Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Решение задач по высшей математике из задачника Кузнецова (полный вариант) - файл 8-Векторный анализ.doc


Загрузка...
Решение задач по высшей математике из задачника Кузнецова (полный вариант)
скачать (8941.3 kb.)

Доступные файлы (67):

gr9v.doc960kb.25.12.2007 23:08скачать
Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать
Векторный анализ.doc287kb.13.03.2007 23:53скачать
Графики.doc313kb.04.12.2006 04:38скачать
Дифур.doc318kb.11.12.2006 23:32скачать
Дифференцирование.doc157kb.09.12.2006 19:17скачать
1.1-1.31.ang.doc148kb.26.12.2007 00:15скачать
2.1-2.31.ang.doc116kb.26.12.2007 00:15скачать
3.1-3.31.ang.doc128kb.26.12.2007 00:15скачать
z10.doc114kb.26.12.2007 00:13скачать
z11.doc96kb.26.12.2007 00:14скачать
z12.doc128kb.26.12.2007 00:13скачать
z13.doc119kb.26.12.2007 00:14скачать
z15.doc140kb.26.12.2007 00:14скачать
z16.doc145kb.26.12.2007 00:14скачать
z17.doc111kb.26.12.2007 00:14скачать
z18.doc126kb.26.12.2007 00:14скачать
z19.doc112kb.26.12.2007 00:14скачать
z20.doc154kb.26.12.2007 00:15скачать
z2.doc167kb.26.12.2007 00:12скачать
z2-p.doc91kb.26.12.2007 00:11скачать
z3.doc112kb.26.12.2007 00:12скачать
z4.doc166kb.26.12.2007 00:13скачать
z5.doc135kb.26.12.2007 00:13скачать
z6.doc124kb.26.12.2007 00:13скачать
z7.doc108kb.26.12.2007 00:13скачать
z8.doc132kb.26.12.2007 00:13скачать
z9.doc121kb.26.12.2007 00:13скачать
Аналитическая геометрия.docскачать
Векторный анализ.doc1113kb.29.01.2007 16:27скачать
Графики.doc652kb.30.11.2006 20:01скачать
Дифур.doc6903kb.30.11.2006 19:59скачать
Дифференцирование.docскачать
Интегралы.docскачать
Кратные интегралы.doc1136kb.27.01.2007 17:29скачать
Линейная алгебра.docскачать
Пределы.doc9243kb.06.12.2006 21:11скачать
Ряды.docскачать
Интегралы.doc297kb.15.12.2006 17:10скачать
Пределы.doc156kb.06.02.2007 00:40скачать
Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать
Векторный анализ.doc287kb.13.03.2007 23:53скачать
Графики.doc313kb.04.12.2006 04:38скачать
Дифур.doc318kb.11.12.2006 23:32скачать
Дифференцирование.doc157kb.09.12.2006 19:17скачать
Интегралы.doc297kb.15.12.2006 17:10скачать
Пределы.doc156kb.06.02.2007 00:40скачать
10-Линейная алгебра.docскачать
1-Пределы.doc9243kb.06.12.2006 21:11скачать
2-Дифференцирование.docскачать
3-Графики.doc652kb.30.11.2006 20:01скачать
4-Интегралы.docскачать
5-Дифур.doc6903kb.30.11.2006 19:59скачать
6-Ряды.docскачать
7-Кратные интегралы.doc1136kb.27.01.2007 17:29скачать
8-Векторный анализ.doc1113kb.29.01.2007 16:27скачать
9-Аналитическая геометрия.doc1209kb.31.01.2007 17:11скачать
10-Линейная алгебра.doc265kb.02.09.2008 00:22скачать
1-Пределы.doc156kb.06.02.2007 00:40скачать
2-Дифференцирование.doc157kb.09.12.2006 19:17скачать
3-Графики.doc313kb.04.12.2006 04:38скачать
4-Интегралы.doc297kb.15.12.2006 17:10скачать
5-Дифур.doc318kb.11.12.2006 23:32скачать
6-Ряды.doc169kb.22.04.2008 20:55скачать
7-Кратные интегралы.doc181kb.29.03.2008 19:10скачать
8-Векторный анализ.doc291kb.23.10.2008 00:57скачать
9-Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать

8-Векторный анализ.doc

Реклама MarketGid:
Загрузка...
§ 8.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

  1. Скалярное поле. Производная по направлению.

  2. Градиент, его свойства. Инвариантное определение градиента.

  3. Векторное поле. Поток векторного поля через поверх­ность, его физический смысл.

  4. Формула Остроградского.

  5. Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.

  6. Соленоидальное поле, его основные свойства.

  7. Линейный интеграл в векторном поле, его свойства и фи­зический смысл.

  8. Циркуляция векторного поля, ее гидродинамический смысл.

  9. Формула Стокса.

  1. Ротор векторного поля, его свойства. Инвариантное опре­деление ротора.

  2. Условия независимости линейного интеграла от формы пути интегрирования.

  3. Потенциальное поле. Условия потенциальности.

§ 8.2. ТЕОРЕТИЧЕСКИЕ УПРАЖНЕНИЯ

  1. Найти производную скалярного поля по направлению градиента скалярного поля

  2. Найти градиент скалярного поля , где — по­стоянный вектор, а — радиус-вектор. Каковы поверхности уровня этого поля и как они расположены по отношению к век­тору ?

  3. Доказать, что если 5 — замкнутая кусочно-гладкая по­верхность и — ненулевой постоянный вектор, то



где —вектор, нормальный к поверхности .

  1. Доказать формулу



где ; — поверхность, ограничивающая объем ; — орт внешней нормали к поверхности . Установить условия применимости формулы.

  1. Доказать, что если функция удовлетворяет уравнению Лапласа

то

где — производная по направлению нормали к кусочно-гладкой замкнутой поверхности .

  1. Доказать, что если функция является многочле­ном второй степени и — кусочно-гладкая замкнутая поверх­ность, то интеграл пропорционален объему, ограни­ченному поверхностью .

  2. Пусть , где линей­ные функции от , и пусть — замкнутая кусоч­но-гладкая кривая, расположенная в некоторой плоскости. Доказать, что если циркуляция отлична от нуля,
    то она пропорциональна площади фигуры, ограниченной контуром .

  3. Твердое тело вращается с постоянной угловой скоростью вокруг неподвижной оси, проходящей через начало координат. Вектор угловой скорости . Определить ротор и дивергенцию поля линейных скоростей точек тела (здесь — радиус-вектор).


§ 8.3. РАСЧЕТНЫЕ ЗАДАНИЯ
Задача 1. Найти производную скалярного поля в точке по направлению проходящей через эту точку нормали к поверхности , образующей острый угол с положительным направлением оси .
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
Найти производную скалярного поля в точке по направлению вектора .

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Задача 2. Найти угол между градиентами скалярных полей и в точке .
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
Задача 3. Найти векторные линии в векторном поле .


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.



Задача 4. Найти поток векторного поля через часть поверхности , вырезаемую плоскостями (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
Найти поток векторного поля через поверхности , вырезаемую плоскостью (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
Задача 5. Найти поток векторного поля a через часть плоскости , расположенную в первом октанте (нормаль образует острый угол с осью .


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.


Задача 6. Найти поток векторного поля через часть плоскости , расположенную в 1 октанте (нормаль образует острый угол с осью
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
Задача 7. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26

27.

28.

29.

30. .

31.
Задача 8. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).


1.




2.




3.



4.



5.



6.



7.



8.



9.



10.



11.



12.




13.



14.



15.



16.



17.



18.



19.



20.



21.



22.



23.



24.



25.



26.


27.



28.



29.



30.



31.



Задача 9. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).


1.



2.



3.



4.



5.



6.



7.



8.




9.

10.



11.



12.



13.



14.



15.



16.



17.



18.



19.



20.



21.



22.



23.



24.



25.



26.



27.



28.



29.



30.


31.




Задача 10. Найти работу силы при перемещении вдоль линии от точки к точке .
1. отрезок

2. отрезок

3.

4.

5.

6.

7. отрезок

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20. отрезок

21. отрезок

22.

23.

24.

25.

26. отрезок

27.

28.

29.

30.

31.
Задача 11. Найти циркуляцию векторного поля вдоль контура (в направлении, соответствующем возрастанию параметра


1.



2.



3.



4.


5.



6.



7.



8.



9.


10.



11.



12.



13.



14.



15.



16.



17.



18.



19.



20.



21.



22.



23.



24.



25.



26.



27.



28.

29.




30.


31.




Задача 12. Найти модуль циркуляции векторного поля вдоль контура .


1.



2.



3.



4.



5.



6.



7.



8.



9.



10.



11.



12.



13.



14.



15.



16.



17.



18.



19.



20.



21.



22.



23.



24.



25.




26.



27.



28.



29.



30.



31.





Скачать файл (8941.3 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru