Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Компьютерные сети - файл 1.doc


Компьютерные сети
скачать (665.5 kb.)

Доступные файлы (1):

1.doc666kb.16.11.2011 15:30скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...
ЛЕКЦИЯ 1. Введение в компьютерные сети

1. Общие сведенья о компьютерных сетях

2. Основные программные и аппаратные компоненты сети

3. Классификация компьютерных сетей

4. Уровни взаимодействия компьютеров и протоколы передачи данных в сетях

1. Общие сведенья о компьютерных сетях

Наряду с автономной работой значительное повышение эффективности использования компьютеров может быть достигнуто объединением их в компьютерные сети (network).

Под компьютерной сетью в широком смысле слова понимают любое множество компьютеров, связанных между собой каналами связи для передачи данных.

Существует ряд веских причин для объединения компьютеров в сети. Во-первых, совместное использование ресурсов позволяет нескольким ЭВМ или другим устройствам осуществлять совместный доступ к отдельному диску (файл-серверу), дисководу CD-ROM, стримеру, принтерам, плоттерам, к сканерам и другому оборудованию, что снижает затраты на каждого отдельного пользователя.

Во-вторых, кроме совместного использования дорогостоящих периферийных устройств имеется возможность аналогично использовать сетевые версии прикладного программного обеспечения. В-третьих, компьютерные сети обеспечивают новые формы взаимодействия пользователей в одном коллективе, например при работе над общим проектом.

В-четвертых, появляется возможность использовать общие средства связи между различными прикладными системами (коммуникационные услуги, передача данных и видеоданных, речи и т.д.). Особое значение имеет организация распределенной обработки данных. В случае централизованного хранения информации значительно упрощаются процессы обеспечения ее целостности, а также резервного копирования.

^ 2. Основные программные и аппаратные компоненты сети

Компьютерная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов.

Изучение сети в целом предполагает знание принципов работы ее отдельных элементов:
- компьютеров;
- коммуникационного оборудования;
- операционных систем;
- сетевых приложений.

Весь комплекс программно-аппаратных средств сети может быть описан многослойной моделью. В основе любой сети лежит аппаратный слой стандартизованных компьютерных платформ, т.е. система конечного пользователя сети, в качестве которого может выступать компьютер или терминальное устройство (любое устройство ввода-вывода или отображения информации). Компьютеры в узлах сети иногда называют хост-машинами или просто хостами.

В настоящее время в сетях широко и успешно применяются компьютеры различных классов - от персональных компьютеров до мэйнфреймов и суперЭВМ. Набор компьютеров в сети должен соответствовать набору разнообразных задач, решаемых сетью.

Второй слой - это коммуникационное оборудование. Хотя компьютеры и являются центральными элементами обработки данных в сетях, в последнее время не менее важную роль стали играть коммуникационные устройства.

Кабельные системы, повторители, мосты, коммутаторы, маршрутизаторы и модульные концентраторы из вспомогательных компонентов сети превратились в основные наряду с компьютерами и системным программным обеспечением как по влиянию на характеристики сети, так и по стоимости. Сегодня коммуникационное устройство может представлять собой сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать.

Третьим слоем, образующим программную платформу сети, являются операционные системы (ОС). От того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС, зависит эффективность работы всей сети.

При проектировании сети важно учитывать, насколько просто данная операционная система может взаимодействовать с другими ОС сети, насколько она обеспечивает безопасность и защищенность данных, до какой степени она позволяет наращивать число пользователей, можно ли перенести ее на компьютер другого типа и многие другие соображения.

Самым верхним слоем сетевых средств являются различные сетевые приложения, такие как сетевые базы данных, почтовые системы, средства архивирования данных, системы автоматизации коллективной работы и др.

Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами.

^ 3. Классификация компьютерных сетей

Объединение рассмотренных выше компонент в сеть может производится различными способами и средствами. По составу своих компонент, способам их соединения, сфере использования и другим признакам сети можно разбить на классы таким образом, чтобы принадлежность описываемой сети к тому или иному классу достаточно полно могла характеризовать свойства и качественные параметры сети.

Однако такого рода классификация сетей является довольно условной. Наибольшее распространение на сегодня получило, разделение компьютерных сетей по признаку территориального размещения. По этому признаку сети делятся на три основных класса: ·

LAN - локальные сети (Local Area Networks); ·
MAN - городские сети (Metropolitan Area Networks). ·
WAN - глобальные сети (Wide Area Networks);

Локальная сеть (ЛС) - это коммуникационная система, поддерживающая в пределах здания или некоторой другой ограниченной территории один или несколько высокоскоростных каналов передачи цифровой информации, предоставляемых подключенным устройствам для кратковременного монопольного использования. Территории, охватываемые ЛС, могут существенно различаться.
Длина линий связи для некоторых сетей может быть не более 1000 м, другие же ЛС в состоянии обслужить целый город. Обслуживаемыми территориями могут быть как заводы, суда, самолеты, так и учреждения, университеты, колледжи. В качестве передающей среды, как правило, используются коаксиальные кабели, хотя все большее распространение получают сети на витой паре и оптоволокне, а в последнее время также стремительно развивается технология беспроводных локальных сетей, в которых используется один из трех видов излучений: широкополосные радиосигналы, маломощное излучение сверхвысоких частот (СВЧ излучение) и инфракрасные лучи.
Небольшие расстояния между узлами сети, используемая передающая среда и связанная с этим малая вероятность появления ошибок в передаваемых данных позволяют поддерживать высокие скорости обмена - от 1 Мбит/с до 100 Мбит/с (в настоящее время уже есть промышленные образцы ЛС со скоростями порядка 1 Гбит/с).

Городские сети, как правило, охватывают группу зданий и реализуются на оптоволоконных или широкополосных кабелях. По своим характеристикам они являются промежуточными между локальными и глобальными сетями. В последнее время в связи с прокладкой высокоскоростных и надежных оптоволоконных кабелей на городских и междугородних участках, а новые перспективные сетевые протоколы, например, ATM (Asynchronous Transfer Mode - режим асинхронной передачи), которые в перспективе могут использоваться как в локальных, так и в глобальных сетях.

Глобальные сети, в отличие от локальных, как правило, охватывают значительно большие территории и даже большинство регионов земного шара (примером может служить сеть Internet). В настоящее время в качестве передающей среды в глобальных сетях используются аналоговые или цифровые проводные каналы, а также спутниковые каналы связи (обычно для связи между континентами). Ограничения по скорости передачи (до 28,8 Кбит/с на аналоговых каналах и до 64 Кбит/с - на пользовательских участках цифровых каналов) и относительно низкая надежность аналоговых каналов, требующая использования на нижних уровнях протоколов средств обнаружения и исправления ошибок существенно снижают скорость обмена данными в глобальных сетях по сравнению с локальными.
Существуют и другие классификационные признаки компьютерных сетей. Так, например:

- по сфере функционирования сети могут быть разделены на банковские сети, сети научных учреждений, университетские сети;

- по форме функционирования можно выделить коммерческие сети и бесплатные сети, корпоративные и сети общего пользования;

- по характеру реализуемых функций сети подразделяются на вычислительные, предназначенные для решения задач управления на основе вычислительной обработки исходной информации; информационные, предназначенные для получения справочных данных по запросу пользователей; смешанные, в которых реализуются вычислительные и информационные функции;

- по способу управления вычислительные сети делятся на сети с децентрализованным, централизованным и смешанным управлением. В первом случае каждая ЭВМ, входящая в состав сети, включает полный набор программных средств для координации выполняемых сетевых операций. Сети такого типа сложны и достаточно дороги, так как операционные системы отдельных ЭВМ разрабатываются с ориентацией на коллективный доступ к общему полю памяти сети. В условиях смешанных сетей под централизованным управлением ведется решение задач, обладающих высшим приоритетом и, как правило, связанных с обработкой больших объемов информации;

- по совместимости программного обеспечения бывают сети однородными или гомогенными ( состоящие из программно-совместимых компьютеров) и неоднородной или гетерогенной (если компьютеры, входящие в сеть, программно несовместимы).

^ 4. Уровни взаимодействия компьютеров и протоколы передачи данных в сетях

В компьютерной сети существует 7 уровней взаимодействия между компьютерами:

физический, логический, сетевой, транспортный, уровень сеансов связи, представительский и прикладной уровень. Физический уровень (Physical Layer) определяет электрические, механические, процедурные и функциональные спецификации и обеспечивает для канального уровня установление, поддержание и разрыв физического соединения между двумя компьютерными системами, непосредственно связанными между собой с помощью передающей среды, например, аналогового телефонного канала, радиоканала или оптоволоконного канала.

Канальный уровень (Data Link Layer) управляет передачей данных по каналу связи. Основными функциями этого уровня являются разбиение передаваемых данных на порции, называемые кадрами, выделение данных из потока бит, передаваемых на физическом уровне, для обработки на сетевом уровне, обнаружение ошибок передачи и восстановление неправильно переданных данных.

Сетевой уровень (Network Layer) обеспечивает связь между двумя компьютерными системами сети, обменивающихся между собой информацией. Другой функцией сетевого уровня является маршрутизация данных (называемых на этом уровне пакетами) в сети и между сетями (межсетевой протокол).

Транспортный уровень (Transport Layer) обеспечивает надежную передачу (транспортировку) данных между компьютерными системами сети для вышележащих уровней. Для этого используются механизмы для установки, поддержки и разрыва виртуальных каналов (аналога выделенных телефонных каналов), определения и исправления ошибок при передаче, управления потоком данных (с целью предотвращения переполнения или потерь данных).

Сеансовый уровень (Session Layer) обеспечивает установление, поддержание и окончание сеанса связи для уровня представлений, а также возобновление аварийно прерванного сеанса. Уровень представления данных (Presentation Layer) обеспечивает преобразование данных из представления, используемого в прикладной программе одной компьютерной системы в представление, используемое в другой компьютерной системе. В функции уровня представлений входит также преобразование кодов данных, их шифровка/расшифровка, а также сжатие передаваемых данных.

Прикладной уровень (Application Level) отличается от других уровней модели OSI тем, что он обеспечивает услуги для прикладных задач. Этот уровень определяет доступность прикладных задач и ресурсов для связи, синхронизирует взаимодействующие прикладные задачи, устанавливает соглашения по процедурам восстановления при ошибках и управления целостностью данных. Важными функциями прикладного уровня является управление сетью, а также выполнение наиболее распространенных системных прикладных задач: электронной почты, обмена файлами и других.

Каждый уровень для решения своей подзадачи должен обеспечить выполнение определенных моделью функций данного уровня, действий (услуг) для вышележащего уровня и взаимодействовать с аналогичным уровнем в другой компьютерной системе.
Соответственно каждому уровню взаимодействия соответствует набор протоколов (т.е. правил взаимодействия).

Под протоколом понимается некая совокупность правил, регламентирующих формат и процедуры обмена информацией. В частности, он определяет, как выполняется соединение, преодолевается шум на линии и обеспечивается безошибочная передача данных между модемами.
Стандарт, в свою очередь, включает в себя общепринятый протокол или набор протоколов.

Функционирование сетевого оборудования невозможно без взаимоувязанных стандартов. Согласование стандартов достигается как за счет непротиворечивых технических решений, так и за счет группирования стандартов. Каждой конкретной сети присуща своя базовая совокупность протоколов.

Лекция 2. Аппаратное и программное обеспечение сетей

1. Каналы передачи данных по компьютерным сетям

2. Топология сети

3. Дисциплина обслуживания компьютерных сетей

4. Сетевое оборудование

5. Программное обеспечение компьютерных сетей



^ 1. Каналы передачи данных по компьютерным сетям

Для того чтобы компьютеры могли связаться между собой в сеть, они должны быть соединены между собой с помощью некоторой физической передающей среды. Основными типами передающих сред, используемых в компьютерных сетях, являются:

   аналоговые телефонные каналы общего пользования;

   цифровые каналы;

  узкополосные и широкополосные кабельные каналы;

радиоканалы и спутниковые каналы связи;

 оптоволоконные каналы связи.

Аналоговые каналы связи первыми начали применяться для передачи данных в компьютерных сетях и позволили использовать уже существовавшие тогда развитые телефонные сети общего пользования. Передача данных по аналоговым каналам может выполняться двумя способами. При первом способе телефонные каналы (одна или две пары проводов) через телефонные станции физически соединяют два устройства, реализующие коммуникационные функции с подключенными к ним компьютерами. Такие соединения называют выделенными линиями или непосредственными соединениями. Второй способ - это установление соединения с помощью набора телефонного номера (с использованием коммутируемых линий).

Качество передачи данных по выделенным каналам, как правило, выше и соединение устанавливается быстрее. Кроме того, на каждый выделенный канал необходимо свое коммуникационное устройство (хотя есть и многоканальные коммуникационные устройства), а при коммутируемой связи можно использовать для связи с другими узлами одно коммуникационное устройство.

Параллельно с использованием аналоговых телефонных сетей для межкомпьютерного взаимодействия начали развиваться и методы передачи данных в дискретной (цифровой) форме по ненагруженным телефонным каналам (т.е. телефонным каналам, к которым не подведено электрическое напряжение, используемое в телефонной сети) - цифровым каналам.

Следует отметить, что наряду с дискретными данными по цифровому каналу можно передавать и аналоговые информацию (голосовую, видео, факсимильную и т.д.), преобразованную в цифровую форму.

Наиболее высокие скорости на небольших расстояниях могут быть получены при использовании особым образом скрученной пары проводов (для того, чтобы избежать взаимодействия между соседними проводами), так называемой витой паре (ТР - Twisted Pair).

^ Кабельные каналы, или коаксиальные пары представляют собой два цилиндрических проводника на одной оси, разделенные диэлектрическим покрытием. Один тип коаксиального кабеля (с сопротивлением 50 Ом), используется главным образом, для передачи узкополосных цифровых сигналов, другой тип кабеля (с сопротивлением 75 Ом) - для передачи широкополосных аналоговых и цифровых сигналов. Узкополосные и широкополосные кабели, непосредственно связывающие между собой коммуникационные оборудования, позволяют обмениваться данными на высоких скоростях (до нескольких мегабит/c) в аналоговой или цифровой форме. Следует отметить, что на небольших расстояниях (особенно в локальных сетях) кабельные каналы все больше вытесняются каналами на витых парах, а на больших расстояниях - оптоволоконными каналами связи.

Использование в компьютерных сетях в качестве передающей среды радиоволн различной частоты является экономически эффективным либо для связи на больших и сверхбольших расстояниях (с использованием спутников), либо для связи с труднодоступными, подвижными или временно используемыми объектами.

Частоты, на которых функционируют радиосети за рубежом, обычно используют диапазон 2-40 ГГц (в особенности диапазон 4-6 ГГц). Узлы в радиосети могут быть расположены (в зависимости от используемой аппаратуры) на расстоянии до 100 км друг от друга.

Спутники обычно содержат несколько усилителей (или транспондеров), каждый из которых принимает сигналы в заданном диапазоне частот (обычно 6 или 14 ГГЦ) и регенерирует их в другом частотном диапазоне (например, 4 или 12 ГГц). Для передачи данных обычно используются геостационарные спутники, размещенные на экваториальной орбите на высоте 36000 км. Такое расстояние дает существенную задержку сигнала (в среднем 270 мс) для компенсации которой используют специальные методы.

Обмен данными по радиоканалам может вестись как с помощью аналоговых, так и цифровых методов передачи. Цифровые методы получают в последнее время преимущественное развитие, т.к. позволяют объединить наземные участки цифровых сетей и спутниковых каналов или радиоканалов в единой сети. Новым импульсом в развитии радиосетей стало появление сотовой телефонной связи, позволяющей осуществлять голосовую связь и обмен данными с помощью радиотелефонов или специальных устройств обмена данными.

Помимо обмена данными в радиодиапазоне последнее время для связи на небольшие расстояния (обычно в пределах комнаты) используется и инфракрасное излучение.

В оптоволоконных каналах связи используется известное из физики явления полного внутреннего отражения света, что позволяет передавать потоки света внутри оптоволоконного кабеля на большие расстояния практически без потерь. В качестве источников света в оптоволоконном кабеле используются светоиспускающие диоды (LED - light-emitting diode) или лазерные диоды, а в качестве приемников - фотоэлементы.

Оптоволоконные каналы связи, несмотря на их более высокую стоимость по сравнению с другими видами связи, получают все большее распространение, причем не только для связи на небольшие расстояния, но и на внутригородских и междугородных участках.

В компьютерных сетях для передачи данных между узлами сети можно использовать три технологии: коммутацию каналов, коммутацию сообщений и коммутацию пакетов.

^ Коммутация каналов, обеспечиваемая телефонной сетью общего пользования, позволяет, с помощью коммутаторов, установить прямое соединение между узлами сети.

При коммутации сообщений устройства, называемые коммутаторами и выполненные на базе универсальных или специализированных компьютеров, позволяют накапливать (буферизировать) сообщения и посылать их в соответствии с заданной системой приоритетности и принципами маршрутизации другим узлам сети. Использование коммутации сообщений может увеличить время доставки сообщений по сравнению с коммутацией каналов, однако при этом сглаживаются пиковые нагрузки в сети и повышается живучесть сети.

При пакетной коммутации данные пользователя разбиваются на более мелкие порции - пакеты, причем каждый пакет содержит служебные поля и поле данных. Существуют два основных способа передачи данных при пакетной коммутации: виртуальный канал, когда между узлами устанавливается и поддерживается соединение как бы по выделенному каналу (хотя на самом деле физический канал передачи данных разделен между несколькими пользователями) и дейтаграммный режим, когда каждый пакет из набора пакетов, содержащего данные пользователя, передается между узлами независимо друг от друга. Первый способ соединения называют также контактным режимом (connection mode), второй - бесконтактным (connectionless mode).

^ 2. Топология сети

Под топологией понимается описание свойств сети, присущих всем ее гомоморфным преобразованиям, т.е. таким изменениям внешнего вида сети, расстояний между ее элементами, их взаимного расположения, при которых не изменяется соотношение этих элементов между собой.

Топология компьютерной сети во многом определяется способом соединения компьютеров друг с другом. Топология во многом определяет многие важные свойства сети, например такие, как надежность (живучесть), производительность и др. Существуют разные подходы к классификации топологий сетей. Согласно одному из них конфигурации локальных сетей делятся на два основных класса: широковещательные и последовательные.

В широковещательных конфигурациях каждый ПК (приемо-передатчик физических сигналов) передает сигналы, которые могут быть восприняты остальными ПК. К таким конфигурациям относятся топологии “общая шина”, “дерево”, “звезда с пассивным центром”. Сеть типа “звезда с пассивным центром” можно рассматривать как разновидность “дерева”, имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному ПК. Примерами последовательных конфигураций являются: произвольная (произвольное соединение компьютеров), иерархическая, “кольцо”, “цепочка”, “звезда с интеллектуальным центром”, “снежинка” и другие.

Наиболее оптимальной с точки зрения надежности (возможности функционирования сети при выходе строя отдельных узлов или каналов связи) является полносвязная сеть, т.е. сеть, в который каждый узел сети связан со всеми другими узлами, однако при большом числе узлов такая сеть требует большого количества каналов связи и труднореализуема из-за технических сложностей и высокой стоимости. Поэтому практически все сети являются неполносвязными.

Хотя при заданном числе узлов в неполносвязной сети может существовать большое количество вариантов соединения узлов сети, на практике обычно используется три наиболее широко распространенные (базовые) топологии ЛВС: “звезда”, “общая шина” и “кольцо”.

·        шинная, когда все узлы сети подключаются к одному незамкнутому каналу, обычно называемому шиной.



Рис. Топология «Шина»

В данном случае, одна из машин служит в качестве системного обслуживающего устройства, обеспечивающего централизованный доступ к общим файлам и базам данных, печатающим устройствам и другим .вычислительным ресурсам. Сети данного типа приобрели большую популярность благодаря низкой стоимости, высокой гибкости и скорости передачи данных, легкости расширения сети (подключение новых абонентов к сети не сказывается на ее основных характеристиках). К недостаткам шинной топологии следует отнести необходимость использования довольно сложных протоколов и уязвимость в отношении физических повреждений кабеля.

             кольцевая, когда все узлы сети подключаются к одному замкнутому кольцевому каналу.

 

 

 

 

 

 

Рис. Топология «Кольцо»

Эта структура сети характеризуется тем, что информация по кольцу может передаваться только в одном направлении и все подключенные ПЭВМ могут участвовать в ее приеме и передаче. При этом абонент-получатель должен пометить полученную информацию специальным маркером, иначе могут появиться «заблудившиеся» данные, мешающие нормальной работе сети.

Как последовательная конфигурация кольцо особенно уязвимо в отношении отказов: выход из строя какого-либо сегмента кабеля приводит к прекращению обслуживания всех пользователей. Разработчики ЛВС приложили немало усилий, чтобы справиться с этой проблемой. Защита от повреждений или отказов обеспечивается либо замыканием кольца на обратный (дублирующий) путь, либо переключением на запасное кольцо. И в том, и в другом случае сохраняется общая кольцевая топология.

·             звездообразная, когда все узлы сети подключаются к одному центральному узлу, называемому хостом (host) или хабом (hub).



Рис. Топология «Звезда»

конфигурацию можно рассматривать как дальнейшее развитие структуры «дерево с корнем» с ответвлением к каждому подключенному устройству. В центре сети обычно размещается коммутирующее устройство, обеспечивающее жизнеспособность системы. ЛВС подобной конфигурации находят наиболее частое применение в автоматизированных учрежденческих системах управления, использующих центральную базу данных. Звездообразные ЛВС, как правило, менее надежны, чем сети с общей шиной или иерархические, но эта проблема решается дублированием аппаратуры центрального узла. К недостаткам можно также отнести значительное потребление кабеля (иногда в несколько раз превышающее расход в аналогичных по возможностям ЛВС с общей шиной или иерархических).

Сети могут быть также смешанной топологии (гибридные), когда отдельные части сети имеют разную топологию. Примером может служить локальная сеть FDDI, в которой основные (магистральные) узлы подключаются к кольцевому каналу, а к ним по иерархической топологии подключаются остальные узлы.

^ 3. Дисциплина обслуживания компьютерных сетей

По дисциплине обслуживания сети подавляющее большинство современных компьютерных сетей используют технологию "клиент-сервер" (client-server) или одноранговую (peer-to-peer) технологию.

При работе по технологии "клиент-сервер" пользователи делят сетевые ресурсы (такие, как базы данных, файлы или принтеры) с другими пользователями.

Под сервером понимается комбинация аппаратных и программных средств, которая служит для управления сетевыми ресурсами общего доступа. Он обслуживает другие станции, предоставляя общие ресурсы и услуги для совместного использования.

 

 

 

 

 

 

 

 

 

В сетях с выделенным сервером в основном именно ресурсы сервера, чаще всего дисковая память, доступны всем пользователям. Серверы, разделяемым ресурсом которых является дисковая память, называются файл-серверами.

Одной из важных функций сервера является управление очередью заданий работы сетевого принтера. Сетевым принтером пользоваться можно с любой рабочей станции, независимо от места подключения его в сети. То есть каждый пользователь при наличии на это прав может отправить на сетевой принтер материалы, предназначенные для печати. Регулировать очередность доступа к сетевому принтеру будут средства сетевой операционной системы. Компьютер, к которому подключен принтер, в этом случае называется принт-сервером.

Файловый и принт-серверы обычно используются администратором сети и не предназначены для решения прикладных задач. На этих серверах устанавливается сетевая операционная система.

Компьютеры, использующие сетевые ресурсы сервера, называются клиентами. Взаимодействие с серверами прозрачно для пользователя, поскольку компьютер сам определяет место нахождения требуемого ресурса, и сам получает к нему доступ.

Каждый компьютер сети имеет уникальное сетевое имя, позволяющее однозначно его идентифицировать. Для каждого пользователя серверной сети необходимо иметь свое сетевое имя и сетевой пароль. Имена компьютеров, сетевые имена и пароли пользователей прописываются на сервере.

Для удобства управления компьютерной сетью, несколько компьютеров, имеющих равные права доступа, объединяют в рабочие группы. Рабочая группа – группа компьютеров в локальной сети.

Совокупность приемов разделения и ограничения прав доступа участников компьютерной сети к ресурсам называется политикой сети. Обеспечением работоспособности сети и ее администрированием занимается системный администратор – человек, управляющий организацией работы компьютерной сети.

^ Рабочая станция — это индивидуальное рабочее место пользователя. На рабочих станциях устанавливается обычная операционная система. Кроме того, на рабочих станциях устанавливается клиентская часть сетевой операционной системы. Полноправным владельцем всех ресурсов рабочей станции является пользователь, тогда как ресурсы файл-сервера разделяются всеми пользователями. В качестве рабочей станции может использоваться компьютер практически любой конфигурации. Но, в конечном счете, все зависит от тех приложений, которые этот компьютер выполняет.

В одноранговых сетях все компьютеры, как правило, имеют доступ к ресурсам других компьютеров, т.е. все компьютеры сети являются равноправными. Одноранговая ЛВС предоставляет возможность такой организации работы компьютерной сети, при которой каждая рабочая станция одновременно может быть и сервером. Преимущество одноранговых сетей заключается в том, что разделяемыми ресурсами могут являться ресурсы всех компьютеров в сети и нет необходимости копировать все используемые сразу несколькими пользователями файлы на сервер. В принципе, любой пользователь сети имеет возможность использовать все данные, хранящиеся на других компьютерах сети, и устройства, подключенные к ним. Затраты на организацию одноранговых вычислительных сетей относительно небольшие. Однако при увеличении числа рабочих станций эффективность их использования резко уменьшается. Пороговое значение числа рабочих станций, по оценкам фирмы Novell, составляет 25. Основной недостаток работы одноранговой сети заключается в значительном увеличении времени решения прикладных задач. Это связано с тем, что каждый компьютер сети отрабатывает все запросы, идущие к нему со стороны других пользователей. Следовательно, в одноранговых сетях каждый компьютер работает значительно интенсивнее, чем в автономном режиме. Существует еще несколько важных проблем, возникающих в процессе работы одноранговых сетей: возможность потери сетевых данных при перезагрузке рабочей станции и сложность организации резервного копирования.

 

 

Рис. Одноранговая сеть

Поэтому одноранговые ЛВС используются только для небольших рабочих групп, а все сетевые архитектуры для крупномасштабных сетей поддерживают технологию "клиент-сервер".

^ 4. Сетевое оборудование

Технические средства коммуникаций составляют кабели (экранированная и неэкранированная витая пара, коаксиальный, оптоволоконный), коннекторы и терминаторы, сетевые адаптеры, повторители, разветвители, мосты, маршрутизаторы, шлюзы, а также модемы, позволяющие использовать различные протоколы и топологии в единой неоднородной системе.Сетевая карта (адаптер) — устройство для подключения компьютера к сетевому кабелю.

 

 

 

^ Рис. Сетевая карта

В качестве физической среды для обмена информацией обычно используются: толстый (thick) коаксиальный кабель, тонкий (thin) коаксиальный кабель, оптоволоконный кабель и неэкранированная витая пара (Unshielded Twisted-Pair, UTP). 

 

 

 

 

 

 

 

 

 

 

 

 

Для решения проблемы межсетевого взаимодействия изготовителями оборудования предлагаются различные интерфейсные устройства - повторители (repeater), мосты (bridge), маршрутизаторы (router), мосты/маршрутизаторы (bridge/router) и шлюзы (gateway).

Основное различие между этими устройствами состоит в том, что повторители действуют на 1-м (физическом) уровне в соответствии с моделью OSI/ISO, мосты - на 2-м уровне, маршрутизаторы - это устройства, которые действуют на 3-м (сетевом) уровне, а шлюзы - на 4-7 уровнях, как показано на рисунке:

Маршрутизаторы — устройства для соединения сегментов сети, действующие на сетевом уровне модели OSI/ISO и использующие маршрутную информацию сетевого уровня. Маршрутизаторы обмениваются между собой информацией о топологии, состоянии сети, работоспособности каналов и доступности узлов в целях выбора оптимального пути для передачи пакета. Такой процесс выбора маршрута по адресу абонентской системы, которая принимает пакет, называют маршрутизацией.

 

 

 

 

 

 

 

Рис. Маршрутизатор

Различают однопротокольные и многопротокольные маршрутизаторы, которые могут поддерживать одновременно несколько протоколов, например IPX/SPX, TCP/IP и другие. Так как встречаются протоколы, которые не содержат информации сетевого уровня, то маршрутизаторам приходится выполнять и функции моста. Поэтому современные многопротокольные маршрутизаторы называют «мостами-маршрутизаторами». Среди достоинств маршрутизаторов следует отметить возможность выбора маршрута, разбиение длинных сообщений на несколько коротких и использование альтернативных путей для их передач, приводящее к выравниванию трафиков по параллельным путям, тем самым позволяющее соединять сети с пакетами разной длины и облегчающее объединение сетей.

Мосты представляют собой устройства для соединения сегментов сети, функционирующие на подуровне контроля доступа к среде (Media Access Control) канального уровня модели OSI/ISO. Мосты обладают свойством прозрачности для протоколов более высоких уровней, то есть осуществляют передачу кадра из одного сегмента в другой по физическому адресу станции получателя, который выделяется из заголовка канального уровня, анализируют целостность кадров и отфильтровывают испорченные. Эти устройства могут обладать свойством самообучения, то есть по мере прохождения через мост кадров он заполняет две таблицы адресами станций, отправляющих сообщения, физически располагая их по разные стороны от моста и записывая в разные таблицы.

Сегменты сети, которые соединяются мостом, могут использовать как одинаковые, так и разные канальные протоколы. В последнем случае мост переводит кадр одного формата в кадр другого формата.

Мосты автоматически адаптируются к изменению конфигурации сети и могут соединять сети с различными протоколами сетевого уровня. К сожалению, эти устройства не могут распределять нагрузку, используя альтернативные пути в сети, что приводит иногда к перегрузке трафика (потока информационного обмена в линии связи).

Повторитель — устройство, действующее на физическом уровне, предназначенное для компенсации затухания в среде передачи данных путем усиления сигналов в целях увеличения расстояния их распространения. Одной из разновидностей повторителей являются конверторы среды. Они позволяют преобразовывать сигналы, например, при соединении коаксиального и оптоволоконного кабелей, при переходе из одной среды передачи в другую.

Разветвитель — пассивное устройство для соединения более двух кабельных сегментов.

Шлюзы — устройства, оперирующие на верхних уровнях модели OSI (сеансовом, представления и приложений). Они представляют метод подсоединения сетевых сегментов и компьютерных сетей к центральным ЭВМ. Необходимость в применении шлюзов появляется, когда объединяют две системы с совершенно различной архитектурой для перевода потока данных, проходящих между этими системами.

Для подключения к другим линиям связи используются модемы. Наибольшее распространение получили модемы, ориентированные на подключение к коммутируемой телефонной линии.

Модем – устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи. Модем для подключения к коммутируемой телефонной линии выполняет преобразование компьютерных данных в звуковой аналоговый сигнал для передачи по телефонной линии (модуляция), а также обратное преобразование (демодуляция).







Рис. Внешний модем

Рис. Факс-модем

Модемы бывают внутренние и внешние. Внутренние модемы вставляются внутрь системного блока компьютера. Внешние модемы представлены в виде отдельного устройства, которое соединяется кабелем с последовательным портом компьютера, таким же, к какому часто подключают мышь. Внутренние модемы содержат встроенный последовательный порт и получают питание от компьютера, внешние имеют отдельный блок питания. Внутренние модемы дешевле внешних при прочих равных характеристиках, основной из которых является  скорость.

Факс-модем – устройство, обеспечивающее электронную передачу обычного текста, чертежей, фотографий, схем, документов, преобразование информации в форму, пригодную для передачи по имеющемуся каналу связи, и формирование на бумажном носителе на приемной стороне дубликата — факсимиле — исходного документа. Вообще говоря, в состав любого телефакса входят сканер для считывания документа, модем, передающий и принимающий информацию по телефонной линии, а также принтер, печатающий принимаемое сообщение на термо- или обычной бумаге. Разумеется, в платах факс-модемов такие узлы, как сканер и принтер, отсутствуют. Информация представлена только в «электронном» виде.

^ 5. Программное обеспечение компьютерных сетей

Программное обеспечение компьютерных сетей обеспечивает организацию коллективного доступа к вычислительным и информационным ресурсам сети, динамическое распределение и перераспределение ресурсов сети с целью повышения оперативности обработки информации и максимальной загрузки аппаратных средств, а также в случае отказа и выхода из строя отдельных технических средств и т.д.

Программное обеспечение вычислительных сетей включает три компонента:

-                  общее программное обеспечение, образуемое базовым ПО отдельных ЭВМ, входящих в состав сети;

-                  специальное программное обеспечение, образованное прикладными программными средствами, отражающими специфику предметной области пользователей при реализации задач управления;

-                  системное сетевое программное обеспечение, представляющее комплекс программных средств, поддерживающих и координирующих взаимодействие всех ресурсов вычислительной сети как единой системы.

Особая роль в ПО вычислительной сети отводится системному сетевому программному обеспечению, функции которого реализуются в виде распределенной операционной системы сети.

Операционная система сети включает в себя набор управляющих и обслуживающих программ, обеспечивающих:

-                  межпрограммный метод доступа (возможность организации связи между отдельными прикладными программами комплекса, реализуемыми в различных узлах сети);

-                  доступ отдельных прикладных программ к ресурсам сети (и в первую очередь к устройствам ввода-вывода);

-                  синхронизацию работы прикладных программных средств в условиях их обращения к одному и тому же вычислительному ресурсу;

-                  обмен информацией между программами с использованием сетевых «почтовых ящиков»;

-                  выполнение команд оператора с терминала, подключенного к одному из узлов сети, на каком-либо устройстве, подключенном к другому удаленному узлу вычислительной сети;

-                  удаленный ввод заданий, вводимых с любого терминала, и их выполнение на любой ЭВМ в пакетном или оперативном режиме;

-                  обмен наборами данных (файлами) между ЭВМ сети;

-                  доступ к файлам, хранимым в удаленных ЭВМ, и обработку этих файлов;

-                  защиту данных и вычислительных ресурсов сети от несанкционированного доступа;

-                  выдачу различного рода справок об использовании информационных, программных и технических ресурсов сети;

-                  передачу текстовых сообщений с одного терминала пользователя на другие (электронная почта).

С помощью операционной системы сети:

-                  устанавливается последовательность решения задач пользователя;

-                  задачи пользователя обеспечиваются необходимыми данными, хранящимися в различных узлах сети;

-                  контролируется работоспособность аппаратных и программных средств сети;

-                  обеспечивается плановое и оперативное распределение ресурсов в зависимости от возникающих потребностей различных пользователей вычислительной сети.

Выполняемое с помощью операционной системы сети управление включает: планирование сроков и очередности получения и выдачи информации абонентам; распределение решаемых задач по ЭВМ сети; присвоение приоритетов задачам и выходным сообщениям; изменение конфигурации сети ЭВМ; распределение информационных вычислительных ресурсов сети для решения задач пользователя.

Оперативное управление процессом обработки информации с помощью операционной системы сети помогает организовать: учет выполнения заданий (либо определить причины их невыполнения); выдачу справок о прохождении задач в сети; сбор данных о работах, выполняемых в сети.

ОС отдельных ЭВМ, входящих в состав вычислительной сети, поддерживают потребности пользователей во всех традиционных видах обслуживания: средствах автоматизации программирования и отладки, доступа к пакетам прикладных программ и информации локальных баз данных и т.д.


  1   2   3   4   5



Скачать файл (665.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru