Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Задачи по математике на ЕГЭ в 2011 году (+ примеры решения и ответы) - файл 1.rtf


Задачи по математике на ЕГЭ в 2011 году (+ примеры решения и ответы)
скачать (649.4 kb.)

Доступные файлы (1):

1.rtf650kb.15.12.2011 21:21скачать

содержание
Загрузка...

1.rtf

Реклама MarketGid:
Загрузка...
Сюжетные задачи

для подготовки к ЕГЭ по математике
Задачи на химический процессы

Задача 1. Сколько нужно добавить воды в сосуд, содержащий 150 г 70% -го раствора уксусной кислоты, чтобы получить 6 % раствор уксусной кислоты?

Решение. Количество воды необходимое для доливания в сосуд обозначим через x.





процентное содержание уксусной кислоты в растворе

Масса раствора г

Масса уксусной кислоты г

Исходный раствор

70%

150

0,7·150=105

Новый раствор

6%

150 + x

0,06(150 + x)


Так как масса уксусной кислоты осталась прежней, составляем и решаем уравнение
0,06(150 + x) = 105,

9 + 0,06x = 105,

0,06x = 96,

x = 1600.

Ответ. 1,6 кг воды.
Задача 2. Смешали некоторое количество 12% раствора соляной кислоты с таким же количеством 20% раствора этой же кислоты. Найти концентрацию соляной кислоты в получившейся смеси.

Решение. Обозначим: x – концентрация кислоты в смеси, y кг – масса каждого раствора.





Концентрация соляной кислоты в растворе

Масса раствора кг

Масса соляной кислотыкг

I раствор

0,12

у

0,12у

II раствор

0,2

у

0,2у

Смесь

x



x·2у

По закону сохранения массы для отдельных компонентов масса соляной кислоты в смеси равна сумме масс этого вещества, входящих в первый и второй растворы
2xy=0,12y+0,2y.

Из y≠0 следует:

2x=0,12+0,2=0,32

x=0,16.

Выражаем в процентах: 16%.

Ответ. 16%
Задача 3. Смешали 8кг 18% раствора некоторого вещества с 12 кг 8% раствора этого же вещества. Найдите концентрацию получившегося раствора.
Решение. Пусть x – концентрация смеси из двух растворов.





Концентрация вещества

Масса раствора




кг

Масса вещества кг







I раствор

0,18

8

0,18·8=1,44

II раствор

0,08

12

0,08·12=0,96

Смесь

x

20

x·20


По закону сохранения массы для отдельного вещества получаем уравнение
20x=1,44+0,96

20x=2,4

x=0,12

или в процентах:12%.

Ответ. 12%

Задача 4. Смешав 40% и 15% растворы кислоты, добавили 3 кг чистой воды и получили 20% раствор кислоты. Если бы вместо 3 кг воды добавили 3 кг 80% раствора той же кислоты, то получили бы 50%-ый раствор кислоты. Сколько килограммов 40% -го и 15% растворов кислоты было смешано?





Концентрация вещества

Масса раствора кг

Масса кислоты кг

I раствор

0,4

x

0,4x

II раствор

0,15

y

0,15y

Вода

-

3

-

III раствор

0,8

3

0,8·3=2,4

1 смесь (I раствор + II раствор + вода)

0,2

x + y +3

0,2(x + y +3)

2 смесь (I раствор + II раствор + III раствор)

0,5

x + y +3

0,5(x + y +3)


Решение. Вводим обозначения: x кг было 40% раствора кислоты, y кг было 15% раствора.

Для каждой смеси составляем уравнение.

Для первой:
0,4x + 0,15y = 0,2(x + y +3).
Для второй:
0,4x + 0,15y + 2,4 = 0,5(x + y +3).
Остаётся решить следующую систему уравнений

Ответ. 3,4 кг и 1,6 кг.

Задача 5. Имеется три сосуда. В первый сосуд налили 4 кг 70% сахарного сиропа, а во второй – 6 кг 40% сахарного сиропа. Если содержимое первого сосуда смешать с содержимым третьего сосуда, то получим в смеси 55% содержание сахара, а если содержимое второго сосуда смешать с третьим, то получим 35% содержание сахара. Найдите массу сахарного сиропа в третьем сосуде и концентрацию сахара в нём.
Решение. Обозначения: x кг - масса сахарного сиропа в третьем сосуде, y – концентрация сахара в нём.





Концентрация сахара

Масса раствора




кг

Масса сахара кг







Раствор I сосуда

0,7

4

0,7·4=2,8

Раствор II сосуда

0,4

6

0,4·6 = 2,4

Раствор III сосуда

y

x

xy

1 смесь (содержимое I + III сосуда)

0,55

4+x

0,55(4+x)

2 смесь (содержимое II +III сосуда)

0,35

6+x

0,35(6+x)


По условию задачи составляем уравнения:

для 1 смеси
0,55(4+x)=2,8+ xy,
для 2 смеси
0,35(6+x)=2,4+ xy.
Итак, получаем систему уравнений:



Масса сахарного сиропа в третьем сосуде равна 1,5 кг, а массовое процентное содержание равно 15%.
Ответ. 1,5 кг, 15%.

Задача6. Из колбы, содержащей раствор соли, отлили в пробирку раствора. Затем из пробирки часть воды испарили, в результате чего процентное содержание соли в пробирке увеличилось в 3 раза. Каково было первоначальное процентное содержание соли в колбе, если известно, что после переливания в неё содержимого пробирки процент соли в колбе увеличился на 5%?

Решение. Обозначения: m – масса раствора в колбе, x – первоначальное содержание соли в колбе. Необходимо найти 100%.

- концентрация соли в колбе.

0,9m – осталось раствора в колбе после переливания 0,1m раствора в пробирку.

0,1x – соли в пробирке.
- концентрация соли в пробирке после испарения.

- масса раствора в пробирке после выпаривания.









Ответ. 70%.
Задачи для самостоятельного решения абитуриентами:

  1. В сосуд налито 4 литра 70%-го раствора кислоты. Во второй такой же сосуд налито 3 литра 90%-го раствора кислоты. Сколько литров раствора нужно перелить из второго сосуда в первый, чтобы в нём получился 75%-ый раствор кислоты?

  2. После смешивания растворов, содержащих 25% и 60% кислоты, получился раствор, содержащий 39% кислоты. Определить в какой пропорции были смешаны растворы.

  3. Из молока, жирность которого 5%, делают творог жирностью 15,5%, при этом остается сыворотка жирностью 0,5%. Сколько творога получится из 1 т молока?

  4. Добытая руда содержит 21% меди, обогащенная - 45%. Известно, что в процессе обогащения 60% добытой руды идёт в отходы. Определить процентное содержание меди в отходах.

  5. Сколько килограммов воды нужно выпарить из 0,5 т целлюлозной массы, содержащей 85% воды, чтобы получить массу с содержанием 75% воды?

  6. Морская вода содержит 5% соли по массе. Сколько пресной воды нужно добавить к 30 кг морской воды, чтобы концентрация соли составляла 1,5%?

  7. В ящик, содержащий чёрные и белые шары, среди которых было 25% белых, добавили 10 черных, после чего белых стало 20%. Сколько было сначала чёрных шаров?

  8. Одна смесь содержит вещества A и B в отношении 4:5, а другая смесь содержит те же вещества, но в отношении 6:7. Сколько частей каждой смеси надо взять, чтобы получить третью смесь, содержащую те же вещества в отношении 5:6.?

  9. В совхоз поступило 2 типа минеральных удобрений. В первом фосфора в 4 раза больше, чем азота, а во втором фосфора в 5 раз меньше, чем азота. В каком соотношении надо взять I и II типы удобрений, чтобы получить из них новый тип, в котором фосфора было бы в 3 раза меньше, чем азота?

  10. К 12 кг сплава меди и олова добавили 8 кг другого сплава, содержащего те же металлы в обратной пропорции, получив в итоге сплав, содержащий 55% меди. Сколько процентов меди было в каждом из исходных сплавов?

  11. Раствор соли массой 40 кг разлили в два сосуда так, что во 2-ом сосуде чистой соли оказалось на 2 кг больше, чем в 1-ом. Если бы во 2-ой сосуд добавили ещё 1 кг соли, то количество соли в нём стало бы вдвое больше, чем в 1-ом сосуде. Сколько раствора было в 1-ом сосуде?

  12. Имеется два слитка золота с серебром. Процентное содержание золота в первом слитке 2,5 раза больше, чем процентное содержание золота во втором слитке. Если сплавить оба слитка вместе, то получится слиток, в котором будет 40% золота. Определить, во сколько раз первый слиток тяжелее второго, если известно, что при сплавке равных по весу частей первого и второго слитков получается слиток, в котором содержится 35% золота.

  13. Имеется два раствора серной кислоты в воде: первый 40% и второй 60%. Эти растворы смешали, после чего добавили 5 кг чистой воды и получили 20%-ый раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-го раствора, то получили бы 70%-ый раствор. Сколько было 40%-го и 60%-го растворов?

  14. Имеется два слитка сплавов золота и меди. В первом слитке отношение золота и меди равно 1:2, а во втором 2:3. Если сплавить первого слитка с второго, то в полученном слитке окажется столько золота, сколько меди было в первом слитке. А если первого слитка сплавить с половиной второго, то в получившемся слитке окажется меди на 1 кг больше, чем было золота во втором слитке. Сколько золота в каждом слитке?

Задачи на физический процессы

  1. От двух пристаней, расстояние между которыми 660 км, отправились одновременно навстречу друг другу два парохода. Скорость первого 15 км/ч. Найдите скорость второго, если через 8 ч после начала движения между пароходами осталось 396 км.

  2. От двух пристаней, расстояние между которыми 660 км, отправились одновременно навстречу друг другу два парохода. Первый пароход, начавший движение с ускорением 30 км/ч, перешел на равномерный режим движения при скорости 15 км/ч. Определите, какую скорость набрал второй пароход, начавший движение с ускорением 36 км/ч, если известно, что через 8 ч после начала движения между пароходами осталось 396 км.

  3. Одновременно из пункта A выходит пешеход, а из пункта ^ В ему навстречу выезжает велосипедист. Они встречаются через 12 мин и продолжают движение. Велосипедист приезжает в пункт А на 18 мин раньше, чем пешеход приходит в пункт В. Сколько времени затратит на дорогу каждый из них?

  4. Два теплохода, скорости которых в стоячей воде одинаковы, выходят навстречу друг другу из пунктов А и В. Дойдя до пунктов А и В соответственно, они поворачивают и идут обратно. Известно, что время до второй встречи в 3,5 раза больше, чем время до первой встречи. Во сколько раз скорость течения реки меньше скорости теплоходов в стоячей воде?

  5. Из города A со скоростью 60 км/ч выехал первый автомобиль, а через час вслед за ним отправился второй автомобиль со скоростью 50 км/ч. Сколько километров будет между автомобилями через 10 ч после выхода первого?

  6. Бассейн наполняется водой из труб за 3 ч 45 мин. Если бассейн заполнить наполовину, открыв только первую трубу, а оставшуюся часть заполнять, открыв только вторую трубу, то на это потребуется 8 ч. За какое время наполнит бассейн каждая из труб по отдельности?

  7. Сосуд наполняется шлангом за 12 мин, а полный сосуд опорожняется при открытии крана за 20 мин. За какое время наполнится пустой сосуд, если одновременно открыть кран и вливать в сосуд воду через шланг?

  8. Десять работников должны были выполнить работу за 8 дней. Когда они проработали 2 дня, то оказалось, что закончить работу необходимо уже через 3 дня. Сколько еще нужно взять работников, если известно, что
    производительность труда у работников одинаковая?

  9. Два поезда отправились из пунктов А и В навстречу друг другу. Они встретятся на половине пути, если поезд из ^ А выйдет на 2 ч раньше, чем поезд из В. Если же оба поезда выйдут одновременно, то через два часа расстояние между ними составит 0,25 расстояния между пунктами А и В. За сколько часов каждый поезд проходит весь путь?

  10. Только что добытый каменный уголь содержит 2% воды, а после двухнедельного пребывания на воздухе он содержит 12% воды. На сколько увеличилась масса добытой тонны угля после того, как уголь две недели был на воздухе?

  11. Студенческая бригада подрядилась выложить плиткой пол площадью 210 м2. Приобретая опыт, студенты в каждый последующий день, начиная со второго, выкладывали на 1,5 м2 больше, чем в предыдущий, и запасов плитки им хватило ровно на 9 дней работы. Планируя, что производительность труда будет увеличиваться таким образом, бригадир определил, что для завершения работы понадобится еще 6 дней. Сколько коробок с плитками ему надо заказать, если одной коробки хватает на 1,3 м2, а для замены некачественных плиток понадобится 2 коробки?

  12. Пароход прошел 4 км против течения реки, а затем прошел еще 33 км по течению, затратив на весь путь один час. Найдите собственную скорость парохода, если скорость течения реки равна 6,5 км/ч.

  13. Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути — со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом.

Задачи с экономическим содержанием

  1. Завод выпускал 12000 наручных часов в месяц. После повышения цен на отдельные детали завод стал выпускать 9000 часов в месяц. Как изменилась при этом производительность труда, если вместе с сокращением выпуска часов на заводе сократили 20% рабочих?

  2. Цена входного билета на стадион была 1 руб 80 коп. На сколько нужно снизить входную плату, чтобы число зрителей увеличилось на 50%, а выручка выросла на 25%?

  3. Некоторая фирма начинает выпускать кофемолки, которые предполагает реализовать по 10$ за штуку. При этом фирма должна уплатить 6$ за приобретенные детали для каждой кофемолки. Кроме этого, за аренду помещения и рекламу фирма должна уплачивать 10000$ ежегодно. Считая, что других статей расхода у фирмы не будет, определите, какое минимальное количество кофемолок должна реализовывать фирма ежегодно, чтобы не нести убытков.

  4. При отправке посылок наложенным платежом отправитель перекладывает все расходы на получателя. Последний при получении посылки возвращает обозначенную на ней сумму наложенного платежа переводом. Обозначим сумму наложенного платежа через Н. В нее войдет стоимость пересылаемого (С), оплата почтовых расходов за пересылку (Я), оплата страхового сбора (10% от объявленной цены Ц) и оплата за пересылку перевода обратно (10% от Н).

  5. Почта требует, чтобы объявленная ценность была не менее наложенного платежа. Сосчитайте, какими должны быть объявленная ценность и наложенный платеж (при известных С, П), чтобы общие расходы были минимальны.

  6. Купец ежегодно расходует 100 фунтов стерлингов на содержание семьи и приумножает остальной капитал на одну треть. Через три года он стал вдвое богаче. Как велик стал его капитал?

  7. Купец имел шестипроцентные облигации, с которых получал ежегодно по 1500 руб. процентных денег. Продав облигации по курсу 120 (то есть 120% от номинальной стоимости), часть вырученных денег купец употребил на покупку дома, х/ъ остатка положил в банк под 4%, а остальные деньги - в другой банк под 5%. Из обоих банков вместе купец получает в год 980 руб. дохода. Сколько было заплачено за дом?

  8. В банк внесли сумму 50 000 руб. Банк начисляет сложные проценты по ставке 15% годовых. Какая сумма будет на счете вкладчика через 8 лет?

  9. В банк внесен вклад 64 000 р. на три года. Какова годовая ставка сложных процентов, если через три года на счете вкладчика оказалось 216 000 р.?

  10. Вкладчик открыл счет в банке, вложив 100 000 руб по ставке сложных процентов 40 % годовых. Вкладчик желает накопить в банке 350 000 руб. Каково наименьшее количество лет, при котором вкладчик получит интересующую его сумму?

  11. Какую сумму следует внести в банк, начисляющий 35 % годовых по схеме сложных процентов, чтобы за три года накопить сумму 40 000 руб?

  12. В течение года завод дважды увеличивал выпуск продукции на одно и то же число процентов. Найдите это число, если известно, что в начале года завод ежемесячно выпускал 600 изделий, а в конце года стал выпускать ежемесячно 726 изделий.

  13. В первый день бригада выполнила 20% всей работы. В каждый последующий день бригада увеличивала свою производительность на 5%. За сколько дней бригада выполнила всю работу?

  14. За изготовление и установку первого железобетонного кольца колодца заплатили 10 у.е., а за каждое следующее кольцо платили на 2 у.е. больше, чем за предыдущее. Кроме того, по окончании работьг было уплачено еще 40 у.е. Средняя стоимость изготовления и установки одного кольца оказалась равной 22 у.е. Сколько колец было установлено?

элективный курс задача старшеклассник

Заключение
Данная дипломная работа посвящена проблеме разработки методического инструментария для реализации принципов дифференцированного обучения математике в классах математического профиля и экономического профиля.

Основная задача элективных занятий: учитывая интересы и склонности учащихся, расширить и углубить знания по предмету, обеспечить усвоение ими программного материала, ознакомить школьников с некоторыми общими идеями современной математики, раскрыть приложения математики на практике.

Основные выводы, которые мы сделали в процессе исследования следующие:

  • вводить обучение по направлениям (профилям) следует после того, как школьники получат единое математическое образование;

  • на старшей ступени обучения следует обеспечить возможно большее количество направлений (профилей) обучения;

  • разработка элективных курсов является важной задачей современного образования, так как данный вид курсов позволяет учитывать различные интересы школьников, выбравших определенный профиль.

В предложенном элективном курсе учтены выявленные в процессе исследования требования к разработке элективных курсов. Данный элективный курс оформлен в соответствии с выявленными требованиями к оформлению элективных курсов. Он содержит:

  • пояснительную записку;

  • содержание;

  • тематическое планирование;

  • методические рекомендации.

В процессе исследования были решены все поставленные задачи:

В ходе анализа проанализирована психолого-педагогическая литература с целью:

  • выяснения психологических и социальных особенностей контингента учащихся старших классов и выявления организационно-педагогических аспектов дифференцированного обучения;

  • проведен анализ методического обеспечения элективных курсов и курсов по выбору в профильном обучении;

  • разработаны конспекты трех занятий по темам:

  1. задачи на физические процессы 1 занятие

  2. задачи на химические процессы 1 занятие

  3. задачи с экономическим содержанием 1 занятие

  • разработана система задач элективного курса

Таким образом, можно сделать вывод о том, что задачи исследования решены, цель исследования – разработка элективного курса по теме «Сюжетные задачи», достигнута,.

Материалы дипломной работы могут быть использованы студентами - практикантами, учителями математики, для возможной доработки и внедрения данного курса в практику школ математического профиля.
Библиография


  1. Алгебра и начала анализа: Сборник задач для подготовки и проведения итоговой аттестации за курс средней школы [Текст] / И.Р Высоцкий, Л. И. Звавич, Б.П. Пигарев и др.; Под ред. С.А. Шестакова. – 2-е изд., испр. – М.: Внешсигма-М, 2004. – 207.

  2. Волков, Б.С. Психология ранней юности [Текст]: Учебное пособие / Б.С. Волков. – М.: Творческий центр сфера, 2001. – 93 с.

  3. Демидова, Т.Е., Тонких А.П. Теория и практика решения текстовых задач [Текст] / : Учеб. пособие для студ. высш. пед. учеб. заведений. – М.: Издательский центр «Академия», 2002 – 288 с.

  4. Дубровина, И.В. Формирование личности в переходный период от подросткового к юношескому возрасту [Текст] / И.В. Дубровина.- М.: Педагогика, 1987.- 184 с.: ил.

  5. Каптерев, П.Ф. О разнообразии и единстве общеобразовательных курсов [Текст] / П.Ф. Каптерев // Педагогический сборник.- 1893.-
    № 1.- С. 1-18.

  6. Манвелов, С.Г. Конструирование современного урока математики [Текст]: Кн. для учителя / С.Г. Манвелов. – М.: Просвещение, 2002. – 175 с.: ил. – (Б-ка учителя).

  7. Мухина, В.С. Возрастная психология. Детство. Отрочество. Юность [Текст]: Хрестоматия / В.С. Мухина, А.А. Хвостов. – М.: Академия, 2003. – 624 с.

  8. Успенский, В.А. Содержание факультативных занятий по математике

  9. В.А. Успенский // Математика в школе.- 1967.- № 2.- С. 33 – 38.

  10. Немов, Р.С. Психология развития [Текст] : учебные планы и программы курсов / Р.С. Немов.- М.: Московский психолого-социальный институт, 1998.- 72 с.

  11. Факультативный курс. Избранные вопросы математики [Текст] :
    7 - 8 кл. / Н.Я. Виленкин, Р.С. Гутер, А.Н. Земляков и др.; под ред. В.В. Фирсова.- М.: Просвещение, 1978.- 192 с.

  12. Факультативный курс. Избранные вопросы математики [Текст] : 9 кл. / И.Н. Антипов, Н.Я Виленкин, О.С. Ивашев-Мусатов и др.- М.: Просвещение, 1979.- 191 с.

  13. Факультативный курс по математике [Текст] : учебное пособие для 7-9 кл. средней шк. / сост. И.Л. Никольская.- М.: Просвещение, 1991.- 383 с.

  14. Фридман, Л.М. Сюжетные задачи по математике. История, теория, методика. [Текст] / Учеб. пос. для учителей и студентов педвузов и колледжей. – М.: Школьная пресса, 2002. – 208 с. –(Библиотека журнала «Математика в школе», вып. 15)

  15. Шабанова, М.В. Элективные математические курсы: Учебное пособие [Текст] / М.В. Шабанова, О.Л. Безумова, С.Н. Котова, Е.З. Минькина, И.Н.Попов; Поморский гос. Ун-т им. М.В. Ломоносова. – Архангельск: Поморский университет, 2005. – 315 с.

  16. Шарыгин, И.Ф. Факультативный курс по математике. Решение задач [Текст] : 10 кл. / И.Ф. Шарыгин.- М.: Просвещение, 1989.- 352 с.

  17. Шарыгин, И.Ф. Факультативный курс по математике. Решение задач [Текст] : 11 кл. / И.Ф. Шарыгин, В.И. и др.- М.: Просвещение, 1991.- 384 с.

  18. Шестаков, С.А. Сборник задач для подготовки и проведения письменного экзамена по алгебре за курс основной школы : 9 кл. [Текст]

  19. С.А. Шестаков, И.Р. Высоцкий, Л.И. Звавич; под ред. С.А. Шестакова. – 2-е изд., испр. – М.: АСТ: Астрель, 2008. – 255, [1]c.

Размещено на Allbest.ru


Скачать файл (649.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru