Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Решения задач по Кузнецову - файл Дифур.doc


Загрузка...
Решения задач по Кузнецову
скачать (5601.3 kb.)

Доступные файлы (40):

gr9v.doc960kb.25.12.2007 23:08скачать
Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать
Векторный анализ.doc287kb.13.03.2007 23:53скачать
Графики.doc313kb.04.12.2006 04:38скачать
Дифур.doc318kb.11.12.2006 23:32скачать
Дифференцирование.doc157kb.09.12.2006 19:17скачать
Интегралы.doc297kb.15.12.2006 17:10скачать
1.1-1.31.ang.doc148kb.26.12.2007 00:15скачать
2.1-2.31.ang.doc116kb.26.12.2007 00:15скачать
3.1-3.31.ang.doc128kb.26.12.2007 00:15скачать
z10.doc114kb.26.12.2007 00:13скачать
z11.doc96kb.26.12.2007 00:14скачать
z12.doc128kb.26.12.2007 00:13скачать
z13.doc119kb.26.12.2007 00:14скачать
z15.doc140kb.26.12.2007 00:14скачать
z16.doc145kb.26.12.2007 00:14скачать
z17.doc111kb.26.12.2007 00:14скачать
z18.doc126kb.26.12.2007 00:14скачать
z19.doc112kb.26.12.2007 00:14скачать
z20.doc154kb.26.12.2007 00:15скачать
z2.doc167kb.26.12.2007 00:12скачать
z2-p.doc91kb.26.12.2007 00:11скачать
z3.doc112kb.26.12.2007 00:12скачать
z4.doc166kb.26.12.2007 00:13скачать
z5.doc135kb.26.12.2007 00:13скачать
z6.doc124kb.26.12.2007 00:13скачать
z7.doc108kb.26.12.2007 00:13скачать
z8.doc132kb.26.12.2007 00:13скачать
z9.doc121kb.26.12.2007 00:13скачать
Аналитическая геометрия.doc1209kb.31.01.2007 17:11скачать
Векторный анализ.doc1113kb.29.01.2007 16:27скачать
Графики.doc652kb.30.11.2006 20:01скачать
Дифур.doc6903kb.30.11.2006 19:59скачать
Дифференцирование.doc783kb.19.11.2006 23:54скачать
Интегралы.doc1486kb.30.11.2006 20:03скачать
Кратные интегралы.doc1136kb.27.01.2007 17:29скачать
Линейная алгебра.doc1107kb.31.01.2007 20:04скачать
Пределы.doc9243kb.06.12.2006 21:11скачать
Ряды.doc1091kb.30.01.2007 00:11скачать
Пределы.doc156kb.06.02.2007 00:40скачать

Дифур.doc

  1   2   3
Реклама MarketGid:
Загрузка...

При необходимости более детального просмотра увеличьте масштаб документа!

www.otlichka.ru

§ 5.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

  1. Основные понятия теории дифференциальных уравнений. Задача Коши для дифференциального уравнения первого по­рядка. Формулировка теоремы существования и единственности решения задачи Коши.

  2. Дифференциальные уравнения первого порядка: с разде­ляющимися переменными, однородные и приводящиеся к ним.

  3. Линейные уравнения первого порядка, уравнение Бернулли.

  4. Уравнения в полных дифференциалах.

  5. Приближенное интегрирование дифференциальных урав­нений первого порядка методом изоклин.

  6. Дифференциальные уравнения высших порядков. Задача Коши. Формулировка теоремы существования и единственно­сти решения задачи Коши. Общее и частное решения. Общий и частный интегралы.

  7. Дифференциальные уравнения, допускающие понижение порядка.

  8. Линейный дифференциальный оператор, его свойства. Линейное однородное дифференциальное уравнение, свойства его решений.

  9. Линейно-зависимые и линейно-независимые системы функций. Необходимое условие линейной зависимости системы функций.




  1. Условие линейной независимости решений линейного од­нородного дифференциального уравнения.

  2. Линейное однородное дифференциальное уравнение. Фундаментальная система решений. Структура общего решения.

  3. Линейное неоднородное дифференциальное уравнение. Структура общего решения.

  4. Метод Лагранжа вариации произвольных постоянных.

  5. Линейные однородные дифференциальные уравнения с постоянными коэффициентами (случай простых корней харак­теристического уравнения).

  6. Линейные однородные дифференциальные уравнении с постоянными коэффициентами (случай кратных корней харак­теристического уравнения).

  7. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами. Метод подбора.

§ 5.2. ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

  1. Пусть — решение дифференциального уравнения . Показать, что введение новой искомой функции приводит к дифференциальному уравнению, допускаю­щему понижение порядка.

  2. Написать уравнение линии, на которой могут находиться точки перегиба графиков решений уравнения .

  3. Написать уравнение линии, на которой могут находиться точки графиков решений уравнения , соответствую­щие максимумам и минимумам.

Как отличить максимум от минимума?

  1. Линейное дифференциальное уравнение останется ли­нейным при замене независимой переменной , где функция произвольная, но дифференцируемая достаточное число раз. Доказать это утверждение для линейного дифферен­циального уравнения второго порядка.

  2. Доказать, что линейное дифференциальное уравнение остается линейным при преобразовании искомой функции



Здесь — новая искомая функция , и — про­извольные, но достаточное число раз дифференцируемые функции.

6) Составить общее решение уравнения , если известно ненулевое частное решение этого уравнения.

7) Показать, что произвольные дважды дифференцируемые функции и являются решениями линейного диффе­ренциального уравнения



8) Составить однородное линейное дифференциальное уравнение второго порядка, имеющее .

Показать, что функции и линейно независимы в интер­вале .

Убедиться в том, что определитель Вронского для этих функ­ций равен нулю в точке . Почему это не противоречит необ­ходимому условию линейной независимости системы решений линейного однородного дифференциального уравнения?

9) Найти общее решение неоднородного линейного диффе­ренциального уравнения второго порядка, если известны три линейно-независимые частные его решения , , ?,.

  1. Доказать, что для того чтобы любое решение линейно­го однородного дифференциального уравнения с постоянными коэффициентами удовлетворяло условию, , необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные действительные части.


§ 5.3. РАСЧЕТНЫЕ ЗАДАНИЯ

Задача 1. Найти общий интеграл дифференциального уравнения. (Ответ представить в виде

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

Задача 2. Найти общий интеграл дифференциального уравнения.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.


Задача 3. Найти общий интеграл дифференциального уравнения.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. .

Задача 4. Найти решение задачи Коши.

1. 2. 3. 4. 5. 6.

7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

Задача 5. Решить задачу Коши.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

  1   2   3



Скачать файл (5601.3 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru