Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по материаловедению - файл intro.htm


Загрузка...
Лекции по материаловедению
скачать (4418.5 kb.)

Доступные файлы (39):

001.htm68kb.20.07.2008 14:25скачать
002.htm18kb.13.07.2008 11:43скачать
10.htm21kb.13.08.2008 21:47скачать
11.htm21kb.14.08.2008 23:30скачать
12.htm20kb.16.08.2008 12:42скачать
13.htm20kb.16.08.2008 13:17скачать
14.htm16kb.16.08.2008 14:22скачать
15.htm20kb.19.08.2008 21:09скачать
16.htm19kb.19.08.2008 22:26скачать
17.htm17kb.20.08.2008 02:02скачать
18.htm23kb.20.08.2008 02:32скачать
19.htm19kb.20.08.2008 23:17скачать
1.htm17kb.05.08.2008 18:24скачать
20.htm25kb.21.08.2008 00:11скачать
21.htm25kb.21.08.2008 21:41скачать
22.htm26kb.21.08.2008 21:42скачать
2.htm13kb.03.08.2008 21:49скачать
3.htm18kb.03.08.2008 22:24скачать
4.htm15kb.03.08.2008 22:39скачать
5.htm18kb.03.08.2008 23:53скачать
6.htm20kb.12.08.2008 22:27скачать
7.htm20kb.13.08.2008 00:47скачать
8.htm15kb.13.08.2008 13:03скачать
9.htm19kb.13.08.2008 20:56скачать
backgr.jpg37kb.14.07.2008 10:14скачать
content2.htm207kb.29.07.2008 20:38скачать
content3.htm220kb.29.07.2008 20:52скачать
content4.htm208kb.29.07.2008 21:00скачать
content5.htm234kb.29.07.2008 21:22скачать
intro.htm17kb.20.07.2008 13:52скачать
jscript.js
mb.gif2kb.14.07.2008 17:40скачать
mg.gif2kb.14.07.2008 17:47скачать
mr.gif2kb.14.07.2008 17:46скачать
mz.gif2kb.14.07.2008 17:38скачать
Next0000.gif2kb.14.07.2008 10:10скачать
ok.png1kb.14.07.2008 17:47скачать
style.css
Thumbs.db

intro.htm

Реклама MarketGid:
Загрузка...
Котласское речное училище

 

Электронный конспект лекций

 

по предмету:

 

«Материаловедение» - 48 часов

 

 

Преподаватель Каданцев А. П.,

 

 Введение

 Материаловедение

 Общая характеристика металлов и сплавов

 

 

Введение

 

вернутся к оглавлению

Данный конспект лекций является базовой основой для перечисленных специальностей, и представляет собой минимальный набор информации по данному предмету. Так же следует отметить и то, что этого объема информации достаточно для того, чтобы став дипломироваными специалистами вы будете способны грамотным техническим языком излагать свою точку зрения по применению необходимой технологии при разработке, сборке и обслуживанию технических средств и деталей.

Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяют уровенем своего развития научно-технический и экономический потенциал страны. Проектирование рациональных, конкурентноспособных изделий, организация их производства невозможны без достаточного уровня знаний в области материаловедения.

Материаловедение является основой для изучения многих специальных дисциплин.

Разнообразие свойств материалов является главным фактором, предопределяющим их широкое применение в технике. Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами. Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.

От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.

Среди механических свойств прочность занимает особое место, так как прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования прочностных свойств для обеспечения надежности и долговечности изделий.

Основными материалами, используемыми в машиностроении, являются и еще долго будут оставаться металлы и их сплавы. Поэтому основной частью материаловедения является металловедение, в развитии которого, ведущую роль сыграли российские ученые: Аносов П.П., Чернов Д.К., Курнаков Н.С., Гуляев А.П. и другие.

В настоящих лекциях рассмотрены физические основы строения и свойств конструкционных материалов, приводятся широко используемые методы определения механических свойств материалов при различных видах нагружения, излагаются основы термической обработки и поверхностного упрочнения деталей, даются характеристики основных групп конструкционных материалов.

 

Цель и задачи дисциплины, ее место в учебном процессе

 

Целью преподавания дисциплины является научить будующих спиециалистов применять основные методы управления конструкционной прочностью материалов и проводить обоснованный выбор материала для изделий с учетом условий их эксплуатации.

Для достижения поставленной цели при изучении дисциплины решаются следующие основные задачи:

  • приобретение знаний по оценке технических свойств материалов, исходя из условий эксплуатации и изготовления изделия;

  • формирование научно обоснованных представлений о возможностях рационального изменения технических свойств материала путем изменения его структуры;

  • ознакомление со способами упрочнения материалов, обеспечивающими надежность изделий и инструментов;

  • ознакомление с основными группами современных материалов, их свойствами и областью применения.

Преподавание дисциплины базируется на знаниях, полученных в курсе “Физика” и “химия”:

На момент начала изучения дисциплины «Материаловедение» студентам необходимо знание следующих понятий: нагрузка, напряжение, деформация упругая и пластическая, работа, энергия, агрегатное состояние вещества, термодинамическая система, параметры термодинамической системы, внутренняя энергия, атомно-кристаллическое строение металлов, типы связей частиц в твердом теле, основные физические свойства металлов.

Материаловедение подготавливает студента к освоению специальных дисциплин изучающих основные производственные технологии и процессы.

Знание основ материаловедения необходимо специалисту, работающему в сфере эксплуатации современных машин и конструкций.

 

Материаловедение

 

вернутся к оглавлению

Материаловедение - это наука о взаимосвязи электронного строения, структуры материалов с их составом, физическими, химическими, технологическими и эксплуатационными свойствами.

Создание научных основ металловедения по праву принадлежит. Чернову Д.К., который установил критические температуры фазовых превращений в сталях и их связь с количеством углерода в сталях. Этим были заложены основы для важнейшей в металловедении диаграммы состояния железоуглеродистых сплавов.

Открытием аллотропических превращений в стали, Чернов заложил фундамент термической обработки стали. Критические точки в стали, позволили рационально выбирать температуру ее закалки, отпуска и пластической деформации в производственных условиях.

В своих работах по кристаллизации стали, и строению слитка Чернов изложил основные положения теории литья, не утратившие своего научного и практического значения в настоящее время.

Великий русский металлург Аносов П.П. впервые применил микроскоп для исследования структуры металлов. Ему принадлежит приоритет в создании легированных сталей. Разработал теорию и технологию изготовления клинков из булатной стали. Из его работ стало ясно, что так называемый булатный узор на поверхности стали, непосредственно зависит от ее внутренней структуры.

В 1873-1876 г.г Гиббс изложил основные законы фазового равновесия и, в частности, правило фаз, основываясь на законах термодинамики. Для решения практических задач знание фазового равновесия в той или иной системе необходимо, но не достаточно для определения состава и относительного количества фаз. Обязательно знать структуру сплавов, то есть атомное строение фаз, составляющих сплав, а также распределение, размер и форму кристаллов каждой фазы.

Определение атомного строения фаз стало возможным после открытия Лауэ (1912 г), показавшего, что атомы в кристалле регулярно заполняют пространство, образуя пространственную дифракционную решетку, и что рентгеновские лучи имеют волновую природу. Дифракция рентгеновских лучей на такой решетке дает возможность исследовать строение кристаллов.

В последнее время для структурного анализа, кроме рентгеновских лучей, используют электроны и нейтроны. Соответствующие методы исследования называются электронографией и нейтронографией. Электронная оптика позволила усовершенствовать микроскопию. В настоящее время на электронных микроскопах полезное максимальное увеличение доведено до 100000 раз.

В пятидесятых годах, когда началось исследование природы свойств металлических материалов, было показано, что большинство наиболее важных свойств, в том числе сопротивление пластической деформации и разрушению в различных условиях нагружения, зависит от особенностей тонкого кристаллическо строения. Этот вывод способствовал привлечению физических теорий о строении реальных металлов для объяснения многих непонятных явлений и для конструирования сплавов с заданными механическими свойствами. Благодаря теории дислокаций, удалось получить достоверные сведения об изменениях в металлах при их пластической деформации.

Особенно интенсивно развивается металловедение в последние десятилетия. Это объясняется потребностью в новых материалах для исследования космоса, развития электроники, атомной энергетики.

Основными направлениями в развитии металловедения является разработка способов производства чистых и сверхчистых металлов, свойства которых сильно отличаются от свойств металлов технической чистоты, с которыми преимущественно работают. Генеральной задачей материаловедения является создание материалов с заранее расчитаными свойствами применительно к заданным параметрам и условиям работы. Большое внимание уделяется изучению металлов в экстремальных условиях (низкие и высокие температуры и давление).

До настоящего времени основной материальной базой машиностроения служит черная металлургия, производящая стали и чугуны. Эти материалы имеют много положительных качеств и в первую очередь обеспечивают высокую конструкционную прочность деталей машин. Однако эти классические материалы имеют такие недостатки как большая плотность, низкая коррозионная стойкость. Потери от коррозии составляют 20% годового производства стали и чугуна. Поэтому, по данным научных исследований, через 20…40 лет все развитые страны перестроятся на массовое использование металлических сплавов на базе титана, магния, алюминия. Эти легкие и прочные сплавы позволяют в 2-3раза облегчить станки и машины, в 10 раз уменьшить расходы на ремонт.

По данным института имени Байкова А.Н. в нашей стране есть все условия чтобы в течении 10…15 лет машиностроение могло перейти на выпуск алюминиево-титановой подвижной техники, которая отличается легкостью, коррозионной стойкостью и большим безремонтным ресурсом.

Важное значение имеет устранение отставания нашей страны в области использования новых материалов взамен традиционных (металлических) – пластмасс, керамики, материалов порошковой металлургии, особенно композиционных материалов, что экономит дефицитные металлы, снижает затраты энергии на производство материалов, уменьшает массу изделий.

Расчетами установлено, что замена ряда металлических деталей легкового автомобиля на углепластики из эпоксидной смолы, армированной углеродными волокнами, позволит уменьшить массу машины на 40%; она станет более прочной; уменьшится расход топлива, резко возрастет стойкость против коррозии.



 

Общая характеристика металлов и сплавов

Металлы и их сплавы повсеместно используются для изготовления конструкций машин, оборудования, инструмента и т. д. Несмотря на широкий круг искусственно созданных материалов (керамики, клеев), металлы служат основным конструкционным материалом и в обозримом будущем по-прежнему будут доминировать.

В природе металлы встречаются как в чистом виде, так и в рудах, оксидах и солях. В чистом виде встречаются химически устойчивые элементы (Pt, Au, Ag, Cu). Масса наибольшего самородка меди составляет 420 т, серебра — 13,5 т, золота — 112 кг. Из 111 открытых элементов, представленных в Периодической системе элементов Д. И. Менделеева, 76 являются металлами, Si, Ge, As, Se, Te — промежуточными между металлами и неметаллами, иногда их называют полуметаллами. Все элементы, расположенные левее мысленной линии, проведенной от бора до астата (от № 5 до № 85) относятся к металлам, а правее — в основном, к неметаллам. Эта граница недостаточно четко выражена, так как среди элементов, расположенных вблизи границы, находятся и полуметаллы.

Металлические материалы обычно делятся на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы — цветными. Кроме того, все цветные металлы, применяемые в технике, в свою очередь, делятся на следующие группы: 

 легкие металлы Mg, Be, Al, Ti с плотностью до 5 г/см3;

 тяжелые металлы Pb, Mo, Ag, Au, Pt, W, Та, Ir, Os с плотностью, превышающей 10 г/см3;

 легкоплавкие металлы Sn, Pb, Zn с температурой плавления 232; 327; 410 °С соответственно;

 тугоплавкие металлы W, Mo, Та, Nb с температурой плавления выше, чем у железа (> 1536 °С);

 благородные металлы Au, Ag, Pt с высокой устойчивостью против коррозии;

 урановые металлы или актиноиды, используемые в атомной технике;

 редкоземельные металлы (РЗМ) — лантаноиды, применяемые для модифицирования стали;

 щелочные и щелочноземельные металлы Na, К, Li, Ca в свободном состоянии применяются в качестве жидкометаллических теплоносителей в атомных реакторах; натрий также используется в качестве катализатора в производстве искусственного каучука, а литий — для легирования легких и прочных алюминиевых сплавов, применяемых в самолетостроении.

Свойства металлов разнообразны. Ртуть замерзает при температуре минус 38,8 °С, вольфрам выдерживает рабочую температуру до 2000 °С (Тпл = = 3420 °С), литий, натрий, калий легче воды, а иридий и осмий — в 42 раза тяжелее лития. Электропроводность серебра в 130 раз выше, чем у марганца. Вместе с тем металлы имеют характерные общие свойства. К ним относятся:

 высокая пластичность;

 высокие тепло- и электропроводность;

 положительный температурный коэффициент электрического сопротивления, означающий рост сопротивления с повышением температуры и сверхпроводимость многих металлов (около 30) при температурах, близких к абсолютному нулю;

 хорошая отражательная способность (металлы непрозрачны и имеют характерный металлический блеск);

 термоэлектронная эмиссия, т. е . способность к испусканию электронов при нагреве;

 кристаллическое строение в твердом состоянии.

 

Библиографический список

 

Для специальности ЭР

 

Основная:

 

  1. Никифоров В.М. Технология металлов и конструкционные материалы. - М.: Машиностроение, 1987.

Дополнительная:

 

  1. Технология металлов и конструкционные материалы, под редакцией Кузьмина Б.А. - М.: Высшая школа, 1981.

  2. Кузьмин Б.А., Самохоцкий А.И. Металлургия, металловедение , конструкционные материалы. - М.: Высшая школа, 1984.



 

Котлаас

2008

 


Скачать файл (4418.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru