Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Белов В.В. Конспект лекций по курсу Вяжущие вещества - файл ┴хыют ┬.┬. ╩юэёяхъЄ ыхъЎшщ яю ъєЁёє ┬ цє∙шх тх∙хёЄтр.doc


Белов В.В. Конспект лекций по курсу Вяжущие вещества
скачать (9036.2 kb.)

Доступные файлы (1):

┴хыют ┬.┬. ╩юэёяхъЄ ыхъЎшщ яю ъєЁёє ┬ цє∙шх тх∙хёЄтр.doc10859kb.14.11.2006 20:07скачать

содержание
Загрузка...

┴хыют ┬.┬. ╩юэёяхъЄ ыхъЎшщ яю ъєЁёє ┬ цє∙шх тх∙хёЄтр.doc

  1   2   3   4   5   6   7   8   9   ...   12
Реклама MarketGid:
Загрузка...
Федеральное агентство по образованию

Тверской государственный технический университет

Кафедра «Производство строительных изделий и конструкций»

Белов Владимир Владимирович

КОНСПЕКТ ЛЕКЦИЙ

по курсу

«ВЯЖУЩИЕ ВЕЩЕСТВА»

Тверь 2006

1. ВВЕДЕНИЕ

1.1. Общие сведения о вяжущих веществах, их значение для народного хозяйства

Существует значительное количество разнообразных вяжущих веществ, предназначенных для образования связующего вещества (матрицы) в композиционных материалах, к которым относятся подавляющее число строительных и других материалов. Строительные вяжущие делят на две основные группы: неорганические (минеральные) и органические.

Строительными минеральными вяжущими веществами, главнейшие из которых — портландцемент и его разновидности, известь, гипс и другие, называют порошковидные материалы, которые после смешения с водой (а в отдельных случаях с растворами некоторых солей) образуют массу, постепенно затвердевающую и переходящую в камневидное состояние. Почти все минеральные вяжущие вещества получают путем грубого и тонкого измельчения исходных материалов и полупродуктов с последующей термической обработкой при разных температурах. В этих условиях протекают разнообразные физико-химические процессы, обеспечивающие получение продукта с требуемыми свой¬ствамисвойствами. Обожженный материал подвергают тонкому измельчению. Большинство минеральных вяжущих твердеет в результате возникновения гидратных новообразований при взаимодействии вяжущего вещества с водой. Лишь в некоторых случаях твердение происходит в итоге взаимодействия вяжущего, например, гашеной воздушной извести, с углекислотой воздуха и одновременной перекри¬сталлизацииперекристаллизации гидроксида кальция.

Органические вяжущие вещества представляют собой природные или искусственные твердые, вязкопластичные или жидкие (при обычной температуре) вещества, состоящие из химических соединений с атомами углерода, обладающие способностью отвердевать и сцепляться (иметь достаточную адгезию) с минеральными или органическими наполнителями и заполнителями, растворяться в органических растворителях. К органическим вяжущим относят битумные и дегтевые вяжущие (битумы, дегти и композиции на их основе – битумно-резиновые, битумно-полимерные и др.), часто называемые «черными» вяжущими, и полимерные вяжущие (олигомеры, полимеры и сополимеры). Эти вяжущие придают материалам водоотталкивающие свойства (гидрофобность) и водостойкость, эластичность, малую пористость. Поэтому органические вяжущие широко используются в изоляционных и кровельных материалах. Определенное количество их применяется в конструкционных материалах типа бетонов, растворов и изделий из них.

Вяжущие используют в подавляющем большинстве случаев в смеси с так называе¬мыминазываемыми заполнителями — минеральными (а иногда и орга¬ническимиорганическими) материалами, состоящими из отдельных зерен, кусков, волокон разных размеров, а также тонкодисперсными наполнителями. Вяжущие в смеси с мелким заполнителем (песком) дают растворы, в смеси с мелкими и крупными заполнителями (гравием, щебнем и т.п.) — бетоны. Использование вяжущих в смеси с заполнителями обусловлено двумя основными причинами. Первая причина экономического характера — стоимость вяжущих относительно высока, поэтому для снижения стоимости изделия или конструкции их необходимо изготовлять с минимальным расходом вяжущего. Для каждого вида изделий и конструкций расход вяжущего определяется рядом требований, предусматривающих необходимую строительную прочность, надежность и долговечность того или иного сооружения. Вторая причина — технического характера. Дело в том, что вяжущие вещества в виде теста без заполнителей обнаруживают повышенную склонность к усадке и набуханию как при твердении, так и под влиянием теп-ловлажностных изменений. Это зачастую приводит к образованию трещин и ускоренному разрушению конструкций и сооружений. Кроме того, прерывный (дискретный) компонент – заполнитель и наполнитель, соответственно на уровне макро- или микроструктуры, является упрочняющим (армирующим) или выполняющим другую функцию (изоляционную, защитную и т.д.).

Вяжущие вещества — основа современного строительства. Значение вяжущих веществ в современном строительстве иллюстрируется следующими данными: при возведении жилых домов из кирпича или бетонных и железобетонных изделий на 1 м2 жилой площади в среднем расходуется до 300 кг вяжущих веществ (цемента, извести, гипса). Только на жилищное строительство ежегодно требуется до 35—40 млн. т вяжущих веществ, а на промышленное, гидротехническое, сельскохозяйственное и другие его виды — значительно больше. В частности, на возведение таких уникальных сооружений, как Волгоградская, Братская, Красноярская гидроэлектростанции, потребовалось 1,5—2 млн. т цемента.
^ 1.2. Краткие сведения о развитии производства вяжущих веществ

Промышленность вяжущих материалов играет важную роль в создании материально-технической базы страны, обеспечении дальнейшего роста материального и культурного уровня жизни народа, успешной реализации программы строительных работ. От темпов роста выпуска вяжущих материалов зависят масштабы капитального строительства, его экономичность и технический уровень. Цементы принадлежат к немногим важнейшим видам продукции народного хозяйства, объем выпуска которых определяет экономический потенциал страны, уровень технического прогресса. Применение вяжущих веществ не ограничивается их использованием в строительстве. Без них не может существовать ни одна область техники.

Первым вяжущим веществом, которым пользовался человек, была природная необожженная глина. Однако со временем из-за слабых вяжущих ее свойств и малой стойкости во влажных условиях глина перестала удовлетворять требованиям строителей. Еще за 2400-3000 лет до н. э. были найдены способы получения искусственных вяжущих путем обжига некоторых горных пород и тонкого измельчения продуктов этого обжига. Первые искусственные вяжущие — строительный гипс, а затем и известь — были применены при строительстве уникальных сооружений: бетонной галереи легендарного лабиринта в Древнем Египте (3600 г. до н. э.), фундаментов древнейших сооружений в Мексике, Великой Китайской стены, римского Пантеона. Со временем научились повышать водостойкость известковых растворов, вводя в них тонкомолотые обожженную глину, бой кирпича или вулканические породы, известные под общим названием «пуццоланы». Так их назвали древние римляне по месту залежей близ г. Поццуолли.

На Руси развитие производства вяжущих материалов связано с возникновением древних городов — Киева, Новгорода, Ростова, Владимира, Москвы и др. Вяжущие материалы использовали при возведении крепостных стен, башен, соборов. В 1584 г. в Москве был учрежден «Каменный приказ», который наряду с заготовкой строительного камня и выпуском кирпича ведал также производством извести.

Несколько тысячелетий гипс и воздушная известь были единственными вяжущими материалами. Однако они отличались недостаточной водостойкостью. Развитие мореплавания в XVII—XVIII вв. потребовало для строительства портовых сооружений создания новых вяжущих, устойчивых к действию воды.

В 1756 г. англичанин Д. Смит обжигом известняка с глинистыми примесями получил водостойкое вяжущее, названное гидравлической известью. В 1796 г. англичанином Д. Паркером был запатентован роман-цемент, способный твердеть как на воздухе, так и в воде. В наше время эти вяжущие утратили практическое значение, но до второй половины XIX в. они были основными материалами для строительства гидротехнических сооружений.

Интенсивное развитие промышленности в России в XVIII в., когда было построено 3 тыс. промышленных предприятий, не считая горных заводов, потребовало систематизации накопленного опыта производства и при¬менения вяжущих, создания более эффективных их видов. В 1807 г. академик В. М. Севергин дал описание вяжущего вещества, получаемого обжигом мергеля с последующим размолом. Полученный продукт по качеству был лучше романцемента.

В 1825 г. Е. Г. Челиев в книге «Полное наставление, как приготовлять дешевый и лучший мертель или цемент, весьма прочный для подводных строений...» обобщил опыт улучшения свойств вяжущих материалов, накопленный при восстановлении Кремля, разрушенного во время Отечественной войны 1812 г. В Англии в этом же направлении работал Д. Аспдин. В 1824 г. он получил патент на «Усовершенствованный способ производства искусственного камня», названного им портландцементом. Полученное Д. Аспдиным вяжущее не было портландцементом в современном смысле этого слова, а представляло собой разновидность романцемента, полученного при несколько повышенной температуре обжига, однако название «портландцемент» сохранилось и поныне. Гидравлическое вяжущее, описанное Е. Г. Челиевым, ближе по свойствам к современному портландцементу, а по качеству превосходило портландцемент Д. Аспдина.

Со второй половины XIX в. портландцемент прочно вошел в строительную практику. В России над его созданием и совершенствованием много работал А. Р. Шуляченко, которого называют отцом русского цементного производства. Его заслуга состоит в том, что высококачественные отечественные портландцементы почти полностью вытеснили в России цементы иностранного производства. Русские ученые А. Р. Шуляченко, Н. А. Белелюбский и И. Г. Малюга в 1881 г. разработали первые технические условия на цемент и предложили классификацию вяжущих. Ими были заложены основы современной науки о твердении вяжущих материалов. В 1885 г. в России был созван первый съезд по цементному производству. В 1901 г. был основан журнал «Цемент».

В 1856 г. был пущен в действие первый русский завод по выпуску портландцемента в г. Гроздеце, затем были построены заводы в Риге (1866), Щурове (1870), Пунане-Кунда (1871), Подольске (1874), Новороссий¬ске (1882) и т. д. К 1914 г. в России работало 60 цементных заводов общей производительностью около 1,6 млн. т цемента. Одновременно росло производство извести и гипса.

В годы первой мировой и гражданской войн производство вяжущих материалов в нашей стране резко снизилось, так как многие заводы были разрушены. После установления Советской власти в нашем государстве цементную промышленность пришлось создавать практически заново. Лишь в 1927 г. производство цемента превысило довоенный (1913) уровень. Индустриализация и высокие темпы капитального строительства в СССР предопределили ускоренное развитие цементной промышленности. В 1962 г. по выпуску цемента СССР вышел на первое место в мире. В 1971 г. выпуск цемента в стране превысил 100 млн. т.

Цементная промышленность в нашей стране отличается высокой концентрацией производства. Концентрация производства в определенной степени улучшает технико-экономические показатели работы отрасли: повышается производительность труда, снижается себестоимость единицы продукции, сокращаются удельные капитальные затраты, достигается значительная экономия трудовых затрат. Дальнейшее увеличение выпуска цементов и других вяжущих материалов обеспечивается реконструкцией и расширением действующих предприятий, строительством новых, интенсификацией технологических процесcoв, повышением мощности как заводов в целом, так и отдельных технологических агрегатов, автоматизацией производства.

Одновременно с совершенствованием технологии производства расширяется и ассортимент выпускаемых вяжущих материалов. Еще в начале века для строительства подземных и гидротехнических сооружений начали применять пуццолановый портландцемент с повышенной водостойкостью. Развитие металлургии дало цементной промышленности возможность использовать для изготовления шлакопортландцемента и других видов шлаковых вяжущих доменные шлаки. В разработку этих видов цементов большой вклад внесли ученые А. Р. Шуляченко, И. А. Белелюбский, А. А. Байков, С. И. Дружинин, а затем В. А. Кинд, В. Н. Юнг, П. П. Будников, Ю. М. Бутт, С. Д. Окороков, Н. А. Торопов, С. М. Рояк и др. Производство многокомпонентных цементов в наши дни приобрело важное значение, поскольку это простой и надежный путь экономии топливно-энергетических ресурсов.

Современная строительная техника предъявляет к вяжущим материалам новые высокие требования. Для производства железобетонных изделий и конструкций нужны быстротвердеющие портландцементы; для сооружения бетонных дорог — цемент, обладающий повышенной деформативной способностью и морозостойкостью, для декоративных целей требуются белые и цветные цементы, а для ремонтных работ — расширяющиеся цементы. В соответствии с запросами строительства советскими учеными П. И. Боженовым, П. П. Гайджуровым, Л. Д. Ершовым, И. В. Кравченко, Т. В. Кузнецовой, В. В. Михайловым, В. В. Тимашевым, М. И. Хигеровичем и др. разработана технология производства соответствующих специальных цементов.

После 1998 г., преодолев последствия экономического кризиса, цементная промышленность активно увеличивает объемы производства цемента. Рост объема производства цемента объясняется, в основном, возрастающей потребностью в нем строительного комплекса, который обеспечивается пока введением после консервации в строй существующих отдельных мощностей и целых производств. После кризисного 1998 г., когда было произведено 26,0 млн. т цемента, его объем возрастал, и было выработано в: 2000 -32,4; 2001 - 35,1; 2003 - 41,0; 2004 - 45,6 млн. т цемента. По прогнозу на 2005 ожидается производство цемента в объеме 51-52 млн. т. Возможная нехватка цемента обуславливается тяжелым экономическим положением отрасли, высоким износом оборудования (до 70 %), отсутствием достаточных инвестиций. Программа по созданию рынка доступного жилья предполагает, что к 2010 г. в стране должен быть удвоен объем строительства, а значит, понадобятся около 90 млн. т цемента в год. Это в 2 раза больше, чем производит сегодня отрасль.

Ассортимент выпускаемой продукции на цементных предприятиях России может обеспечить выполнение строительных работ практически любого назначения. В настоящее время в нашей стране выпускается около 30 видов цементов. Одновременно повышается и качество цемента, растет средняя его марка. Сбывается предсказание Д. И. Менделеева, писавшего в 1891 г., что цемент, составляющий одно из важнейших приобретений между приложениями химии к потребностям жизни, есть строительный материал будущего.

По закону «О техническом регулировании», который действует с 1 июля 2003 г., предусмотрена 2-х уровневая система, содержащая, в том числе в области производства и применения вяжущих, обязательные технические регламенты, утверждаемые законом, и добровольно применяемые стандарты. Регламенты будут определять только те параметры продукции, которые касаются вопросов:

- безопасности (биологической, пожарной, механической, взрывобезопасности

и др.);

- экологии;

- единства измерения.

- защиты прав потребителя от дезинформации.

Остальные показатели и характеристики будут определять бизнес (соглашение меж­ду производителем и потребителем) и добро­вольно принимаемые стандарты.

Действующие в настоящее время стан­дарты на цементы будут действовать до принятия соответствующих регламентов. Это должно произойти до 2010 года. По ис­течении этого срока, если не будут разра­ботаны технические регламенты, обязатель­ные нормы, стандарты превратятся в доб­ровольные. Однако считается, что добровольные на­циональные стандарты сохранят ту важ­ную роль в техническом регулировании всех отраслей промышленности и строи­тельстве, какую играли государственные стандарты.

В целях организации и проведения работ по стандартизации в области строительства в соответствии требованиями Федерально­го Закона «О техническом регулировании» создан Технический комитет по стандарти­зации ТК465 «Строительство». Технический комитет имеет своей задачей развитие на­циональной стандартизации в области стро­ительства, стандартизацию разработки и проведение экспертизы проектов нацио­нальных стандартов, строительных норм, пра­вил, стандартов организаций и других нор­мативных документов.
^ 1.3. Классификация и номенклатура минеральных вяжущих материалов

Различают несколько разновидностей минеральных вяжущих материалов: гидравлические, воздушные, кислотоупорные и автоклавного твердения. Каждая из этих разновидностей включает ряд вяжущих веществ, отличающихся составом и свойствами.

Гидравлические вяжущие материалы (цементы) способны при затворении водой после предварительного затвердевания на воздухе продолжать твердеть в воде, сохраняя и наращивая свою прочность. По ГОСТ 23464—79 цементы классифицируют: по виду клинкера (продукта обжига сырьевой смеси) и вещественному составу; прочности при твердении; скорости твердения; срокам схватывания; нормированию специальных свойств.

По виду клинкера и вещественному составу различают цементы: на основе портландцементного клинкера (портландцемент, портландцемент с минеральными добавками, шлакопортландцемент, пуццолановый портландцемент) и на основе глиноземистого клинкера (глиноземистый, высокоглиноземистый и гипсоглиноземистый).

Выпускаются также специальные цементы, к которым предъявляют дополнительные требования по сульфатостойкости, объемной деформации при твердении, тепловыделению, декоративным свойствам. Для каждого цемента регламентируют основное назначение и допустимые области применения.

Воздушные вяжущие материалы при затворении водой схватываются, твердеют и превращаются в камень только на воздухе. Образовавшийся камень сохраняет длительно прочность также только в воздушной среде, поэтому такие материалы могут применяться лишь в надземных сооружениях, не подвергающихся действию воды. К ним относятся: строительная воздушная известь, гипсовые и магнезиальные вяжущие материалы.

В отдельную группу кислотостойких вяжущих входит кислотоупорный цемент. Кислотоупорный цемент после затвердевания на воздухе может длительное время сохранять прочность при действии на него минеральных кислот. Его применяют в тех случаях, когда затвердевший камень работает в кислой среде.

Вяжущие материалы автоклавного твердения превращаются в камень только при автоклавной (гидротермальной) обработке под давлением насыщенного пара 0,9—1,3 МПа и температуре 167—198 °С. К этой группе относятся известково-кремнеземистые и извест-ково-нефелиновые вяжущие.
^ 2. ГИПСОВЫЕ И АНГИДРИТОВЫЕ ВЯЖУЩИЕ

Гипсовые вяжущие – это порошкообразные материалы, состоящие из полуводного гипса (CaSO4 · 0,5H2O) и получаемые тепловой обработкой при температуре в пределах 105-180 ºС природного двуводного гипса (СаSO4 · 2H2O) или гипсосодержащих техногенных отходов (вторичных ресурсов). При термообработке двуводного гипса в паровой среде под давлением в автоклавах или в водных растворов некоторых солей при атмосферном давлении образуется α-полуводный сульфат кальция (гипсовое вяжущее α-модификации). При обжиге сырья при 130-180 ºС получают β-полуводный сульфат кальция (гипсовое вяжущее β-модификации). Модификации полуводного гипса отличаются размерами и формой кристаллов: α-модификация имеет более крупные кристаллы без пустот и пор; β-модификация – бесформенные кристаллы, в которых много пор. Вследствие этого гипсовое вяжущее α-модификации имеет меньшую водопотребность, а затвердевший гипс из α-полугидрата приобретает повышенную плотность и прочность по сравнению с β-полугидратом.

Гипсовые вяжущие по традиции с некоторой условностью, отвечающей практическим целям, разделяют на: строительный гипс, состоящий из β-полугидрата; формовочный гипс того же состава с повышенными техническими свойствами; высокопрочный гипс, состоящий из α-полугидрата.

К гипсовым вяжущим веществам часто относят также смешанные композиции, основной составляющей которых является полуводный гипс, а дополнительной—-известь, цемент, молотые гранулированные доменные шлаки. В зависимости от вида дополнительной составляющей различают гипсоизвестковые, гипсоцементные, гипсошлаковые и другие вяжущие.

Ангидритовые (высокообжиговые гипсовые) вяжущие (ангидритовый цемент и высокообжиговый гипс) получают при 600—1000 °С. Они состоят преимущественно из безводного сульфата кальция (ангидрита) и медленно твердеют.

^ 2.1. Сырье для производства гипсовых вяжущих
Основное сырье для производства гипсовых вяжущих — гипсовый камень или природный двуводный гипс (CaSO42H2O) с теоретическим химическим составом, %: 32,56 СаО; 46,51 SO2 и 20,93 Н2О. Однако обычно он содержит примеси других материалов: известняка, доломита, глинистых веществ. Гипсовый камень — мягкий минерал. Его твердость по шкале Мооса 2; плотность 2200—2400 кг/м3.

При оценке качества сырья нужно знать не только его химический состав, но и физическую структуру, вид и количество примесей, характер их распределения в массе материала. Содержание примесей по ГОСТ 4013—82 в гипсовом камне для производства гипсовых вяжущих материалов должно быть для гипса 1—4-го сорта соответственно не более 5, 10, 20 и 30 %. Важное значение имеет характер кристаллизации двуводного гипса. Мелкокристаллический гипс обезвоживается быстрее и при более низкой температуре.

Несколько реже в качестве сырья для получения гипсовых вяжущих используют ангидрит — безводный CaSO4. Во многих месторождениях он залегает вместе с гипсовым камнем. Химический состав природного ангидрита, %: 41,19 СаО и 58,81 SO3. Твердость по шкале Мооса 3—3,5; плотность 2900—3100 кг/м3.

Гипсовое сырье добывают в основном открытым способом. Гипсодобывающие предприятия в основном представляют собой крупные высокомеханизированные производства с объемом добычи до 1—2 млн. т камня в год. Один Новомосковский гипсовый комбинат, мощность которого составляет 2 млн. т гипсового камня в год, обеспечивает самым дешевым камнем Москву и центральные районы европейской части СССР. Почти на всех предприятиях камень отгружается потребителю после первичного дробления и рассева на фракции 0—300, 0—60 и 60—300 мм. Однако, к сожалению, гипсовое сырье на карьерах и рудниках практически не обогащается.

Важный резерв сырьевой базы гипсовой промышленности страны — гипсосодержащие отходы химической, пищевой и других отраслей, к которым относятся фосфогипс, борогипс, фторогипс, отходы производства лимонной кислоты и др. Ежегодный объем их выпуска составляет около 20 млн. т.

Фосфогипс получают при переработке природных фосфатов в фосфорную кислоту и фосфорные удобрения. При производстве каждой тонны фосфорной кислоты получается 4 т фосфогипса. Отфильтрованный от фосфорной кислоты фосфогипс состоит на 80—98 % из CaSO42H2O, но содержит до 25 % влаги и загрязнен примесями фосфатов (0,5—1,2% Р2О5) и фтора. Он отличается очень высокой дисперсностью — размер частиц колеблется в пределах 0—150 мкм. Возможность утилизации фосфогипса для производства гипсовых вяжущих лимитируется главным образом содержанием в нем Р2О5. При высоком содержании Р2О5 фосфогипс после тепловой обработки либо имеет низкую прочность, либо совсем не твердеет.

Борогипс — отход производства борной кислоты — представляет собой шлам влажностью 40—50%. Основная его составляющая — сульфат кальция; содержание кремнезема достигает 20—25%, В2О3 — 0,5—1,5 %.

Фторогипс — отход производства фтористоводородной кислоты из плавикового шпата. Он представляет собой плотную массу с влажностью 15—20%, состоящую в основном из сульфата кальция (80—85 %) с примесью 2—2,5 % фтористого кальция.
^ 2.2. Дегидратация двуводного гипса и модификации водного и безводного СаSО4

Двуводный гипс по мере повышения температуры постепенно дегидратируется и переходит в безводное состояние, превращаясь в итоге в нерастворимое соединение. Регулируя температуру обжига, получают гипсовые вяжущие, отличающиеся строительно-техническими свойствами. Степень дегидратации двуводного гипса зависит от температуры и длительности тепловой обработки, а также от давления водяных паров. Продукт тепловой обработки практически представляет собой смесь отдельных фаз системы CaSO4–H2O. Термические превращения двуводного гипса могут быть представлены схемой.



При 105—135 °С двуводный гипс сравнительно быстро теряет кристаллизационную воду и переходит в полугидрат. С дальнейшим повышением температуры гипс постепенно превращается в безводную модификацию — обезвоженный полугидрат, который, в свою очередь, переходит в растворимый ангидрит. Полуводный гипс, а также обезвоженный полугидрат и растворимый ангидрит могут существовать в виде α- и -модификаций, отличающихся своей структурой. α -полугидрат образуется в результате тепловой обработки гипсового камня при температуре выше 100°С в среде насыщенного пара, а также при кипячении его в растворах солей. Отщепляемая вода удаляется из гипса в жидком состоянии и не вызывает разрыхления или разрушения зерен, что обеспечивает плотную упаковку и гладкий рельеф поверхности кристаллов α -полугидрата. -полугидрат получают, если вода при дегидратации выходит в виде пара, что приводит к сильному механическому диспергированию зерен, образованию шероховатого, «изъеденного» рельефа поверхности. Его кристаллы тем мельче, чем ниже давление водяного пара и выше температура. Структурные отличия заметно отражаются на свойствах α- и -модификаций полуводного гипса. -полугидрат характеризуется повышенной растворимостью в воде, большей скоростью гидратации, для получения подвижного гипсового теста он требует большего количества воды (50—70 % массы гипса), для α -полугидрата достаточно 30—45% воды.

При переходе полугидратов в обезвоженные полугидраты тип кристаллической решетки не меняется, однако резко снижается степень ее упорядоченности и в результате водопотребность возрастает на 5—6 %. При воздушном хранении обезвоженные полугидраты легко поглощают влагу и превращаются в водные полугидраты.

Переход обезвоженных полугидратов в растворимые ангидриты сопровождается перестройкой моноклинной кристаллической решетки в ромбическую. Растворимый ангидрит отличается высокой удельной поверхностью и пористостью, поэтому требует воды на 25—30 % больше, чем полугидраты, и создает камень меньшей прочности. При тепловой обработке гипсового камня следует избегать образования растворимого ангидрита.

Начиная с 400°С растворимый ангидрит переходит в нерастворимый, «намертво» обожженный, который почти совсем не схватывается. Этот переход происходит без изменения кристаллической решетки, но сопровождается интенсивным снижением удельной поверхности и соответственно уменьшением водопотребности, удлинением сроков схватывания и продолжительности твердения вяжущего. С повышением температуры до 900—1000 °С безводный гипс снова приобретает способность схватываться и твердеть. Начинается частичная диссоциация сернокислого кальция, и в составе продукта обжига появляется свободная известь.

В зависимости от вида сырья, режима обжига и других факторов кристаллы каждой модификации сульфата кальция могут в известных пределах отличаться друг от друга формой, размером и свойствами. В целом все известные модификации сульфата кальция имеют три типа кристаллических решеток: двуводного гипса, полугидрата и ангидрита. Их общий структурный элемент— цепочки Са — SO4—Са— SO4. При обезвоживании полугидрата ионы в них преимущественно сохраняют свою ориентацию, но в то же время смещаются перпендикулярно или параллельно направлению цепочек. При обезвоживании двугидрата до полугидрата или растворимого ангидрита расстояние между ионами Са2+ и SO42- несколько увеличивается, а при образовании нерастворимого ангидрита уменьшается.
^ 2.3. Технология производства гипсовых вяжущих

Технологический процесс производства гипсовых вяжущих состоит в измельчении гипсового камня (дроблении и помоле) и тепловой обработке (дегидратации). Степень измельчения гипсового камня перед тепловой обработкой определяется типом теплового аппарата. В запарочные аппараты материал подают кусками размером до 400 мм, во вращающиеся печи—10— 35 мм, а в варочные котлы — в виде порошка. Используемые технологические схемы получения гипсовых вяжущих отличаются одна от другой видом и последовательностью основных операций. Наиболее распространенные технологические схемы условно можно представить следующим образом:

  1. Дробление  помол  варка

  2. Дробление  сушка  помол  варка

  3. Дробление  сушка + помол  варка

  4. Дробление  помол  варка  помол

  5. Дробление  сушка + помол  варка  помол

  6. Дробление  обжиг  помол

  7. Дробление  обжиг + помол

  8. Дробление  запаривание  помол

Первые пять схем используют при производстве гипсовых вяжущих в гипсоварочных котлах, тепловая обработка материала в которых носит название варки. Наиболее простая схема 1, но ее применение возможно лишь при сухом сырье. Если влажность сырья превышает 1 %, то перед помолом его необходимо сушить (схема 2). Целесообразно совмещение этих двух операций в одном технологическом аппарате (схема 3). Для улучшения качества продукции желателен вторичный помол полуводного гипса, выходящего из варочных котлов (схемы 4 и 5). Схему 6 используют как при производстве высокообжиговых, так и низкообжиговых гипсовых вяжущих во вращающихся печах, а схему 7 — в аппаратах совмещенного помола и обжига. Схема 8 предназначена для получения гипса повышенной прочности на основе α-модификации полугидрата. Выбор технологической схемы и типа аппарата для тепловой обработки зависит от масштабов производства, свойств сырья, требуемого качества продукции и других факторов.

^ Производство гипсовых вяжущих в гипсоварочных котлах получило наибольшее распространение (рисунок). Гипсовый камень предварительно дробится в щековой дробилке. Для той же цели могут использоваться молотковые и конусные дробилки. Дробленый материал поступает на помол в шахтную мельницу (или же аэробильную, ролико-маятниковую, шаровую).




Широко применяется шахтная молотковая мельница. Она состоит из размольной камеры и быстро вращающегося ротора с дисками, на которых шарнирно укреплены молотки. Над мельницей находится прямоугольная металлическая шахта высотой 9—14 м, а на высоте 1 м от размольной камеры — течка, через которую в мельницу поступает предварительно дробленое сырье. Попадая на вращающийся ротор, оно измельчается в тонкий порошок. В шахтной мельнице может одновременно осуществляться помол и сушка сырья. Это особенно ценно, так как наличие влаги затрудняет помол гипсового камня, а предварительная сушка сырья в отдельном аппарате, например, сушильном барабане, усложняет технологическую схему.

Источником теплоты для сушки материала в шахтных мельницах в большинстве случаев являются отработанные в варочных котлах газы с температурой 350— 500 °С и выше. Непрерывно поступая под ротор мельницы, они уносят с собой продукт помола вверх в шахту, где он подсушивается. При этом процесс саморегулируется— более крупные зерна выпадают из газового потока и снова поступают в мельницу, где повторно измельчаются, а мелкие уносятся в пылеулавливающие устройства. Обычно скорость горячих газов в шахте составляет 4—б м/с. При ее уменьшении помол становится более тонким, при увеличении —- более грубым. Тонкодисперсные частицы, уловленные системой пылеочистки, поступают в гипсоварочный котел.

Гипсоварочный котел — цилиндр с вогнутым сферическим днищем, изготовленный из жароупорной стали и обмурованный кирпичной кладкой. Под котлом находится топка, сводом которой служит днище котла. Внутри котла попарно один над другим проходят металлические жаровые трубы. Продукты сгорания топлива омывают днище котла, затем, проходя по кольцевым каналам, обогревают его боковые стенки, попадая в жаровые трубы, нагревают их, а затем подаются в шахтную мельницу или удаляются через дымовую трубу. В результате обеспечиваются равномерный обогрев материала и полное использование теплоты дымовых газов. Материал в котле перемешивается вертикальным валом с верхней и нижней мешалками.

Предварительно разогретый котел загружают сверху через отверстие в крышке при непрерывной работе мешалки. После загрузки первой порции ожидают признаков «кипения», вызванного выделением паров воды. Затем продолжают постепенно засыпку гипсового порошка и следят, чтобы гипс все время находился в кипящем состоянии.

Продолжительность дегидратации гипсового камня в котлах зависит от их емкости, тонкости помола порошка и т. д. Она колеблется от 50 мин до 2,5 ч. В котлах, например, объемом 12 м3 температура сырья быстро поднимается с 80 до 119°С. Затем, несмотря на поступление теплоты, некоторое время она сохраняется постоянной. Это соответствует периоду выделения из гипса кристаллизационной воды и превращения ее в пар. Бурное кипение материала требует большого расхода теплоты. По мере уменьшения в порошке количества двугидрата теплота начинает расходоваться не только на физико-химические процессы, но и на нагрев образовавшегося полугидрата. Слишком высокая температура (170—180°С) может вызвать вторичное его кипение, обусловленное дегидратацией полуводного гипса. При этом возможна осадка материала, что затрудняет выгрузку его из котла.

По окончании варки материал выгружают в бункер выдерживания для постепенного охлаждения в течение 20—30 мин. Объем бункера обычно вдвое больше объема котла. Выдерживание улучшает качество вяжущего. Оставшийся двугидрат за счет теплоты выгруженного материала переходит в полугидрат. Одновременно под действием паров воды растворимый ангидрит гидратируется до полугидрата. В результате выравнивается состав продукта, снижается его водопотребность и повышается качество.

Получаемый в варочных котлах продукт в основном состоит из -полугидрата. Однако содержание в нем α-полугидрата можно повысить подачей в варочный котел небольших количеств солей, например 0,1 % NaCl. Раствор соли снижает упругость пара у поверхности зерен, в итоге ускоряется процесс варки и повышается качество продукта. Содержание α -полугидрата повышается также в котлах большой вместимости, так как в них растет высота слоя материала и затрудняется удаление поды.

Производительность наиболее перспективного варочного котла СМЛ-158 вместимостью 15,2 м3 составляет 8,5 т/ч. Удельный расход условного топлива на 1 т гипса составляет 52 кг при использовании твердого топлива и 40 кг при использовании газа и мазута. Удельный расход электроэнергии 105—110 МДж.

На многих заводах процесс варки гипса в котлах автоматизирован. Загрузка котла сырьем до определенного уровня, поддержание заданной температуры гипса в конце варки, перемещение выгрузочного шибера выполняются соответствующими исполнительными механизмами. В результате сокращаются затраты ручного труда, уменьшается вероятность перегрева обечаек и днищ котлов, стабилизируется процесс варки и повышается качество продукции.

Заполнение котла гипсом контролируется сигнализатором уровня. Сигнал датчика передается на электродвигатель шнека-загрузчика и отключает его. Режим варки и конечная температура гипса контролируются манометрическим термометром или термометром сопротивления. При достижении заданной температуры гипса подается сигнал на включение электродвигателя привода шибера котла. Включение двигателя для работы по закрытию шибера происходит с помощью реле времени. Реле настраивают на подбираемое опытным путем время, достаточное для полного опорожнения котла. После закрытия шибера подается сигнал на включение шнека-загрузчика котла, и цикл повторяется.

Варочные котлы отличаются простотой обслуживания, удобством регулирования и контроля режима обжига. Обрабатываемый в них материал с пламенем и дымовыми газами не соприкасается и не загрязняется золой. Однако варочным котлам присущи и некоторые недостатки: периодичность работы, быстрая изнашиваемость днища и обечаек котлов, сложность улавливания гипсовой пыли.

Дальнейшим усовершенствованием гипсоварочных котлов является перевод их с периодического режима работы на непрерывный. Тонкомолотый гипс загружают в котел непрерывно ниже уровня поверхности обрабатываемого материала. Образующийся в процессе варки полугидрат имеет меньшую плотность, поэтому он вытесняется из нижней зоны непрерывно поступающим в котел сырым гипсовым порошком. Поднимаясь, полугидрат доходит до окна в боковой стенке котла и самотеком поступает в бункер выдерживания. Производительность таких котлов в 2—3 раза выше, чем котлов периодического действия. Однако конструктивная сложность снижает надежность их работы и ограничивает распространение.
  1   2   3   4   5   6   7   8   9   ...   12



Скачать файл (9036.2 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru