Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Программа - Расчет динамики узла лапки швейной машины - файл Расчет динамики узла лапки.doc


Программа - Расчет динамики узла лапки швейной машины
скачать (2438.2 kb.)

Доступные файлы (13):

Koleb.cfg
Koleb.dof
Koleb.dpr
Koleb.exe
Koleb.res
rk4.dcu
rk4.pas
Unit1.dcu
Unit1.ddp
Unit1.dfm
Unit1.pas
Unit2.pas
Расчет динамики узла лапки.doc4861kb.08.03.2009 21:21скачать

Загрузка...

Расчет динамики узла лапки.doc

Реклама MarketGid:
Загрузка...
3 Расчетная часть
3.1 Расчет узла лапки
3.1.1 Расчет массовых характеристик узла лапки

Произведем расчет массовых характеристик узла прижимной лапки. Для наглядности составим следующую схему (рисунок 3.1).


Рисунок 3.1 – Схема узла лапки для расчета массовых характеристик.
Массу толкателя m2, массу лапки m3, а также момент инерции рычага I4 определим в системе трехмерного твердотельного моделирования «КОМПАС-3D V8» (рисунок 3.2): m2 = 2,380 г; m3 = 8,103 г; I4 = 1288,041 г*мм2.

Длины l1 и l2 найдем из чертежа узла прижимной лапки: l1 = 14,5 мм, l2 = 23,65 мм.





Рисунок 3.2 – Трехмерные модели толкателя, лапки и рычага соответственно.

Массу пружины m1 определим по следующей формуле:

m1 = ρ*V,

где ρ – плотность пружины, ρ = 0,007820г/мм3;

V – объем пружины.

Объем пружины найдем, зная радиус проволоки Rпров. = 0,4 мм, средний диаметр пружины Dср. = 5,5 мм, число витков пружины n = 47 витков. Длина развернутой пружины Lпруж. = 863 мм. Объем пружины V = π*R2пров.* *Lпруж. = = π*0,42*863 = 433,57 мм3.

Таким образом, масса пружины равна m1 = 0,007820*433,57 = 3,39 г.

Жесткость пружины С определим по формуле:

,

где G – модуль упругости, G = 8*1010 Н/м2;

d – диаметр проволоки, d = 0,8 мм;

Dср. – средний диаметр пружины, Dср. = 5,5 мм;

n – число витков пружины, n = 47 витков.

Таким образом, Н/м Н/мм.

Определим максимальное усилие пружины Fmax. Найдем длину пружины в сжатом состоянии Lсж = 2*Rпров.*n = 2*0,4*47 = 37,6 мм. Длина пружины в ненагруженном состоянии Lразж. = 106 мм.

Таким образом, Fmax = (Lразж - Lсж)*C = (106 – 37,6)*0,52381 = 36 Н.
3.1.2 Динамический расчет узла лапки

Во время работы швейной машины прижимная лапка совершает вертикальные колебания вместе со стержнем, на котором она закреплена (в существующей конструкции), либо вместе с толкателем и рычагом (в новой облегченной конструкции). Связано это с тем, что лапка и стержень, поджатые пружиной (либо лапка с толкателем и рычагом, поджатые пружиной) представляют собой упругую систему, находящуюся во время работы машины в режиме вынужденных колебаний. Источником вынужденных колебаний является транспортирующая рейка, которая в процессе работы машины приподнимает лапку над игольной пластиной, а затем вновь опускает ее.

Поэтому важно проанализировать колебания лапки во время работы машины и сравнить обе конструкции узлов лапки. Построим графики зависимости динамического давления прижимной лапки от времени. Для удобства и сокращения времени при построении графиков составим программу на языке Delphi 6.0 (распечатка текста программы представлена в приложении Б). Для сравнения динамический расчет будем вести для базовой и для новой облегченной конструкций узла лапки. При этом, предварительно составив расчетные схемы для обеих конструкций (рисунок 3.3 – 3.4), воспользуемся следующими расчетными зависимостями.

Дифференциальное уравнение движения лапки существующей конструкции: .

Дифференциальное уравнение движения лапки новой облегченной конструкции: .

Уравнение движения рейки: .

Динамическое усилие прижима лапки: Fдин. = Fm sin ωt,

где Fm = c·Ap – амплитудное значение возмущающей силы;

с – жесткость пружины;

Ар – амплитуда рейки (высота подъема рейки);

ω – частота, ω = 2π/Т;

Т – период действия рейки, Т = tоб.·kр.х.,

tоб. – период одного оборота главного вала, tоб. = 60/n;

n – частота вращения главного вала;

kр.х. – коэффициент рабочего хода рейки,

kр.х. = ;


Рисунок 3.3 – Расчетная схема для базового узла лапки.



Рисунок 3.4 – Расчетная схема для нового узла лапки.

φ1 – угол поворота главного вала, соответствующий моменту входа иглы в материал, φ1 = 92,55ْ ;

t – время;

kд – коэффициент демпфирования, который в первую очередь зависит от условий смазки (во втулке узла лапки) и показывает вязкое сопротивление трению.

Определим исходные данные обеих конструкций для подстановки в программу.

Базовый узел лапки (с пластинчатой пружиной):

Приведенная масса лапки, т.е. масса подвижных частей рассматриваемой системы (рисунок 3.3):

mпр. = mстерж. + mлапки + 1/3·mпруж. = 0,029 + 0,014 + 1/3·0,044 = 0,058 кг.

Жесткость пружины (жесткость пластинчатой пружины определили, замерив параметры пружины из чертежа детали и составив расчетную схему с эпюрой изгибающего момента): с = 3440 Н/м.

Высота подъема рейки: Ар = 0,0008 м.

Частота вращения главного вала: n = 1000 ÷ 5000 об/мин.

Коэффициент рабочего хода рейки: kр.х. = 0,48.

Облегченный узел лапки:

Приведенная масса лапки, т.е. масса подвижных частей рассматриваемой системы (рисунок 3.4):



Жесткость пружины (в данном случае имеется в виду приведенная жесткость пружины (рисунок 3.4)): спр. = c·l2/l1 = 523,81·0,02365/0,0145 = 854 Н/м.

Высота подъема рейки: Ар = 0,0008 м.

Частота вращения главного вала: n = 1000 ÷ 5000 об/мин.

Коэффициент рабочего хода рейки: kр.х. = 0,48.

Также будем учитывать коэффициент демпфирования kд, варьируя его, чтобы избежать случая близкого к резонансу узла лапки при некоторых частотах вращения главного вала.

Таким образом, подставляя исходные данные в программу, получим графики зависимости усилия прижима базовой и новой лапки от времени при разной частоте вращения главного вала (рисунок 3.5 – 3.18).

Анализируя графики, можно сформулировать следующие выводы:

1. Удалось определить частоту вращения главного вала, при которой при низком коэффициенте демпфирования наблюдается случай резонанса, когда собственная частота стержня с лапкой (либо толкателя и рычага с лапкой) станет соизмеримой с частотой возмущающей силы. В этом случае лапка особенно интенсивно будет отрываться от сшиваемых материалов, отчего произойдет так называемой зависание ее. При зависании прижимная лапка не успевает снова коснуться сшиваемых материалов к моменту начала их нового продвижения. В результате при перемещении материалы в некоторые моменты времени окажутся не прижатыми лапкой к рейке и игольной пластине, отчего резко ухудшится качество образуемой строчки. Наблюдения при помощи скоростной киносъемки за работой прижимной лапки у швейных машин, работающих на высокой скорости [15], когда их лапка попадает в условия, близкие к резонансу, подтвердили наличие указанного явления. Таким образом, для базового узла лапки случай резонанса наблюдается при n = 2100 об/мин, для новой облегченной конструкции узла лапки – при n = 2950 об/мин. При kд = 0,5 и n = 2100 об/мин давление базовой лапки падает до – 60 Н, а при kд = 0,5 и n = 2950 об/мин давление новой лапки падает всего лишь до – 2,5 Н.

2. Также удалось подобрать оптимальный коэффициент демпфирования, при котором амплитуда колебаний лапки входит в допустимые пределы (kд = 5). Также следует отметить, что коэффициент демпфирования не оказывает значительного влияния на амплитуду колебаний лапки при скоростях отличных от «резонансных».

3. Динамический расчет базового и нового узла лапки показал существенные различия при колебаниях конструкций во время работы. Амплитуда колебаний новой облегченной конструкции узла лапки значительно ниже, нежели амплитуда колебаний базовой конструкции. Следовательно, качество строчки при использовании новой конструкции будет выше.

Таким образом, на основании проведенных исследований можно рекомендовать облегченную конструкция узла прижимной лапки для внедрения на универсальных высокоскоростных промышленных швейных машинах.



Рисунок 3.5 – Колебания базовой лапки при n = 2100 и kд = 0,5.



Рисунок 3.6 – Колебания базовой лапки при n = 2100 и kд = 5.


Рисунок 3.7 – Колебания базовой лапки при n = 1000.



Рисунок 3.8 – Колебания базовой лапки при n = 2000.


Рисунок 3.9 – Колебания базовой лапки при n = 3000.



Рисунок 3.10 – Колебания базовой лапки при n = 4000.


Рисунок 3.11 – Колебания базовой лапки при n = 5000.



Рисунок 3.12 – Колебания новой лапки при n = 2950 и kд = 0,5.


Рисунок 3.13 – Колебания новой лапки при n = 2950 и kд = 5.



Рисунок 3.14 – Колебания новой лапки при n = 1000.


Рисунок 3.15 – Колебания новой лапки при n = 2000.



Рисунок 3.16 – Колебания новой лапки при n = 3000.


Рисунок 3.17 – Колебания новой лапки при n = 4000.



Рисунок 3.18 – Колебания новой лапки при n = 5000.


Скачать файл (2438.2 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации