Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекция - Станки сверлильно-расточной группы - файл 1.doc


Лекция - Станки сверлильно-расточной группы
скачать (264 kb.)

Доступные файлы (1):

1.doc264kb.13.12.2011 05:16скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
СТАНКИ СВЕРЛИЛЬНО-РАСТОЧНОЙ ГРУППЫ

ТИПЫ СВЕРЛИЛЬНЫХ СТАНКОВ
Сверлильные станки предназначены для сверления отверстий, нарезания в них резьбы метчиком, растачивания и при­тирки отверстий, вырезания дисков из листового материала и т. д. Эти операции выполняют сверлами, зенкерами, развертками и другими подобными инструментами.Существуют следующие типы универсальных сверлильных станков.

1. Одношпиндельные настольно-сверлильные станки для обра­ботки отверстий малого диаметра. Станки широко применяют в приборостроении. Шпиндели этих станков вращаются с большой частотой.

2. Вертикально-сверлильные станки (основной и наиболее рас­пространенный тип) применяют преимущественно для об­работки отверстий в деталях сравнительно небольшого размера. Для совмещения осей обрабатываемого отверстия и инструмента на этих станках предусмотрено перемещение заготовки относи­тельно инструмента.

3. Радиально-сверлильные станки используют для сверления отверстий в деталях больших размеров. На этих станках совме­щение осей отверстий и инструмента достигается перемещением шпинделя станка относительно неподвижной детали.

4. Многошпиндельные сверлильные станки обеспечивают зна­чительное повышение производительности труда по сравнению с одношпиндельными станками.

5. Горизонтально-сверлильные станки для глубокого сверления.

К группе сверлильных станков можно также отнести центро­вальные станки, которые служат для получения в торцах загото­вок центровых отверстий. Основными размерами сверлильных стан­ков являются наибольший условный диаметр сверления, размер конуса шпинделя, вылет шпинделя, наибольший ход шпинделя, наибольшие расстояния от торца шпинделя до стола и до фунда­ментной плиты и др.
^ ВЕРТИКАЛЬНО-СВЕРЛИЛЬНЫЙ СТАНОК 2Н135

На станине 1 вертикально-сверлильного станка (рис. 11.1) размещены основные части станка. Станина имеет вер­тикальные направляющие, по которым перемещаются стол 9 и сверлильная головка 3, несущая шпиндель 7 и двигатель 2. Управление коробками скоростей и подач осуществляется руко­ятками 4, ручная подача — штурвалом 5. Глубину обработки конт­ролируют по лимбу 6. В нише размещены электрооборудование и противовес. В некоторых станках электрооборудование выносят в отдельный шкаф 12. Фундаментная плита 11 служит опорой станка. Стол 9 станка перемещают по направляющим с помощью винтового механизма маховичком 10. Охлаждающая жидкость подается электронасосом по шлангу 8.

Станок является универсальным вертикально-сверлильным и относится к конструктивной гамме станков средних размеров 2Н118, 2Н125, 2Н135и2Н150 с условным диаметром сверле­ния соответственно 18, 25, 35 и 50 мм. Станки этой гаммы широко унифицированы между собой. Агрегатная компоновка и возможность автоматизации цикла обеспечивают создание на их базе специальных стан­ков.
^ Техническая характеристика станка

Наибольший диаметр сверления, мм ……………………… 35

Конус шпинделя ………………………………...... Морзе №4

Наибольшее осевое перемещение шпинделя, мм …….. 250

Вылет шпинделя, мм ………………………………….. 300

Расстояние от конца шпинделя до стола, мм ………….. 30 — 750

Частота вращения шпинделя, мин-1 ………………....... 31,5 — 1400

Число частот вращения шпинделя …………………….. 12

Подача, мм/об ………………………………………… 0,1 — 1,2

Число подач .................................................................... 9

Мощность электродвигателя главною движения, кВт 4,5

Частота вращения вала электродвигателя мин-1 1450

^ Движения в станке (рис. 11.2). Главное движение (вращение шпинделя) осуществ­ляется от вертикально расположенного электродвигателя М (N=4,5 кВт; n=1450мин-1) через зубчатую передачу и коробку скоростей (рис. 11.2) Коробка скоростей с помощью одного тройного блока зубча­тых колес и двух двойных бло­ков сообщает шпинделю 12 различных значений частот вращения шпинделя. Послед­ний вал коробки скоростей представляет собой полую гиль­зу, шлицевое отверстие кото­рой передает вращение шпин­делю станка.

Уравнение кинематической цепи для максимальной частоты вра­щения шпинделя:

1400 мин-1

^ Движение подачи передается от шпинделя через зубчатые ко­леса , зубчатую передачу , коробку подач, червячную пару и реечную передачу (z = 13, m = 3) на гильзу шпинделя.

Коробка подач обеспечивает получение девяти различных подач. Уравнение кинематической цепи для максимальной подачи:

Smax = 1 об. шпинделя = 1,6 мм/об.

^ Вспомогательные движения. Коробки скоростей и подач, шпин­дель и механизмы подач смонтированы внутри сверлильной Головки, имеющей возможность перемещаться вдоль колонны при

вращении соответствующей рукоятки через червячную () и реечную (z = 14; m = 3) пары. Вертикальное перемещение стола можно производить также вручную поворотом рукоятки через коническую и винтовую пары.


Рис. 11.1. Вертикально-сверлильный станок



Рис.11.2. Кинематическая схема станка 2Н135
^ РАДИАЛЬНО-СВЕРЛИЛЬНЫЙ СТАНОК 2М55

Станок (рис. 11.3) предназначен для сверления, зенкерования и развертывания отверстий и нарезания резьбы в за­готовках крупных деталей при единичном и серийном производстве.
^ Техническая характеристика станка

Наибольший диаметр сверления, мм .............. 50

Конус шпинделя ....................... Морзе № 5

Вылет шпинделя (расстояние от оси шпинделя до наружной по­верхности колонны), мм ................... 375—1600

Частота вращения шпинделя, мин-1 .............. 20—2000

Подача, мм/об ........................ 0,056—2,5

Мощность электродвигателя главного движения, кВт ...... 4

Масса, кг .......................... 4700

Обрабатываемую заготовку устанавливают на приставном сто­ле 6 или непосредственно на фундаментной плите 1. Инструмент закрепляют в шпинделе станка, а затем устанавливают относи­тельно обрабатываемой заготовки, поворачивая траверсу 4 вместе с поворотной наружной колонной 2 и перемещая шпиндельную головку 5 по траверсе. В зависимости от высоты заготовки тра­верса может быть поднята или опущена. Станок имеет механизи­рованные зажимы шпиндельной головки, траверсы и поворотной наружной колонны.

^ Движения в станке. Главным движением в радиально-сверлильных стайках является вращение шпинделя, а движением подачи — осевое перемещение шпинделя вместе с пинолью (гиль­зой). К вспомогательным движениям относятся: поворот траверсы вместе с поворотной наружной колонной и последующее закрепле­ние на неподвижной внутренней колонне, вертикальное переме­щение по наружной колонне и закрепление траверсы на нужной высоте, перемещение и закрепление шпиндельной головки на траверсе, переключение скоростей и подач шпинделя и т. д.


Рис. 11/3. Радиально-сверлильный станок 2М55:

1 — фундаментная плита; 2 — поворотная наружная колонна; 3 — механизм перемещения и зажима траверсы; 4 — траверса; 5 — шпиндельная головка; 6 — приставной стол



Рис. 11.4. Переносной радиально-сверлильиый станок

Горизонтальное перемещение шпиндельной головки по траверсе вручную производят с помощью маховичка и реечной передачи. Механическое вертикальное перемещение траверсы по поворотной колонне осуществляется отдельным электродвигателем. Закре­пление траверсы по окончании перемещения, а также освобождение траверсы перед началом перемещения происходит автома­тически.

Закрепление поворотной наружной колонны на неподвижной внутренней, а также закрепление Шпиндельной головки на направ­ляющих траверсы происходит с помощью гидромеханизмов, уп­равляемых кнопками. Нажим на одну кнопку вызывает закрепле­ние колонны и головки, нажим на другую — их освобождение. Сила закрепления регулируется продолжительностью нажи­ма на кнопку. Траверсу с полой колонной поворачивают вруч­ную.

Выпускают переносные радиально-сверлильные станки (рис. 11.4), которые допускают обработку отверстий в различно раположенных плоскостях.
^ МНОГОШПИНДЕЛЬНЫЕ СВЕРЛИЛЬНЫЕ СТАНКИ И СТАНКИ ДЛЯ ГЛУБОКОГО СВЕРЛЕНИЯ

Многошпиндельные сверлильные станки. Существуют три основных вида многошпиндельных сверлильных стан­ков:

а) станки с расположением шпинделей в один ряд (рис. 11.5, а) для последовательного сверления в одной детали отверстий различного диаметра или для обработки одного отвер­стия различными инструментами;

б) станки с головками колокольного типа с переставными шар­нирными шпинделями (рис. 11.5, б) для одновременной обработки нескольких отверстий;

в) агрегатные многошпиндельные станки для массового произ­водства.

^ Станки для глубокого сверления (токарно-сверлильные) пред­назначены для сверления и рассверливания отверстий, длина ко­торых во много раз превосходит их диаметр. Конструкция станков зависит от длины и диаметра обрабатываемого отверстия, длины и массы заготовки, а также от масштаба производства. Станки мо­гут быть одно- и двусторонними, т. е. предназначенными для об­работки отверстий с одной или с обеих сторон одновременно. В станках для сверления отверстий малого диаметра при длине не больше 1000 мм вращается обрабатываемая заготовка (рис. 11.5, в). Большие, тяжелые заготовки остаются во время обработки неподвижными, а инструмент (специальное сверло и борштанга с расточными резцами) получает вращение и осевую подачу (рис. 11.5, г).



Рис. 11.5. Многошпиндельные сверлильные станки и станки для глубокого сверления
^ РАСТОЧНЫЕ СТАНКИ

На расточных станках можно сверлить, рас­сверливать, зенкеровать, растачивать и развертывать от­верстия, подрезать торцы резцами, фрезеровать поверхности и пазы, нарезать резьбу метчиками и резцами и т. д. (рис. 11.6).

Расточные станки подразделяют на горизонтально-расточные, координатно-расточные и алмазно-расточные (отделочно-расточные). Алмазно-расточные станки применяют для тонкой (алмазной) обработки, на них можно растачивать отверстия с отклонением поверхности от цилиндричности в пределах 3—5 мкм. Ко­ординатно-расточные станки предназначены для обработ­ки точных отверстий в тех случаях, когда нужно полу­чить точные межцентровые расстояния или расстояния осей отверстий от базовых поверхностей (в пределах 0,005— 0,001 мм).


Рис. 11.6. Работы, выполняемые на горизонтально-расточных станках:

а — растачивание цилиндрических отверстий; б — сверление отверстий; в — обработка вертикальной поверхности торцовой фрезой; г — обработка горизонтальных плоских фасонных поверхностей; д — обработка торца резцом; е — нарезание внутренней резьб резцом
^ УНИВЕРСАЛЬНЫЙ ГОРИЗОНТАЛЬНО-РАСТОЧНЫЙ СТАНОК 2620В

Станок (рис. 11.7) предназначен для обработки дета­лей больших размеров и массы. На нем можно растачивать, сверлить, зенкеровать и развертывать отверстия, нарезать наружну: и внутреннюю резьбы, цековать и фрезеровать поверхности. На стайке целесообразно обрабатывать детали, у которых нужно растачивать несколько параллельно расположенных отверстий с точным расстоянием между их осями. Станок имеет неподвижную переднюю стойку, поворотный стол с продольным и поперечны перемещением относительно оси шпинделя и планшайбу с радиальным суппортом.

^ Техническая характеристика станка

Диаметр выдвижного шпинделя, мм ................................................... 90

Размеры стола, мм:

длина ...................................... 1250

ширина .... ................................ 1120

Наибольшие перемещения стола, мм:

поперечное ............................. 1000

продольное ............................... 1090

Наибольшее вертикальное перемещение шпиндельной бабки, мм 1000

Наибольшая масса устанавливаемой заготовки, кг ........................... 2000

Наибольшее осевое перемещение выдвижного шпинделя, мм ....... 710

Частота вращения, мин-1:

шпинделя ..................................... 12,5—1600

планшайбы ............................. 8—200

Осевая подача шпинделя, мм/мин .................................................... 2,2—1760

Мощность электродвигателя главного движения, кВт ................... 8,5/10

Масса станка, т .................................................................................... 12,5

Принцип работы станка заключается в следующем. Инстру­мент крепят в шпинделе или в суппорте планшайбы, он получает главное движение — вращение. Заготовку устанавливают непо­средственно на столе или в приспособлении. Столу сообщается продольное или поперечное поступательное движение. Шпиндель­ная бабка перемещается в вертикальном направлении по перед­ней стойке (одновременно с ней вертикально перемещается опор­ный люнет на задней стойке). Расточный шпиндель получает по­ступательное перемещение (при растачивании отверстий, нареза­нии внутренней резьбы и т. п.). Суппорт планшайбы перемещается по планшайбе в радиальном направлении. Все эти движения являются движениями подач.


Рис. 11.7. Универсальный горизонтально-расточный станок 2620В:

1 — задняя стойка; 2 — люнет; 3 — станина; 4 — продольные салазки стола; 5 — поперечные салазки стола; 6 — поворотный стол; 7 — планшайба; S — радиальный суппорт; 9 — шпиндельная бабка; 10 — передняя стойка; 11 — шкаф электрооборудования; 12 — электромашинный агрегат

^ Движения в станке (рис. 11.8). Главное движение — враще­ние шпинделя и планшайбы. Шпиндель и планшайба станка вра­щаются от двухскоростного электродвигателя мощностью N = = 8,5/10 кВт через коробку скоростей с двумя тройными блоками зубчатых колес Б1 и Б2. Планшайба 4 начинает вращаться при включении муфты М1, которая приводит в движение зубчатое ко­лесо 21, свободно посаженное на валу IV. От вала IV через передачу получает вращение пустотелый вал VII и закрепленная на нем планшайба 4.

Уравнение кинематической цепи для минимальной частоты вращения планшайбы:

мин-1.

Шпиндель 6 получает вращение через колеса (как покакано на схеме) или через зубчатые колеса в зависимости от положения муфты М2.

Уравнение кинематической цепи для минимальной частоты вращения шпинделя:

мин-1

^ Подачи и быстрые установочные перемещения рабочих органов станка осуществляются от регулируемого электродвигателя М2 мощностью N = 2,1 кВт, работающего в системе генератор — двигатель. Подача и скорость установочных перемещений регулируются в широких пределах путем бесступенчатого изменения частоты вращения вала электродвигателя. Движение рабочих органов станка реверсируется также электродвигателем.

От этого электродвигателя могут осуществляться следующие механические подачи и установочные движения рабочих органов: осевая подача расточного шпинделя 6 и радиальная подача суп­порта 5, вертикальное перемещение шпиндельной бабки 3 и одно­временное перемещение люнета 1, поперечная и продольная по­дачи стола 2.

Осевое перемещение расточного шпинделя может осуществля­ться механически и вручную. Осевая подача расточного шпинделя сообщается от электродвигателя постоянного тока М2 мощностью N = 2,1 кВт через цилиндрическую пару , электромагнитную муфту М5, коническую пару , цилиндрические колесa , коническую передачу , муфту М6, цилиндрические колеса и ходовой винт с шагом р = 20 мм.

При нарезании резьбы необходимо, чтобы за один оборот шпин­деля осевое перемещение его было равно шагу нарезаемой резьбы. Расчетная кинематическая цепь при нарезании резьб начинается от шпинделя 6 и заканчивается его осевым перемещением. Необ­ходимый шаг нарезаемой резьбы обеспечивается подбором сменных зубчатых колес .

Радиальное перемещение суппорта планшайбы осуществляется через планетарный механизм. Корпус планетарного механизма вращается от вала VII планшайбы через косозубую передачу .

Кроме того, центральное зубчатое колесо z = 16 этого механизма вращается от вертикального вала через червячную пару , муфту М8 и цилиндрическую пару . Планетарный механизм, суммируя оба эти движения, вращает вал с зубчатым колесом z = 35 и через зубчатую передачу , конические колеса и червячно-реечную передачу перемещает радиальный суп­порт планшайбы.

Суппорт расположен на планшайбе, которая может вращаться с различной частотой n'. Это усложняет механизм подач суппорта. Для осуществления движения суппорта на планшайбу свободно насажено зубчатое колесо z = 100, которое получает вращение от зубчатого колеса z = 35, посаженного на левом ведомом валу планетарной передачи. У этой передачи для данного станка ведущими являются корпус (водило) и вал с зубчатым колесом z = 16. Обозначим частоту вращения вала с колесом z = 16 через n1 частоту вращения корпуса (водила) no, а частоту вращения ведомого вала через n4. Для определения частоты вращения валов планетарной передачи используют формулу Виллиса:

,

где m — число наружных зацеплений (для данного случая m = 2).

Подставив в формулу Виллиса значения чисел зубьев зубча­тых колес z1, z2, z3 и z4, получим

.

Отсюда выводим формулу для определения частоты вращения ведомого вала:

.

Теперь находим частоту вращения зубчатого колеса z = 100 при выключенном механизме подач, т. е. при n1 = 0 и при план­шайбе, вращающейся с частотой n':

,



тогда .

Следовательно, частота вращения зубчатого колеса z = 100 при выключенном механизме подач будет совпадать с частотой вра­щения планшайбы, т. е. зубчатое колесо z = 100 будет вращаться синхронно с планшайбой и суппорт не будет иметь радиального перемещения. Для определения величин радиального перемещения суппорта необходимо знать передаточное отношение i -передачи от вала с зубчатым колесом z = 16 до вала с колесом z = 23:

при nо = 0 n4 = , т. е. .

Тогда уравнение кинематической цепи подачи радиального суппорта будет иметь вид

мм/мин.

Вертикальное перемещение шпиндельной бабки осуществля­ется вертикальным ходовым винтом с шагом р = 8 мм при вклю­ченной муфте М3.

Вертикальное перемещение люнета производится ходовым вин­том с шагом р = 6 мм одновременно и синхронно с вертикальным перемещением шпиндельной бабки. Точное положение люнета относительно оси шпинделя по высоте корректируют вручную, вращая гайку, перемещающую люнет.

Продольное перемещение стола осуществляется ходовым вин­том с шагом р = 10 мм при включенной муфте М4, поперечное перемещение стола — от электродвигателя N = 2,1 кВт с помо­щью винта с шагом р = 8 мм. Стол поворачивается либо от от­дельного электродвигателя МЗ мощностью N — 1,5 кВт, либо вручную.


Рис. 11.8. Кинематическая схема станка 2620В
^ АЛМАЗНО-РАСТОЧНЫЕ СТАНКИ

На алмазно-расточных станках выполняют тонкое рас­тачивание точных цилиндрических и конических отверстий, а при наличии дополнительной оснастки их используют также для обработки торцов, канавок, фасонных поверхностей вращения и т. п. Алмазно-расточные станки подразделяют на вертикальные и горизонтальные, одно- и многошпиндельные. Горизонтальные стан­ки могут быть односторонними и двусторонними.

На алмазно-расточных станках обрабатывают детали при вы­соких скоростях резания (до 1000 м/мин), малых подачах (0,01 — 0,1, мм/об) и малых глубинах резания (0,05—0,5 мм). В качестве инструментов применяют алмазные и твердосплавные резцы.

^ Движения в станке (рис. 11.9). Главным движением в алмаз­но-расточных станках является вращение шпинделя с инструмен­том. Вертикальные одношпиндельные алмазно-расточные станки имеют разделенный привод главного движения, т. е. вращение шпинделю от коробки скоростей передается через ременную пере­дачу. В горизонтальных алмазно-расточных станках, предназначенных для более точных работ, коробка скоростей отсутствует; электродвигатель расположен вне станка, и шпинделям расточных головок вращение сообщается только с помощью ременной пере­дачи. Необходимая частота вращения шпинделя настраивается ступенчатыми или сменными шкивами.


Рис. 11.9. Алмазно-расточные станки: а — вертикальный; б — горизонтальный

Движение подачи в вертикальных одношпиндельных станках сообщается шпинделю, в горизонтальных односторонних и дву­сторонних станках — столу с установленным приспособлением для закрепления заготовки. Стол совершает сложный цикл рабо­чих и быстрых перемещений, подавая заготовку то к одним, то к другим шпиндельным головкам, установленным на мостиках. В специализированных алмазно-расточных станках движение по­дачи сообщается шпиндельным головкам, а заготовка остается не­подвижной. Для получения подач чаще всего используют гид­равлический привод, бесступенчато регулирующий подачу.

Точность вращения шпинделя в значительной степени определя­ет выходную точность обработки. Шпиндели монтируют на вы­сокоточных подшипниках качения или скольжения. Вращение на шпиндель для получения малых параметров шероховатости обрабатываемой детали передается ременной передачей. Шпиндель и закрепленные на нем детали обычно уравновешивают. Приме­нение гидравлической установки дает возможность не только при­менять бесступенчатое регулирование подачи, но также автомати­зировать цикл перемещения стола и другие вспомогательные опе­рации. Электродвигатели, насосы и другие механизмы станка вы­носят за пределы станка, что также способствует повышению точ­ности и уменьшению тепловых деформаций базовых деталей станка.

Тонкое (алмазное) растачивание имеет следующие достоин­ства: в порах обработанной поверхности отсутствуют абразивные зерна, наблюдаемые при обработке абразивным инструментом (шлифованием и хонингованием); высокая точность обработки отверстий, отклонение от кругдости 0,003—0,005 мм и параметр шероховатости поверхности Ra = 0,16 ... 0,63 мкм.
^ КООРДИНАТНО-РАСТОЧНЫЕ СТАНКИ

На координатно-расточных станках можно размечать и центровать, сверлить, развертывать и окончательно растачивать отверстия, обрабатывать фасонные контуры, фрезеровать торцы бобышек и др. Станки этого типа применяют для обработки точ­ных отверстий в тех случаях, когда расстояния между их осями или расстояния их осей до базовых поверхностей детали должны быть выдержаны с очень высокой точностью.

Точные расстояния между осями обработанных отверстий и принятыми базовыми поверхностями получают на этих станках без применения каких-либо приспособлений для направления инструмента. Для точного отсчета перемещений подвижных уз­лов станка координатно-расточные станки имеют специальные устройства: точные ходовые винты с лимбами и нониуса­ми, жесткие и регулируемые концевые меры вместе с ин­дикаторными устройствами, точные линейки в сочетании с оптическими приборами и индуктивные проходные вин­товые датчики. При этом применяют механические, оп­тико-механические, оптиче­ские, оптико-электрические и электрические системы.

Координатно-расточные станки бывают одно- и двухстоечные. Одностоечные координатно-расточные станки обычно снабжают крестовым столом, который может перемещаться в двух взаимно перпенди­кулярных направлениях (продольном и поперечном). Шпиндель имеет вращательное движение и движение подачи в осевом направ­лении. У двухстоечных координатно-расточных станков стол мо­жет перемещаться только в продольном направлении, а попе­речное перемещение по траверсе получает головка со шпинделем. Координатно-расточные станки можно использовать как из­мерительные машины для проверки размеров деталей и особо точ­ных разметочных работ. Во избежание температурных влияний окружающей среды на точность работы эти станки необходимо устанавливать в изолированном помещении, где поддерживается температура 20 °С.

Основной особенностью одностоечного координатно-расточного станка 2А450 (рис. 11.10) является то, что он оборудован оптиче­скими устройствами, позволяющими отсчитывать целую и дроб­ную части размера. Поэтому точность отсчета перемещений стола не зависит от механизмов, перемещающих стол, и не нарушается даже при изнашивании этих механизмов. В условиях нормальной эксплуатации станок обеспечивает точность установки межцент­ровых расстояний в прямоугольной системе координат 0,001 мм, в полярной системе — 5 угл. с.

Координаты отсчитывают с помощью точных масштабных зер­кальных валиков и оптических приборов. Зеркальные валики представляют собой стержни из коррозионно-стойкой стали, на которых нанесены тонкие винтовые риски с точным шагом. Поверхность валиков доведена до зеркального блеска. Координаты устанавливают по точным шкалам при наблюдении через специальные микроскопы. Зеркальный валик размещают на столе станка и перемещают вместе с ним. На рис. 11.11 показана схема хода лучей при наблюдении продольно расположенного размера. От осветительного элемента 3 на поверхность валика 2 направля­ется пучок света, который отражается от валика и, проходя, через ряд призм и линз, попадает в микроскоп 1. В микроскоп видна освещенная поверхность валика и риска 5. Риска может быть в положениях s1, s2 или s3. Для правильного отсчета положений стола его надо передвигать до тех пор, пока риска 5 не располо­жится точно между двумя неподвижными линиями 4 ви­зира (эти линии нанесены на тонкую стеклянную пластинку). Следовательно, если риска 5 видна в положениях sl или s3, то стол нужно сдвинуть так, чтобы риска заняла положе­ние s2.


Рис. 11.10. Координатно-расточный станок 2А450:

1 — станина; 2 — стойка; 3 — шпин­дельная бабка; 4 — стол

Перемещения измеряют с помощью шкал зеркальных валиков. Перемещения, равные целым миллиметрам, отсчитывают по масштабным линейкам с миллиметровыми делениями. Перемеще­ния, составляющие доли миллиметров, отсчитывают по лимбам, закрепленным на валиках со шкалами. Точность отсчетов зависит от точности шага рисок масштабного валика.

Сущность индуктивного метода отсчета координат, который применяют на некоторых координатно-расточных станках, состоит в следующем. На станке имеется индуктивный винтовой механизм (рис. 11.12), который содержит винт-якорь 5 и датчик, состоящий из проходных гаек 1 и 2 с шагом 5 мм. Шаг винта-якоря также равен 5 мм. Датчик прикреплен к столу и переме­щается вместе с ним. Гайки являются сердечниками, на которые намотаны катушки, создающие в гайках магнитный по­ток при прохождении тока. Между наружной поверхностью винта и внутренней поверхностью гайки имеется радиальный зазор 0,3— 0,4 мм.

Каждая из гаек-сердечников смещена относительно другой на полшага. Суммарные воздушные зазоры между торцами витков гаек 1 и 2 и винта-якоря 5 будут равны и минимальны лишь вод­ном относительном положении. Это положение повторяется на каж­дом шаге винта-якоря. Во всех других случах при перемещении в пределах шага увеличение зазоров в одном полудатчике сопро­вождается уменьшением их в другом. Это приводит к изменению силы тока в цепи электроиндикатора (микроамперметра со шка­лой ±100 мкА). Когда зазоры в обоих полудатчиках равны, сила тока в цепи электроиндикатора будет равна нулю. Таким образом, при перемещении датчика вместе со столом относительно винта будет фиксироваться точное положение стола через каждые 5 мм.




Рис. 11.11. Оптическая система для отсчетов положения стола



Рис. 11.12. Индуктивный винтовой

механизм

Установка точного положения стола в пределах Меньше 5 мм (до 0,001 мм) достигается следующим образом. При наборе коорди­нат винт-якорь 5 поворачивают вокруг оси маховичком 9 через конические колеса 16—17 и цилиндрическую передачу 18—7. Величину поворота винта-якоря наблюдают по лимбу. Затем при работе станка, когда стол движется, датчик точно фиксирует ну­левое положение.

Таким образом, создается непрерывная индуктивная шкала от­счета координат. Учитывая, что датчик при движении со столом фиксирует каждый шаг винта-якоря, т. е. каждые 5 мм, необходи­мо, чтобы электроиндикатор включался только перед требуемым витком. Для этого служит передвижной упор 21, который устанав­ливают при наборе координат в соответствии с требуемым разме­ром напротив заданного витка винта-якоря. Упор 21 закреплен на гайке 19, находящейся на вспомогательном винте 6. Винт 6 вра­щается от маховичка 9 через конические колеса 16—17.

На датчике закреплены два микропереключателя 4 и 3, ко­торые последовательно срабатывают при нажатии на упор 22 во время движения стола. Микропереключатель 4 за 2,5—3 мм до требуемой координаты выключает быстрый ход стола или салазок и одновременно включает медленную рабочую подачу. Микропере­ключатель 3 срабатывает за 0,8—1,2 мм до заданной координаты, подготовляя реле для подачи команды «Стоп» электродвигателю привода стола, а также включает электроиндикатор и его сиг­нальную лампочку. При достижении столом заданного размера дат­чик подает сигнал поляризованному реле, а от него через про­межуточное реле магнитному пускателю, отключающему электро­двигатель привода подачи, и стол автоматически останавливается. Точность останова зависит от скорости движения стола и состав­ляет ±0,02 мм.

Для наладки на требуемую координату служит лимб 10, при­водимый во вращение маховичком 9 через червячную пару и пока­зывающий величину в миллиметрах, лимб 11, указывающий доли миллиметров, и нониусный лимб 15, с помощью которого устанав­ливают тысячные доли миллиметров. Точно винт 5 и его лимбы устанавливают рукояткой 13 через зубчатые колеса 12 и 14.

После обработки первого базового отверстия лимб 11 устанав­ливают в нулевое положение. Отключают лимб//фрикционной муфтой. Лимб 10 связывается с червячным колесом 8фрикционными вальцами, находящимися под воздействием пружин. Благодаря этому лимб можно также установить в нулевое положение. Поло­жение стола определяют по линейке 20.

Для автоматического исправления ошибок отсчетного меха­низма (неточность шага и биение винта-якоря, неточность электри­ческой системы механизма) имеется специальный корригирующий диск, который через рычажную систему в соответствии с заранее обнаруженными ошибками поворачивает нониусный лимб. Кон­струкция и принцип работы датчика для набора и установки по­перечных координат аналогичны рассмотренным.






Скачать файл (264 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru