Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Решения задач по Кузнецову - файл 8-Векторный анализ.doc


Загрузка...
Решения задач по Кузнецову
скачать (8356.9 kb.)

Доступные файлы (60):

1.1-1.31.ang.doc148kb.26.12.2007 00:15скачать
2.1-2.31.ang.doc116kb.26.12.2007 00:15скачать
3.1-3.31.ang.doc128kb.26.12.2007 00:15скачать
z10.doc114kb.26.12.2007 00:13скачать
z11.doc96kb.26.12.2007 00:14скачать
z12.doc128kb.26.12.2007 00:13скачать
z13.doc119kb.26.12.2007 00:14скачать
z15.doc140kb.26.12.2007 00:14скачать
z16.doc145kb.26.12.2007 00:14скачать
z17.doc111kb.26.12.2007 00:14скачать
z18.doc126kb.26.12.2007 00:14скачать
z19.doc112kb.26.12.2007 00:14скачать
z20.doc154kb.26.12.2007 00:15скачать
z2.doc167kb.26.12.2007 00:12скачать
z2-p.doc91kb.26.12.2007 00:11скачать
z3.doc112kb.26.12.2007 00:12скачать
z4.doc166kb.26.12.2007 00:13скачать
z5.doc135kb.26.12.2007 00:13скачать
z6.doc124kb.26.12.2007 00:13скачать
z7.doc108kb.26.12.2007 00:13скачать
z8.doc132kb.26.12.2007 00:13скачать
z9.doc121kb.26.12.2007 00:13скачать
Аналитическая геометрия.docскачать
Векторный анализ.doc1113kb.29.01.2007 16:27скачать
Графики.doc652kb.30.11.2006 20:01скачать
Дифур.doc6903kb.30.11.2006 19:59скачать
Дифференцирование.docскачать
Интегралы.docскачать
Кратные интегралы.doc1136kb.27.01.2007 17:29скачать
Линейная алгебра.docскачать
Пределы.doc9243kb.06.12.2006 21:11скачать
Ряды.docскачать
gr9v.doc960kb.25.12.2007 23:08скачать
Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать
Векторный анализ.doc287kb.13.03.2007 23:53скачать
Графики.doc313kb.04.12.2006 04:38скачать
Дифур.doc318kb.11.12.2006 23:32скачать
Дифференцирование.doc157kb.09.12.2006 19:17скачать
Интегралы.doc297kb.15.12.2006 17:10скачать
Пределы.doc156kb.06.02.2007 00:40скачать
10-Линейная алгебра.doc265kb.02.09.2008 00:22скачать
1-Пределы.doc156kb.06.02.2007 00:40скачать
2-Дифференцирование.doc157kb.09.12.2006 19:17скачать
3-Графики.doc313kb.04.12.2006 04:38скачать
4-Интегралы.doc297kb.15.12.2006 17:10скачать
5-Дифур.doc318kb.11.12.2006 23:32скачать
6-Ряды.doc169kb.22.04.2008 20:55скачать
7-Кратные интегралы.doc181kb.29.03.2008 19:10скачать
8-Векторный анализ.doc291kb.23.10.2008 00:57скачать
9-Аналитическая геометрия.doc208kb.13.02.2007 21:53скачать
10-Линейная алгебра.docскачать
1-Пределы.doc9243kb.06.12.2006 21:11скачать
2-Дифференцирование.docскачать
3-Графики.doc652kb.30.11.2006 20:01скачать
4-Интегралы.docскачать
5-Дифур.doc6903kb.30.11.2006 19:59скачать
6-Ряды.docскачать
7-Кратные интегралы.doc1136kb.27.01.2007 17:29скачать
8-Векторный анализ.doc1113kb.29.01.2007 16:27скачать
9-Аналитическая геометрия.doc1209kb.31.01.2007 17:11скачать

8-Векторный анализ.doc

Реклама MarketGid:
Загрузка...

При необходимости более детального просмотра увеличьте масштаб документа!

www.otlichka.ru

Задача 1. Найти производную скалярного поля в точке по направлению проходящей через эту точку нормали к поверхности , образующей острый угол с положительным направлением оси .











Задача 2. Найти угол между градиентами скалярных полей и в точке .


- искомый угол.

















Задача 3. Найти векторные линии в векторном поле .


Дифференциальные уравнения векторных линий поля :





Задача 4. Найти поток векторного поля через поверхности , вырезаемую плоскостью (нормаль внешняя к замкнутой поверхности, образуемой данными поверхностями).










Задача 5. Найти поток векторного поля a через часть плоскости , расположенную в первом октанте (нормаль образует острый угол с осью .









Задача 6. Найти поток векторного поля через часть плоскости , расположенную в 1 октанте (нормаль образует острый угол с осью











Задача 7. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).













Задача 8. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).







Перейдем к цилиндрической системе координат





Задача 9. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).





Воспользуемся формулой Остроградского-Гаусса.





Цилиндрический системы координат


Отсюда,


Задача 10. Найти работу силы при перемещении вдоль линии от точки к точке .

отрезок


1)



2)




Задача 11. Найти циркуляцию векторного поля вдоль контура (в направлении, соответствующем возрастанию параметра








Задача 12. Найти модуль циркуляции векторного поля вдоль контура .






Воспользуемся формулой Стокса:

















Скачать файл (8356.9 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru