Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Дипломная работа - Иррациональные неравенства - файл 006410.rtf


Дипломная работа - Иррациональные неравенства
скачать (340.4 kb.)

Доступные файлы (1):

006410.rtf10788kb.12.03.2004 17:57скачать

содержание
Загрузка...

006410.rtf

1   2   3   4   5   6
Реклама MarketGid:
Загрузка...

^ 8. Решение иррациональных неравенств, способом введения новой переменной.
Иррациональные неравенства, как и иррациональные уравнения можно решать способом введения новой переменной. Рассмотрим использование этого метода на примерах.
Пример 1. Решить неравенство:

Решение. Положив , находим что х2 + 5х + 4 = у2 – 24, тогда неравенство (1) преобразуется к виду:
у2 – 5y – 24 < 0
и далее решим уравнение:
у2 – 5y – 24 = 0

D = 25 + 96 = 121

y1 = -3, y2 = 8
получаем (у – 8)(у + 3) < 0.

Решением этого неравенства является промежуток -3 < y < 8.

Мы пришли к следующей системе неравенств:


Так как при всех допустимых значениях х, то тем более при всех х их ОДЗ неравенства (1), а поэтому достаточно решить неравенство:

Это неравенство равносильно системе

Так как неравенство х2 + 5х + 38 ³ 0 выполняется при любых значениях х (D = 25 – 4 × 28 < 0 и а = 1 > 0), то последняя система равносильна неравенству:
х2 + 5х + 38 < 0
или
(х + 9)(х – 4) < 0
откуда методом интервалов находим решение неравенства (1)



Ответ: х Î ]-9; 4[

Неравенство (1) – неравенство вида
.
Здесь применима подстановка и неравенство заменяется равносильным ему неравенством:
у2 – ky + d – c < 0, которое легко разрешимо.
Рассмотрим неравенство вида:
, где можно применить подстановку .
Пример 2. Решить неравенство:

Решение. Найдем ОДЗ неравенства: х £ 5. Положим , тогда у > x – 3, y ³ 0. Выразим х через у: у2 = 5 – х Þ х = 5 – у2.

Получаем систему:

Откуда:


Значения x < 4 принадлежат ОДЗ.

Ответ: x < 4.
Пример 3. Решить неравенство

Решение. Найдем ОДЗ неравенства

при х ³ 2 второе и третье неравенства системы истинны. ОДЗ х ³ 2.

Пусть , тогда исходное неравенство примет вид:
(1)
Так как под радикалами в левой части неравенства (1) стоят полные квадраты, то оно может быть представлено в следующем эквивалентном виде:

|t + 1| - |t – 1| > 1
Разобьем решение на три промежутка:


  1. t £ -1

-t – 1 + t – 1 > 1 Æ

  1. –1 < t £ 1

t + 1 + t – 1 > 1

2t > 1

t > ½

  1. t > 1

t + 1 – t + 1 > 1 2 > 1 – истинно
Решением неравенства на всех трех промежутках будет t > ½

Подставляем

Эти значения принадлежат ОДЗ.

Ответ: x > 2,25.
Пример 4. Решить неравенство:


Решение. Положим , тогда и мы получаем неравенство:
у2 – у – 2 >0,
откуда находим y < -1, y>2.

Теперь задача свелась к решению двух неравенств:

Первое неравенство не имеет корней во множестве действительных чисел, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.
(1)
Пусть a < 0. В школьном курсе рациональная степень числа а не определяется, и это не случайно. Пусть (1) верно, тогда:

Противоречие.

Итак, получаем: левая положительная часть меньше отрицательной правой, что не имеет смысла.

Решим неравенство



Возведем обе части неравенства в пятую степень, получим x – 2 > 32, откуда x > 34.

Ответ: x > 34.

9. Способ домножения обеих частей иррационального неравенства на некоторое число, либо выражение.
Этот способ мы можем использовать, основываясь на теоремах 19 и 20 из параграфа “Неравенства и их основные свойства”.
Пример 1. Решить неравенство:
(1)
Решение. Уединение радикала и возведение обеих частей полученного неравенства в квадрат привело бы к громоздкому неравенству. В то же время, если проявить некоторую наблюдательность, то можно заметить, что заданное неравенство легко сводится к квадратному. Предварительно найдем ОДЗ неравенства:
2 – 3х + 2 ³ 0
откуда получаем х – любое действительное число. Домножим обе части неравенства (1) на 2 получим

и далее


Полагая , получим у2 – 2у - 8 ³ 0, откуда у £ -2, у ³ 4.

Значит, неравенство (1) равносильно следующей совокупности неравенств:


Второе неравенство системы имеет решения х £ -2, х ³ 3,5, а первое – не имеет решений, так левая часть неравенства неотрицательна, а правая отрицательна, это противоречит смыслу неравенства.

Все решения второго неравенства принадлежат ОДЗ неравенства (1) и получены при переходах к равносильным неравенствам.

Ответ: х £ -2, х ³ 3,5.
Пример 2. Решить неравенство
(1)
Решение. ОДЗ неравенства:

Домножим обе части неравенства на выражение
, имеющее ту же ОДЗ , что и неравенство (1).

Получим:


или:


Последнее неравенство всегда истинно на ОДЗ, т. к. –3 всегда будет меньше положительной правой части неравенства.

Ответ: х ³ 1.
Пример 3. Решить неравенство

Решение. Найдем ОДЗ неравенства

Домножим обе части неравенства на :

Последнее неравенство равносильно совокупности:



Из первой системы получаем x < -2, а решением второй системы является промежуток

Объединяя их получаем:

Ответ:
^ 10. Метод выделения полного квадрата в подкоренных выражениях при решении иррациональных неравенств, либо разложения подкоренного выражения на множители.
Пример 1. Решить неравенство

Попробуем отметить какие – либо особенности заданного неравенства, которые могли бы указать путь к решению. Такие особенности есть, а именно:

Решение. Найдем ОДЗ исходного неравенства

На промежутке [-1;4] третье и четвертое неравенства системы истинны.

Значит, ОДЗ х Î [-1;4].

Перепишем заданное неравенство так:

откуда

Но и , поэтому получаем:

или:

В ОДЗ правая часть неравенства всегда положительна, поэтому возведем в квадрат обе части неравенства

решение этого неравенства х Î [0; 3]. Этот промежуток принадлежит ОДЗ.

Ответ: х Î [0; 3].
Пример 2. Решить неравенство:

Решение. Найдем ОДЗ неравенства:

откуда получаем x £ 1, х ³ 5, х = 2

Перепишем наше неравенство следующим образом:

Поскольку обе части неравенства положительны и имеют смысл на ОДЗ, возведем в квадрат обе части этого неравенства, получим:

Правая часть полученного неравенства на ОДЗ всегда положительна, поэтому имеем право возвести обе части его в квадрат и получим равносильное неравенство:
(х – 2)2(х – 5)(х – 1) £ 9(х – 2)2(х – 1)2
или:
(х – 2)2(х – 1) (х – 5 – 9х + 9)£ 0

(х – 2)2(х – 1) (4 – 8х)£ 0
откуда методом интервалов получаем: х £ ½, х ≥ 1

Учитывая ОДЗ, получаем

Ответ: х £ ½, х = 1, х ≥ 5, х = 2

^ 11. Решение иррациональных неравенств путем проб, выводов.
Пример 1. Решить неравенство:
(1)
Решение. Область определения неравенства (1): 2 £ х £ 3.

Прежде, чем возводить в квадрат обе части неравенства (1), необходимо убедиться в том, что обе его части неотрицательны.

Однако, оказывается, что это не так.

Действительно, так как 2 £ х £ 3, то 1 £ х – 1 £ 2 и 3 £ 6 – х £ 4. А это значит, что или . Но . Таким образом, при всех значениях х из отрезка 2 £ х £ 3 неравенство (1) выполняется. Итак, 2 £ х £ 3 - решение неравенства.
Пример 2. Решим неравенство:

Решение. Найдем ОДЗ неравенства:

откуда получаем, что ОДЗ неравенства х = 2 – единственная точка. Подстановкой легко проверить, что х = 2 является решением исходного неравенства.

Ответ: х = 2.

^ 12. Решение более сложных примеров.
Пример 1. Решить неравенство

Решение. Используем метод интервалов. Решим соответствующее уравнение.

Решением уравнения являются значения переменной х = 0 и при любом действительном значении параметра а.

Корни соответствующего уравнения разбивают числовую ось на промежутки знакопостоянтства, в каждом из которых неравенство или тождественно истинное, или тождественно ложное.
а) если a > 0, то и числовая ось разбивается на следующие промежутки знакопостоянства: x < 0,


Рассмотрим промежуток . Возьмем значение х = а из этого промежутка и подставим в данное неравенство. Получим: - истинное числовое неравенство. Следовательно, промежуток принадлежит решению. Любое значение переменной х, взятое из промежутка знакопостоянства , обращает данное неравенство в ложное числовое неравенство. Например, при имеем ложное числовое неравенство .

Следовательно, промежуток не принадлежит решению.

Подставив, например, х = -а, взятое из промежутка знакопостоянства x < 0, в данное неравенство, получим истинное числовое неравенство . Значит, числовой промежуток x < 0 принадлежит решению. Итак, при a > 0 решением неравенства является объединение двух числовых промежутков x < 0 и .

б) если a < 0, то и числовая ось разбивается на промежутки знакопостоянства . Как и в первом случае, устанавливаем, что данное неравенство тождественно истинное в промежутках и x > 0 и тождественно ложное в промежутке . Следовательно, при a < 0 решением неравенства будет объединение двух числовых промежутков и x > 0.

в) при а = 0 . Получим два промежутка знакопостоянства: x < 0 и x > 0, каждый из которых, как легко установить принадлежит решению.

Ответ: 1) при

2) при .

Пример 2. Решить неравенство

ОДЗ: 5х – 7 ≥ 0

log57 ≤ x < +∞


Возводим обе части в квадрат:

решением последнего неравенства является промежуток х ≤ 2. Учитывая ОДЗ получаем решение исходного неравенства log57 ≤ x ≤ 2.

Ответ: log57 ≤ x ≤ 2.


^ 13. Подборка задач по теме “решение иррациональных неравенств”.





^ 14. Классические неравенства.
Рассмотрим некоторые наиболее важные для математического анализа неравенства. Эти неравенства служат аппаратом, который повседневно используют специалисты, работающие в этой области математики.
^ Теорема о среднем арифметическом и среднем геометрическом.
Теорема 1. Среднее арифметическое любых двух неотрицательных чисел а и b не меньше их среднего геометрического, т. е.:
(1)
Равенство имеет место в том и только том случае, когда a = b.
Доказательство. Поскольку квадратный корень может доставить немало хлопот, мы постараемся от него избавиться, положив a = c2, b = d2, что допустимо, ибо в теореме 1 предполагается, что числа а и b неотрицательны. При этом соотношение (1), в справедливости которого для произвольных неотрицательных чисел а и b мы хотим убедиться, примет следующий вид:
, (2)
где с и d – произвольные действительные числа.

Неравенство (2) имеет место в том и только том случае, когда
,

что в силу основных правил, относящихся к неравенствам, равносильно тому, что
с2 + d2 – 2cd ≥ 0 (3)
Но с2 + d2 – 2cd = (с – d)2 , значит неравенство (3) равносильно
(с – d)2 ≥ 0 (4)
Так как квадрат любого действительного числа неотрицателен, то ясно, что соотношение (4) всегда имеет место. Значит справедливы и неравенства (3), (2), (1). Равенство в формуле (4), а значит и в формуле (1) достигается в том и только в том случае, когда c – d = 0, т.е. c = d, или, иначе говоря, когда a = b.

Покажем теперь, что теорему 1 можно вывести геометрическим путем простого сравнения некоторых площадей.

Рассмотрим график функции у = х, изображенный на рисунке.



Пусть S и Т точки прямой у = х с координатами (с, с) и (d, d). Рассмотрим также точки Р(с, 0), Q(0, d), R(c, d). Так как длина отрезка ОР равна с, то длина отрезка PS также равна с. Поэтому площадь ∆OPS, полупроизведение длин его основания и высоты равна .

Рассмотрим теперь прямоугольник OPRQ. Он полностью покрывается ∆OPS и ∆OQT, так что
SOPS + SOQT ≥ SOPRQ (5)
Так как площадь прямоугольника OPRQ – произведение длин его основания и высоты – равна сd, то при помощи алгебраических символов соотношение (5) можно записать так:

Кроме того, легко видеть, что равенство достигается только тогда, когда площадь ∆TRS равна нулю, что возможно только при условии совпадания точек S и Т, т. е. когда с = d.
Теорема 2. Среднее арифметическое любых трех неотрицательных чисел a, b и с не меньше их среднего геометрического, т.е.

(1)

Равенство достигается в том случае и только том случае, когда а = b = с.

Доказательство: пусть а = х3, b = у3, с = z3.

Подставим эти значения в неравенство (1):

, (2)

что равносильно неравенству

x3 + y3 + z3 – 3xyz ³ 0 (3)

Мы докажем теорему 2, если установим, что неравенство (3) имеет место для произвольных неотрицательных чисел x, y, z.

x3 + y2 + z2 – 3xyz = (x + y + z + )(x2 + y2 + z2 – xy – xz – yz) (4)

x + y + z – неотрицательное число, покажем, что

x2 + y2 + z2 – xy – xz – yz ³ 0 (5)

Выпишем три неравенства x2 + y2 ³ 2xy, x2 + z2 ³ 2xz, y2 + z2 ³ 2yz (эти неравенства истинны по теореме 1) и сложим их почленно:

2(x2 + y2 + z2) ³ 2(xy + xz + yz)

это неравенство равносильно неравенству (5). Равенство достигается тогда и только тогда, когда x = y = z.

Мы получили, что в (4) левая часть ³ 0, т.е. неравенство (3) имеет место. Но неравенство (3) равносильно (1). Теорема доказана. Условие x = y = z равносильно условию a = b = c.

Теорема будет верна и для n чисел, примем ее без доказательства.
Теорема 3. Среднее арифметическое любых n неотрицательных чисел а1, а2,…аn не меньше их среднего геометрического, т.е.



Равенство достигается в том и только том случае, когда а1 = а2 = аn.

^ Неравенство Коши.
а) Двумерный вариант:

(1)
для любых неотрицательных чисел a, b c, d.

Доказательство. Так как a, b, c, d – неотрицательные, то ac + bd ³ 0 и имеем право возвести в квадрат обе части неравенства (1):

(a2 + b2)(c2 + d2) ³ (ac + bd)2 (2)

В первую очередь отметим, что неравенство a2 + b2 ³ 2ab, на котором основывались все выводы в предыдущих теоремах, является простым следствием тождества a2 – 2ab + b2 = (a – b)2, верного для всех действительных чисел. Рассмотрим произведение

(a2 + b2)(c2 + d2)

Произведя умножение, получим многочлен a2c2 + b2d2 + a2d2 + b2c2,

Совпадающий с тем, который получается после раскрытия скобок в выражении (ac + bd)2 + (bc – ad)2

Отсюда получаем

(a2 + b2)(c2 + d2) = (ac + bd)2 + (bc – ad)2 (3)

Так как квадрат (bc – ad)2 неотрицателен, то из (3) следует неравенство

(a2 + b2)(c2 + d2) ³ (ac + bd)2

для любых действительных чисел a, b, c, d.

Мы получили неравенство (2) – неравенство Коши для любых действительных чисел a, b, c, d.

Для любых неотрицательных чисел a, b, c, d неравенство Коши примет вид (1). Из соотношения (3) вытекает, что равенство в (2), а значит и в (1) достигается тогда и только тогда, когда

bc – ad = 0 (4)

В этом случае говорят, что две пары чисел (a, b) и (c, d) пропорциональны. При с ¹ 0 и d ¹ 0 условие (4) можно записать следующим образом:



Геометрическая интерпретация.

Рассмотрим треугольник, изображенный на рисунке.




Очевидно, что длины отрезков OР и OQ и PQ определяются равенствами

ОР = (a2 + b2)½

ОQ = (c2 + d2)½

РQ = [(a – c)2 + (b – d)2]½

Обозначим угол между сторонами ОР и OQ через q. На основании теоремы косинусов имеем:

PQ2 = OP2 + OQ2 – 2OP × OQ cosq

Подставляя значения OP, OQ, и РQ и упрощая полученное выражение, имеем


Поскольку значение косинуса всегда заключено между –1 и +1, мы имеем

-1 £ cos q £ 1

или



значит



А это двумерный вариант неравенства Коши. Кроме того, мы видим, что равенство здесь достигается тогда и только тогда, когда сos q =1, т.е. когда q = 0 или q = p, - другими словами в том и лишь в том случае, когда точки О, Р, и Q лежат на одной прямой. При этом должно иметь место равенство подъемов прямых ОР и OQ; иначе говоря, если с ¹ 0 и d ¹ 0, то должно быть


б) ^ Трехмерный вариант неравенства Коши.

Вышеприведенная интерпретация неравенства Коши для двумерного случая хороша еще и тем, что позволяет нам при помощи геометрической интуиции легко сообразить, какой вид будут иметь аналогичные результаты, относящиеся к более сложному случаю любого числа измерений. Перейдем к случаю трехмерного пространства. Пусть Р(а1, а2, а3) и Q(b1, b2, b3) – две точки, не совпадающие с началом координат О (0, 0, 0). Тогда косинус угла q между прямыми ОР и OQ будет определяться равенством



которое, в силу того, что сosq £ 1, приводит к трехмерному варианту неравенства Коши для неотрицательных чисел аi и bi, i = 1, 2, 3

(1)

Равенство здесь достигается тогда и только тогда, когда три точки О, Р и Q лежат на одной прямой, что выражается соотношениями



имеющими смысл при условии, что все числа bi, стоящии в знаменателях отличны от нуля.

Чисто алгебраическое доказательство трехмерного варианта неравенства Коши (1) можно вывести из следующего тождества:

(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 = (a12b22 + a22b12) +

+ (a12b32 + a32b12) + (a22b32 + a32b22) – 2a1b1a2b2 – 2a1b1a3b3 – 2a2b2a3b3 =

= (a1b2 – a2b1)2 + (a1b3 – a3b1)2 + (a2b3 – a3b2)2 (2)

Очевидно, что последнее выражение в (2) неотрицательно, так как оно состоит из суммы трех неотрицательных членов. Поэтому

(a12 + a22 + a32)(b12 + b22 + b32) – (a1b1 + a2b2 + a3b3)2 ³ 0.

Приведем еще одно доказательство этого неравенства, которое пригодится нам дальше.

Начнем с основного неравенства (х – у2) ³ 0, которое можно записать в следующем виде:

(3)

Неравенство (3) имеет место для любых действительных чисел х и у. Вместо х и у последовательно подставим в (3) следующие выражения:

сначала:



затем



и, наконец,



где ai, bi – действительные числа.

Складывая три полученных таким образом неравенства, имеем

,

что бесспорно равносильно неравенству

(a12 + a22 + a32)½(b12 + b22 + b32)½ ³ a1b1 + a2b2 + a3b3

А это неравенство равносильно неравенству (1) при ai, bi – неотрицательных.
в) n – мерный вариант неравенства Коши будет выглядеть так

,

где ai, bi, i = 1, 2, … n – неотрицательные числа.
Неравенство Гёльдера.
Одно из наиболее полезных неравенств математического анализа – неравенство Гёльдера. Оно утверждает, что для любой системы неотрицательных чисел ai и bi (i – 1, 2, … , n)

(1)

где числа р и q удовлетворяют условию

и р > 1
Фактически мы докажем неравенство (1) только для рациональных р и q. Однако окончательный результат сохраняет силу и для иррациональных р и q.

Начнем с неравенства

(2)

Оно выводится как частный случай теоремы о среднем арифметическом среднем геометрическом. Положим, что первые m чисел xi в неравенстве



равны некоторому неотрицательному числу х, тогда остается N-m чисел и пусть они равны неотрицательному числу у, т.е.

x1 = x2 = … = xm = x

xm+1 = xm+2 = … = xn = y

В этом случае теорема о среднем арифметическом и среднем геометрическом для чисел x1, x2, … , xn примет вид



или



Здесь n – любое целое число, а m – целое число значения которого заключены в пределах 1 £ m £ n – 1. Отсюда следует, что число m/n может быть любой рациональной дробью r, принадлежащей интервалу 0 < r < 1. Теперь последнее неравенство можно переписать так:

rx + (1 – r)y ³ x r y1-r (3)

Это неравенство имеет место для любых неотрицательных чисел х и у и для любой дроби r, значения которой заключены между 0 и 1. Равенство здесь достигается тогда и только тогда, когда х = у.

Обозначим число r через 1/р; поскольку 0 < r < 1, то p > 1. Отсюда
. Пусть , тогда и

В этих обозначениях неравенство (3) принимает вид

(4)

С целью исключить из рассмотрения дробные показатели степени положим

х = ар, у = bр.

При этом неравенство (4) принимает вид

, где a и b – неотрицательные числа, а р и q – такие рациональные числа, что . Равенство здесь достигается тогда и только тогда, когда ар = bр. Итак, мы вывели неравенство (2).

Положим



затем



и т. д. (как в доказательстве неравенство Коши) и сложим неравенства, получающиеся после последовательных подстановок этих значений в (2). При этом получим

(5)

Используя равенство , получаем неравенство, равносильное (1). Равенство в (5) достигается тогда и только тогда, когда все отношения bi/ai равны между собой.

Неравенство треугольника.
Из геометрии мы знаем, что сумма длин двух сторон треугольника не меньше длины его третьей стороны. Посмотрим, как можно выразить эту теорему алгебраически.

Рассмотрим треугольник ORP, расположенный так, как показано на рисунке.



Геометрическое неравенство ОР + PR ³ OR равносильно алгебраическому неравенству треугольника

(1)

Для доказательства возведем обе части неравенства (1) в квадрат, при этом мы придем к неравенству, равносильному (1):



Легко видеть, что последнее неравенство в свою очередь равносильно неравенству:



Но это неравенство является простым следствием неравенства Коши

,

что и доказывает неравенство треугольника.

Равенство в неравенстве треугольника, как и в неравенстве Коши достигается тогда и только тогда, когда х1 = кх2 и у1 = ку2, где к – неотрицательный коэффициент пропорциональности.

Доказательство неравенства треугольника можно обобщить, следуя по тому же пути, что и при выводе неравенства Гёльдера, а именно доказать, что неравенство



имеет место для любых действительных значений xi, yi. Равенство достигается в том и только том случае, когда числа xi и yi пропорциональны и коэффициент пропорциональности положителен.

Рассмотрим еще одно доказательство неравенства треугольника, которое можно использовать также и для получения более общих результатов. Имеет место тождество

1 + х2)2 + (у1 + у2)2 = х11 + х2) + у11 + у2) + х21 + х2) + у21 + у2)

Неравенство Коши в форме, использующей квадратные корни, применим по очереди к двум выражениям:

х11 + х2) + у11 + у2) и

х21 + х2) + у21 + у2).

Мы получим

12 + у12)1/2 [(х1 + х2)2 + (у1 + у2)2]1/2 ³ х11 + х2) + у11 + у2) и

22 + у22)1/2 [(х1 + х2)2 + (у1 + у2)2]1/2 ³ х21 + х2) + у21 + у2)

Сложим эти два неравенства

[(х12 + у12)1/2 + (х22 + у22)1/2]*[(х1 + х2)2 + (y1 + у2)2]1/2³ (х1 + х2)2 + (у1 + у2)2

разделив обе части на общий множитель

[(х1 + х2)2 + (у1 + у2)2]1/2 ,

будем иметь

12 + у12)1/2 + (х22 + у22)1/2 ³ [(х1 + х2)2 + (у1 + у2)2]1/2

таким образом, мы еще раз доказали неравенство треугольника. Равенство опять будет иметь место тогда и только тогда, когда х1 = кх2 и у1 = ку2, где к – неотрицательный коэффициент пропорциональности, другими словами, тогда и только тогда, когда три точки О, Р и Q лежат на одной прямой, причем точки Р и Q расположены по одну сторону от точки О.
Неравенство Минковского.
Неравенство Минковского утверждает, что для любых неотрицательных чисел х1, у1, х2, у2 при любом р > 1

1р + у1р)1/р + (х2р + у2р)1/р ³ [(х1 + х2)р + (у1 + у2)р]1/р (1)

Неравенство треугольника составляет частный случай неравенства Минковского для р = 2 и их доказательства подобны.

Запишем тождество

1 + х2)р + (у1 + у2)р = [х11 + х2)р-1 + у11 + у2)р-1] ×

× [х21 + х2)р-1 + у21 + у2)р-1]

и применим неравенство Гёльдера к каждому члену правой части этого тождества. В результате получим:

1р + у1р)1/р= [ (х1 + х2)(р-1)q + (у1 + у2)(р-1)q]1/q ³ х11 + х2)р-1 + у11 + у2)р-1

и

2р + у2р)1/р= [ (х1 + х2)(р-1)q + (у1 + у2)(р-1)q]1/q ³ х21 + х2)р-1 + у21 + у2)р-1

Так как , то (p – 1)q = p. Складывая последние два неравенства, имеем

[(х1 + х2)р + (у1 + у2)р]1/q[(х1р + у1р)1/р + (х2р + у2р)1/р] ³ (х1 + х2)р + (у1 + у2)р

Разделив затем на [(х1 + х2)р + (у1 + у2)р]1/q

получим

2р + у2р)1/р + (х1р + у1р)1/р ³ [(х1 + х2)р + (у1 + у2)р]1-1/q

Так как , то последнее неравенство полностью совпадает с требуемым неравенством Минковского (1).

Знак равенства в неравенстве (1) имеет место тогда и только тогда, когда точки (х1 у1) и (х2 у2) лежат на одной прямой с точкой (0, 0).

Аналогично обобщением неравенства Гёльдера и неравенства треугольника можно получить и неравенство Минковского для двух систем их n неотрицательных чисел х1, х2, … , хn и у1, у2, … , уn. Оно имеет вид:

1р + х2р +… хnр ]1/р + [у1р + у2р+… + уnр] 1/р ³

³ [(х1 + у1)р + (х2 + у2)р + … +(хn + уn)р]1/р , где р ³ 1

При p < 1 знак неравенства следует изменить на обратный.
1   2   3   4   5   6



Скачать файл (340.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru