ей соответствует уравнение y=kx+b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров.

^ Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x1 и х2 начала и конца отрезка.

Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба.

Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.

^ Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x3 имеет точку перегиба в начале координат (рис. 15.5).

Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами.

Описание ее отрезка потребует на два параметра больше.



Рисунок 6 Кривая третьего порядка (слева) и кривая Безье (справа)

^ Кривые Безье. Это особый, упрощенный вид кривых третьего порядка (см.

рис. 6). Метод построения кривой Безье (Bezier) основан на

использовании пары касательных, проведенных к отрезку линии в ее окончаниях.

Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними

удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка.

Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых

управляют кривой.


^

Растровая и векторная графика



Таким образом, выбор растрового или векторного формата зависит от целей и задач работы с изображением. Если нужна фотографическая точность цветопередачи, то предпочтительнее растр. Чертежи, логотипы, схемы, элементы оформления удобнее представлять в векторном формате. Понятно, что и в растровом и в

векторном представлении графика (как и текст) выводятся на экран монитора или печатное устройство в виде совокупности точек. Существует тенденция к сближению.

^

Далее следовало бы рассмотреть следующие вопросы:

Форматы графических данных

Цвет и цветовые модели

Программные средства создания растровых изображений

Программы векторной графики

Программные средства обработки трехмерной графики


В настоящее время получили широкое распространение графические редакторы: ^ AutoCAD, SolidWork, КОМПАС, WinMashin, CorelDRAW, Photoshop и другие.

Мы начнем изучение графических редакторов и их применение на основе пакета КОМПАС-5.11 – продукта отечественной фирмы АСКОН – одной из лидирующих фирм в области разработки систем автоматического проектирования.

Это универсальный конструкторский редактор с полной поддержкой отечественных стандартов.

Графический редактор КОМПАС – это стандартное приложение Windows.

Рабочий экран имеет структуру, похожую на другие приложения.

За неимением времени на глубокое рассмотрение на следующей лекции перейдем к трехмерному моделированию.


^

Форматы графических данных

Цвет и цветовые модели

Программные средства создания растровых изображений

Программы векторной графики

Программные средства обработки трехмерной графики



В настоящее время получили широкое распространение графические редакторы: ^ AutoCAD, SolidWork, КОМПАС, WinMashin, CorelDRAW, Photoshop и другие.







Скачать файл (3939.7 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru