Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Конспект лекций для экзамена по курсу Биофизика - файл 1.doc


Конспект лекций для экзамена по курсу Биофизика
скачать (722.5 kb.)

Доступные файлы (1):

1.doc723kb.06.12.2011 15:37скачать

содержание
Загрузка...

1.doc

  1   2   3   4
Реклама MarketGid:
Загрузка...
Биофизика
Конспект лекций
Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.

Химические реакции, как модель кинетических закономерностей. Кинетическая классификация химических реакций. Особенности кинетики биологических процессов. Примеры кинетических моделей биологических процессов.

Понятие стационарного состояния в кинетике биологических процессов. Устойчивость стационарного состояния. Критерий устойчивости. Оценка устойчивости системы, описываемой одним дифференциальным уравнением.

Кинетические модели, описываемые двумя дифференциальными уравнениями. Фазовая плоскость, фазовые траектории, изоклины, особые точки. Оценка устойчивости системы. Типы особых точек и их характеристика.

Химическая реакция с обратной связью. Построение простейшей математической модели. Определение координат особых точек, их типа и степени устойчивости.

Модель "Хищник – Жертва". Определение координат особых точек, их типа и степени устойчивости.

Мультистационарность. Понятие о биологических триггерах. Способы переключения в триггерных системах. Понятие о бифуркациях.

Автоколебательные процессы в биологических системах. Их свойства и условия возникновения.

Кинетика ферментативных реакций. Принципиальная схема ферментативной реакции. Математическое моделирование ферментативной реакции. Уравнение Михаэлиса-Ментен. Ингибирование ферментативных процессов.

Динамический хаос. Его характеристика. Динамический хаос и самоорганизующиеся системы. Значение динамического хаоса для самоорганизующихся систем.

Первый и второй законы термодинамики. Их формулировка и физический смысл. Обратимые и необратимые процессы.

Понятие термодинамического равновесия. Равновесные и неравновесные системы. Критерии эволюции системы к состоянию термодинамического равновесия.

Принципы экстремумов в термодинамике. Их сущность и значение.

Энтропия. Её физический смысл с позиций термодинамики и молекулярной физики. Связь энтропии и информации.

Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.

Понятие термодинамического равновесия. Общие свойства систем вблизи термодинамического равновесия.

Сравнительная характеристика стационарного состояния и термодинамического равновесия. Критерии эволюции системы к стационарному состоянию. Теорема Пригожина.

Термодинамический подход к анализу сопряжённых процессов. Связь между потоками, движущими силами и скоростью продуцирования энтропии при сопряжении. Соотношение Онзагера. Биологические примеры сопряжённых процессов.

Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.

Общие свойства систем вдали от термодинамического равновесия.

Диссипативные структуры: их классификация. Условия возникновения диссипативных структур. Характеристика отдельных видов диссипативных структур.

Информация в биологии.

Феномен белка в биофизике. Уникальность строения и свойств белка.

Элементарные взаимодействия в белках. Их виды. Ковалентные, координационные связи и силы Ван-дер-Ваальса. Их характеристика.

Элементарные взаимодействия в белках. Водородные связи и гидрофобные взаимодействия. Их характеристика.

Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие. Карты Рамачандрана.

Вторичная структура белка. Типы вторичной структуры, их особенности. Образование вторичной структуры белка.

Третичная структура белка. Классификация белков по типу третичной структуры.

Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.

Денатурация белка. Её термодинамическая характеристика. Этапы денатурации белка. Механизмы денатурации. Способы денатурации.

Самоорганизация белка. Этапы самоорганизации белка. Термодинамическая оценка процесса самоорганизации. Особенности процесса самоорганизации белка в условиях in vivo. Парадокс Левинталя, его сущность и разрешение.

Механизмы ферментативного катализа на примере работы сериновых протеаз.

Конформационные изменения в белке. Их значение для работы белка.

Внутримолекулярная динамика белка. Изменения конформации гемоглобина при оксигенации. Роль аллостерических регуляторов.

Прогнозирование и дизайн белковых структур.

Законы поглощения электромагнитного излучения веществом. Спектрофотометрия, её физические основы.

Спектроскопические методы в биофизике. Их физические основы, задачи спектроскопии, классификация спектроскопических методов.

Метод электронного парамагнитного резонанса. Физические принципы и применение в изучении биополимеров.

Метод ядерного магнитного резонанса. Физические принципы и применение в изучении биополимеров.

Метод мессбауэровской спектроскопии. Его физические принципы и использование в изучении биополимеров.

Использование поляризованного света в изучении биополимеров.

Рентгеноструктурный анализ. Его физические принципы и использование при изучении биополимеров.

Плазматическая мембрана. Её строение согласно жидкостно-мозаичной модели. Липиды плазматической мембраны. Их характеристика. Физические механизмы формирования бислоя липидов. Общие принципы пространственной организации липидного бислоя.

Фазовые переходы в биологических мембранах. Их характеристика и функциональное значение.

Свободнорадикальное окисление в биологических мембранах. Характеристика процесса и его значение для клетки.

Транспорт веществ через мембраны. Термодинамическая характеристика процесса. Ионное равновесие в мембранных системах. Уравнение Нернста для равновесного потенциала.

Электродиффузионная теория пассивного транспорта. Уравнение Нернста-Планка. Его вывод и решение.

Пассивный транспорт неполярных веществ. Уравнение Нернста-Планка для транспорта неполярных веществ. Закон Фика. Механизмы транспорта неполярных соединений.

Уравнение Гольдмана. Его вывод и физический смысл. Понятие проницаемости и проводимости мембраны.

Классификация транспорта веществ через мембраны. Термодинамическая и биологическая характеристика отдельных видов транспорта.

Ионный транспорт через каналы. Основные свойства ионных каналов. Общий план строения ионного канала. Физические принципы работы ионного канала.

Регуляция работы ионных каналов. Механизмы регуляции. Фармакологическая блокада ионных каналов.

Облегчённая диффузия. Характеристика процесса.

Мембранный потенциал покоя. Его механизмы. Расчёт величины мембранного потенциала.

Мембранный потенциал действия. Механизмы и общие свойства мембранного потенциала действия. Расчёт величины мембранного потенциала действия.

Модель Ходжкина-Хаксли. Её характеристика и значение для биофизики клетки.

Молекулярные механизмы сопряжения окисления и фосфорилирования.

Молекулярные механизмы активного транспорта.

Молекулярная организация сократительного аппарата миофибрилл.

Мостиковая гипотеза мышечного сокращения. Рабочий цикл мостика, его этапы. Механизмы механохимического сопряжения в сократительном аппарате.

Механика и энергетика мышечного сокращения.

Миграция энергии и электронов в биологических структурах.

Фотобиологические процессы. Их значение для живой материи. Классификация фотобиологических процессов. Общие закономерности фотобиологических процессов.

Фотопревращения бактериородопсина. Их характеристика.

Фотоинформационные и фоторегуляционные процессы.

Фотодеструктивные процессы. Их общая характеристика. Фотосенсибилизация, её виды и механизмы. Основные типы фотодеструктивных изменений в биологических молекулах.

Фотодеструктивные процессы. Их общая характеристика. Фотосенсибилизация, её виды и механизмы. Действие ультрафиолетового излучения на биологические мембраны. Механизмы повреждения и их последствия.

Фотодеструктивные процессы. Действие ультрафиолетового излучения на нуклеиновые кислоты. Механизмы фотореактивации и фотозащиты.

Фотодеструктивные процессы. Их общая характеристика. Действие ультрафиолетового излучения на белки.

Виды ионизирующих излучений. Их физическая характеристика. Понятие дозы ионизирующего излучения. Виды дозиметрических показателей.

Действие ионизирующего излучения на вещество.

Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика прямого действия ионизирующего излучения.

Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика непрямого действия ионизирующего излучения.

Действие ионизирующего излучения на биологические макромолекулы. Механизмы радиационного повреждения макромолекул. Модификация радиочувствительности.

Действие ионизирующего излучения на клеточном уровне.

^ 1. Биофизика как наука. Предмет, задачи и объект исследования биофизики. Философские проблемы биофизики.

Б. – Это наука о наиболее фундаментальных законах, лежащих в основе биологических процессов. Общая Биофизика: кинетика и термодинамика ЖС. Частная Биофизика.

Предмет Б. – Живые системы.

Объект Б. – Живая природа в сравнении с неживой природой.

  1. Высокая упорядоченность живых систем: дискретность и целостность; многоуровневая организация.

  2. Способность к самовоспроизведению.

  3. Способность к развитию в направлении усложнения организации.

  4. Феномен информации.

  5. Феномен целесообразности.

Философская проблема: О возможности сведения всех законов к законам физики.

  1. Редукционизм. Все законы ЖС можно свести к законам физики.

  2. Антиредукционизм, Витализм. Законы ЖС принципиально не сводятся к физическим.

  3. Дополнительность. В основе лежат физические законы, но существуют процессы и явления пока не объяснимые с точки зрения физики и химии.

2. Химические реакции, как модель кинетических закономерностей. Кинетическая классификация химических реакций. Особенности кинетики биологических процессов. Примеры кинетических моделей биологических процессов.

  1. Реакции первого порядка.







  1. Реакции второго порядка.





  1. Цепочка реакций.





  1. Разветвление цепи.





  1. Реакция с обратной связью.






Особенности кинетики БС:

  1. В БС в качестве переменных выступают не только концентрации, но и любые другие величины.

  2. Переменные изменяются не только во времени, но и в пространстве. Скорость определяется не только константами реакции, но и диффузионными процессами.

  3. БС пространственно неоднородны. Условия в разных частях системы могут отличаться.

  4. БС мультистационарны. Может быть несколько устойчивых режимов функционирования.

  5. Процессы в БС нелинейны. Феномен усиления и колебательные процессы.

  6. Кинетические модели БС крайне сложные. Моделирование требует большого числа упрощений.

Кинетические модели БС:

  1. Ряд Фибоначчи.

  2. Модель Мальтуса. Экспоненциальный рост.

  3. Модель роста популяции в избытке пит. веществ.



  1. Модель Ферхюльста. Рост популяции, ограниченный ресурсами.



  1. Модель Лотки и Вольтерра. Модель "Хищник-Жертва".



3. Понятие стационарного состояния в кинетике биологических процессов. Устойчивость стационарного состояния. Критерий устойчивости. Оценка устойчивости системы, описываемой одним дифференциальным уравнением.

СС – это состояние системы в котором переменные не изменяются.

Устойчивость СС характеризуется поведением системы при отклонении от СС.



Нахождение критерия устойчивости для системы с одним дифференциальным уравнением.



Раскладываем функцию в ряд Тейлора:



4. Кинетические модели, описываемые двумя дифференциальными уравнениями. Фазовая плоскость, фазовые траектории, изоклины, особые точки. Оценка устойчивости системы. Типы особых точек и их характеристика.

В общем виде, система описывается так:



Фазовая траектория – это траектория движения изображающей точки в фазовой плоскости (x:y) во времени.

Изоклины – это линии в фазовой плоскости, во всех точках которых направления касательных к интегральным кривым будут одинаковы.

Анализ устойчивости стационарного состояния:









Типы особых точек:

  1. λ1 и λ2 – действительные числа.

    1. Одинаковый знак <0 – устойчивый узел

    2. Одинаковый знак >0 – неустойчивый узел

    3. Разный знак – неустойчивая особая точка типа "седло"

  2. λ1 и λ2 – комплексно сопряжённые числа. (Re±Im)

    1. Re<0 – Устойчивый фокус

    2. Re>0 – Неустойчивый фокус

    3. Re=0 – Особая точка "центр"

5. Химическая реакция с обратной связью. Построение простейшей математической модели. Определение координат особых точек, их типа и степени устойчивости.











^ 6. Модель "Хищник – Жертва". Определение координат особых точек, их типа и степени устойчивости.







Решения являются комплексно сопряжёнными числами, Re=0, особая точка типа "центр", периодические колебания переменных системы.

^ 7. Мультистационарность. Понятие о биологических триггерах. Способы переключения в триггерных системах. Понятие о бифуркациях.

Мультистационарные системы – это системы, имеющие несколько стационарных состояний.

В фазовом портрете системы могут существовать множества точек, к которым притягивается или от которых отталкивается изображающая точка при t→∞ или t→-∞. Такие множества называются предельные множества.

Предельные множества подразделяются на Аттракторы и Репеллеры. Предельное множество в виде замкнутой кривой – предельный цикл.

Триггерные системы – это мультистационарные системы, способные переходить из одного стационарного состояния в другое.

Переключение в триггерных системах может происходить двумя способами:

  1. Силовой, специфический.

Переход системы из области действия одного аттрактора в область действия другого за счёт действия внешних сил на переменные системы.

  1. Параметрический, неспецифический.

Параметры системы изменяются таким образом, что в фазовом портрете системы остаётся только одна особая точка, в которую эта система и переходит.

Процесс изменения фазового портрета системы, количества предельных множеств и их устойчивости – бифуркация. Значения параметров системы, при которых она меняет своё поведение называют критическими точками или точками бифуркации.

  1. Мягкие бифуркации.

  2. Кризисы и катастрофы.

Бифуркация, приводящая к появлению предельного цикла – Бифуркация Андронова-Хопфа.
8. Автоколебательные процессы в биологических системах. Их свойства и условия возникновения.

  1. Автоколебательные процессы устанавливаются за счёт явлений внутри системы.

  2. Амплитуда автоколебаний зависит только от свойств самой системы.

  3. АК процессы возможны только вдали от ТД равновесия.

  4. Причиной АК процессов является наличие большого числа взаимодействующих элементов и обратных связей между ними.

  5. АК процессы всегда устойчивы, отклонения всегда затухают.

  6. В фазовом портрете системы АК процессу соответствует предельное множество – предельный цикл.

Предельный цикл – это изолированная замкнутая кривая на фазовой плоскости, к которой стремятся все интегральные кривые. В этом случае система функционирует в стационарном режиме с определённой амплитудой. Бифуркация, приводящая к появлению предельного цикла – Бифуркация Андронова-Хопфа.

9. Кинетика ферментативных реакций. Принципиальная схема ферментативной реакции. Математическое моделирование ферментативной реакции. Уравнение Михаэлиса-Ментен. Ингибирование ферментативных процессов.

Общая схема ферментативной реакции:





Так как p+s=const и e+(es)=e0



При избытке субстрата система быстро достигает стационарного состояния при котором (es)=const. При этом d(es)=0. Методом квазистационарных состояний можно найти



Константа Михаэлиса равна отношению суммы констант распада комплекса к константе образования комплекса. Численно равна концентрации субстрата при которой половина молекул фермента связана в фермент-субстратный комплекс. Скорость реакции максимальна, когда все молекулы фермента связаны в фермент-субстратный комплекс.



Ферментативные процессы являются регулируемыми.

  1. Конкурентное ингибирование – сродство с активным центром.

  2. Неконкурентное ингибирование – аллостерическое.

  3. Антиконкурентное ингибирование – ингибитор соединяется с (es) комплексом.

  4. Смешанное ингибирование – по активному и аллостерическому центру.

  5. Ингибирование избытком субстрата.

10. Динамический хаос. Его характеристика. Динамический хаос и самоорганизующиеся системы. Значение динамического хаоса для самоорганизующихся систем.

Динамический хаос – явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным и является непредсказуемым на больших временах. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

Тип аттрактора, соответствующий состоянию динамического хаоса – странный аттрактор.

Динамический хаос может протекать в системе в качестве перехода к самоорганизации, а может протекать в уже организованной системе. Динамический хаос представляет собой множественные бифуркации. Хаотическое поведение системы приводит к образованию фрактальных диссипативных структур.

^ 11. Первый и второй законы термодинамики. Их формулировка и физический смысл. Обратимые и необратимые процессы.

Первый закон термодинамики выражает закон сохранения энергии в общем виде.



Изменение внутренней энергии системы может происходить за счёт обмена теплоты, за счёт работы и за счёт обмена веществом, в случае открытой системы.

Работа в общем виде представлена выражением



F – движущая сила. dx – изменение параметра.

Fdl – механическая работа

pdV – работа расширения газа

UdQ – электрическая работа

μdν – химическая работа

Второй закон термодинамики был сформулирован Клаузиусом. Невозможно построить двигатель, который работал бы по полному циклу Карно и превращал всю теплоту в работу. Теплота не может самопроизвольно переходить от холодного тела к нагретому.

В реальных тепловых двигателях



Часть теплоты подводимой от нагревателя расходуется на увеличение молекулярного движения, температуры рабочего тела. Клаузиус также ввёл понятие энтропии, как функции состояния, приращение которой равно теплоте, подведённой к системе в обратимом изотермическом процессе, делённой на абсолютную температуру, при которой происходит этот процесс.



Энтропия изолированной системы может только возрастать.

Необратимые процессы, после протекания которых систему и среду нельзя вернуть в прежнее состояние одновременно. Необратимые процессы приводят систему к состоянию ТД равновесия.

Обратимые процессы, после протекания которых и систему, и среду можно вернуть в исходное состояние.

^ 12. Понятие термодинамического равновесия. Равновесные и неравновесные системы. Критерии эволюции системы к состоянию термодинамического равновесия.

ТД равновесие – это устойчивое состояние системы, при котором интенсивные параметры одинаковы во всех частях системы. К равновесному состоянию приходит изолированная система по истечении достаточно большого промежутка времени.

Равновесная система – Интенсивные переменные в разных частях системы одинаковы. Движущие силы отсутствуют. Если такая система изолирована, то она может находиться в состоянии равновесия неограниченно долго.

Неравновесная система – Интенсивные переменные в разных частях системы различаются. Если такая система изолирована, то она необратимо эволюционирует к состоянию ТД равновесия. В ней возникают движущие силы, влекущие систему к состоянию ТД равновесия.

Критерии эволюции системы к ТД равновесию:

  1. Максимальная энтропия. При U и V = const.

В точке ТД равновесия энтропия максимальна.

  1. Минимальная U. При S, V =const.



При приближении к состоянию ТД равновесия, внутренняя энергия системы уменьшается.

  1. Минимальная свободная энергия.

  • Энергия Гельмгольца. T, V=const.



  • Энергия Гиббса. T, p=const.



  • Энтальпия



13. Принципы экстремумов в термодинамике. Их сущность и значение.

Принцип экстремумов заключается в том, что в системах самопроизвольные процессы всегда стремятся к минимуму внутренней энергии и максимуму энтропии, поэтому можно предсказать эволюцию системы, найдя экстремальные значения переменных с минимальной внутренней энергией. Зная зависимость внутренней энергии от переменной системы можно найти значение этой переменной, соответствующее минимальной энергии, а следовательно, состоянию термодинамического равновесия или стационарному состоянию, в случае ограничений, наложенных на систему.

Критерии эволюции системы к ТД равновесию:

  1. Максимальная энтропия. При U и V = const.

В точке ТД равновесия энтропия максимальна.

  1. Минимальная U. При S, V =const.



При приближении к состоянию ТД равновесия, внутренняя энергия системы уменьшается.

  1. Минимальная свободная энергия.

  • Энергия Гельмгольца. T, V=const.



  • Энергия Гиббса. T, p=const.



  • Энтальпия



Минимальное значение свободной энергии сводится к максимальному значению энтропии.

14. Энтропия. Её физический смысл с позиций термодинамики и молекулярной физики. Связь энтропии и информации.

Энтропия – это функция состояния системы, приращение которой равно теплоте, подведённой к системе в обратимом изотермическом процессе, делённой на абсолютную температуру при которой происходит этот процесс.



Больцман ввёл понятие энтропии, как величины, пропорциональной логарифму вероятности нахождения системы в конкретном макросостоянии.



P – это то число микросостояний, которыми может быть реализовано данное макросостояние.

K – Постоянная Больцмана 1,38х10-23 Дж/К.

Необратимые процессы, ведущие систему к увеличению энтропии, ведут систему к максимальному числу микросостояний, к ТД хаосу, равновесию.

В состоянии ТД равновесия, при максимальной энтропии, информационная структура системы нулевая. Энтропия и информация связаны, как обратные величины: уменьшение энтропии системы связано с увеличением информации этой системы.

^ 15. Изменение энтропии в открытых системах. Определение скорости продукции энтропии в открытых системах.

В открытых системах скорость продуцирования энтропии складывается из скорости продуцирования энтропии за счёт внутренних необратимых процессов и за счёт обмена энтропией с внешней средой.



Изменение внутренней энергии в открытой системе складывается из изменения теплоты, работы и обмена веществом с внешней средой.





Приведя выражение к изменению энтропии, получаем:



Изменение энтропии складывается из обмена с внешней средой энергией, работой и веществом.

В самопроизвольной химической реакции изменение энтропии за счёт внутренних необратимых процессов связано только с изменением количества реагирующих веществ.



Для химической реакции x+y=2z



-степень полноты реакции.



A – химическое сродство. Является движущей силой химической реакции. Реакция идёт до тех пор, пока A>0.

Таким образом, в открытых системах общее изменение энтропии равно:



16. Понятие термодинамического равновесия. Общие свойства систем вблизи термодинамического равновесия.

  1. Интенсивные переменные в разных точках системы различаются не резко.

  2. ТД силы и скорости процессов невелики, скорости линейно зависят от движущих сил. Выполняется соотношение Онзагера.

  3. Скорость продуцирования энтропии пропорциональна произведению скоростей процессов на движущие силы.

  4. Все стационарные состояния являются устойчивыми.

  5. Аттракторами могут являться ТД равновесие и любое стационарное состояние.

  6. Флуктуации, приводящие к отклонению от аттракторов, затухают.

  7. Вблизи ТД равновесия невозможна временная и пространственная упорядоченность.

  1   2   3   4



Скачать файл (722.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru