Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции - Техника и технологии в нефтегазовой отрасли - файл 1.doc


Лекции - Техника и технологии в нефтегазовой отрасли
скачать (7288 kb.)

Доступные файлы (1):

1.doc7288kb.19.12.2011 06:51скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7   8   9   ...   16
Реклама MarketGid:
Загрузка...
Лекция 1

Тема: Бурение нефтяных и газовых скважин.

План: 1. Общие сведения о нефтегазовых операциях.

2. Способы бурения скважин.

3. Классификация скважин.
1.Общие сведения о нефтегазовых операциях.

Бурение скважин — это процесс сооружения направленной горной выработки большой длины и малого (по сравнению с длиной) диаметра. Начало скважины на по­верхности земли называют устьем, дно — забоем. Этот про­цесс — бурение — распространен в различных отраслях на­родного хозяйства.

Цели и задачи бурения

Нефть и газ добывают, пользуясь скважина­ми, основными процессами строительства которых являются бурение и крепление. Необходимо осуществлять качествен­ное строительство скважин во все возрастающих объемах при кратном снижении сроков их проводки, а также при уменьшении трудо- и энергоемкости и капитальных затрат.

Бурение скважин — единственный метод результативной разработки, приращения добычи и запасов нефти и газа.

Цикл сооружения нефтяных и газовых скважин до сдачи их в эксплуатацию состоит из следующих последовательных звеньев:

проходка ствола скважины, осуществление которой воз­можно только при выполнении параллельно протекающих работ двух видов — углубление забоя посредством локально­го разрушения горной породы и очистка ствола от разру­шенной (выбуренной) породы;

разобщение пластов, состоящее из последовательных ра­бот двух видов — закрепление стенок ствола обсадными тру­бами, соединенными в обсадную колонну, и герметизация (це­ментирование, тампонирование) заколонного пространства;

освоение скважины как эксплуатационного объекта.
^ 2. Способы бурения скважин.

Распространенные способы вращательного бу­рения — роторное, турбинное и бурение электробуром — пред­полагают вращение разрушающего породу рабочего инстру­мента — долота. Разрушенная порода удаляется из скважины закачиваемым в колонну труб и выходящим через заколон-ное пространство буровым раствором, пеной или газом.

^ Роторное бурение

При роторном бурении долото вращается вместе со всей колонной бурильных труб; вращение переда­ется через рабочую трубу от ротора, соединенного с силовой установкой системой трансмиссий. Нагрузка на долото созда­ется частью веса бурильных труб.

При роторном бурении максимальный крутящий момент колонны зависит от сопротивления породы вращению доло­та, сопротивлений трения колонны и вращающейся жидкости о стенку скважины, а также от инерционного эффекта упру­гих крутильных колебаний.

В мировой буровой практике наиболее распространен ро­торный способ: почти 100 % объема буровых работ в США и Канаде выполняется этим способом. В последние годы наме­тилась тенденция увеличения объемов роторного бурения и в России, даже в восточных районах. Основные преимущества роторного бурения перед турбинным — независимость регу­лирования параметров режима бурения, возможность сраба­тывания больших перепадов давления на долоте, значитель­ное увеличение проходки за рейс долота в связи с меньшими частотами его вращения и др.

^ Турбинное бурение

При турбинном бурении долото соединяется с валом турбины турбобура, которая приводится во вращение движением жидкости под давлением через систему роторов и статоров. Нагрузка создается частью веса бурильных труб.

Наибольший крутящий момент обусловлен сопротивлени­ем породы вращению долота. Максимальный крутящий мо­мент, определяемый расчетом турбины (значением ее тор­мозного момента), не зависит от глубины скважины, частоты вращения долота, осевой нагрузки на него и механических свойств разбуриваемых пород. Коэффициент передачи мощ­ности от источника энергии к разрушающему инструменту в турбинном бурении выше, чем в роторном.

Однако при турбинном бурении невозможно независимое регулирование параметров режима бурения, и при этом вели­ки затраты энергии на 1 м проходки, расходы на амортиза­цию турбобуров и содержание цехов по их ремонту.

Турбинный способ бурения получил широкое распрост­ранение в России благодаря работам ВНИИБТ.

^ Бурение винтовыми (объемными) двигателями

Рабочие органы двигателей созданы на основе многозаходного винтового механизма, что позволяет полу­чить необходимую частоту вращения при повышенном по сравнению с турбобурами вращающем моменте.

Забойный двигатель состоит из двух секций — двигатель­ной и шпиндельной.

Рабочими органами двигательной секции являются статор и ротор, представляющие собой винтовой механизм. В эту секцию входит также двухшарнирное соединение. Статор при помощи переводника соединяется с колонной бурильных труб. Вращающий момент посредством двухшарнирного со­единения передается с ротора на выходной вал шпинделя.

Шпиндельная секция предназначена для передачи осевой нагрузки на забой, восприятия гидравлической нагрузки, дей­ствующей на ротор двигателя, и уплотнения нижней части вала, что способствует созданию перепада давления.

В винтовых двигателях вращающий момент зависит от пе­репада давления в двигателе. По мере нагружения вала разви­ваемый двигателем вращающий момент растет, увеличивается и перепад давления в двигателе. Рабочая характеристика вин­тового двигателя с требованиями эффективной отработки долот позволяет получить двигатель с частотой вращения вы­ходного вала в пределах 80—120 об/мин с увеличенным вра­щающим моментом. Указанная особенность винтовых (объемных) двигателей делает их перспективными для внед­рения в практику буровых работ.

^ Бурение электробуром

При использовании электробуров вращение долота осуществляется электрическим (трехфазным) двигате­лем переменного тока. Энергия к нему подается с поверхно­сти по кабелю, расположенному внутри колонны бурильных труб. Буровой раствор циркулирует так же, как и при ро­торном способе бурения. Кабель внутрь колонны труб вво­дится через токоприемник, расположенный над вертлюгом. Электробур присоединяют к нижнему концу бурильной ко­лонны, а долото крепят к валу электробура. Преимущество электрического двигателя перед гидравлическим состоит в том, что у электробура частота вращения, момент и другие параметры не зависят от количества подаваемой жидкости, ее физических свойств и глубины скважины, и в возможнос­ти контроля процесса работы двигателя с поверхности. К недостаткам относятся сложность подвода энергии к элект­родвигателю особенно при повышенном давлении и необхо­димость герметизации электродвигателя от бурового рас­твора.

^ Перспективные направления в развитии способов бурения в мировой практике

В отечественной и зарубежной практике ве­дутся научно-исследовательские и опытно-конструкторские

работы в области создания новых методов бурения, техноло­гий, техники.

К ним относятся углубление в горных породах с исполь­зованием взрывов, разрушение пород при помощи ультра­звука, эрозионное, с помощью лазера, вибрации и др.

Некоторые из названных методов получили развитие и применяются, хотя и в незначительном объеме, зачастую на стадии эксперимента.

Гидромеханический метод разрушения горных пород при углублении скважин все чаще используется в экспе­риментальных и полевых условиях. С.С. Шавловским прове­дена классификация водяных струй, которые могут приме­няться при бурении скважин. Основа классификации — развиваемое давление, рабочая длина струй и степень их воздействия на породы различного состава, сцементирован-ности и прочности в зависимости от диаметра насадки, начального давления струи и расхода воды. Применение во­дяных струй позволяет в сравнении с механическими спосо­бами повысить технико-экономические показатели проходки скважины.

На VII Международном симпозиуме (Канада, 1984) были представлены результаты работ по использованию водяных струй в бурении. Его возможности связываются с непрерыв­ной, пульсирующей или прерывистой подачей флюида, нали­чием или отсутствием абразивного материала и технико-технологическими особенностями способа.

Эрозионное бурение обеспечивает скорости углубления в 4—20 раз больше, чем при роторном бурении (в аналогичных условиях). Это объясняется, в первую очередь, значительным увеличением мощности, подводимой к забою по сравнению с другими методами.

Сущность его состоит в том, что к долоту специальной конструкции вместе с буровым раствором подается абразив­ный материал — стальная дробь. Размер гранул — 0,42 — 0,48 мм, концентрация в растворе — 6 %. Через насадки до­лота с большой скоростью на забой подается этот раствор с дробью и забой разрушается. В бурильной колонне последо­вательно устанавливают два фильтра, предназначенные для отсева и удержания частиц, размер которых не позволяет им пройти через насадки долота.

Один фильтр — над долотом, второй — под ведущей тру­бой, где можно осуществлять очистку. Химическая обработка бурового раствора с дробью сложнее, чем обработка обыч­ного раствора, особенно при повышенных температурах.

Особенность в том, что необходимо удерживать дробь в рас­творе во взвешенном состоянии и затем генерировать этот абразивный материал.

После предварительной очистки бурового раствора от газа и шлама при помощи гидроциклонов дробь отбирают и со­храняют в смоченном состоянии. Затем раствор пропускают через гидроциклоны тонкой очистки и дегазатор и восста­навливают его утраченные показатели химической обработ­кой. Часть бурового раствора смешивают с дробью и подают в скважину, на пути смешивая с обычным буровым раство­ром (в расчетном соотношении).

Лазеры — квантовые генераторы оптического диапазона — одно из замечательных достижений науки и техники. Они нашли широкое применение во многих областях науки и техники.

По зарубежным данным в настоящее время возможна ор­ганизация производства газовых лазеров непрерывного дей­ствия с выходной мощностью 100 кВт и выше. Коэффициент полезного действия (КПД) газовых лазеров может достигать 20 — 60 %. Большая мощность лазеров при условии получения чрезвычайно высоких плотностей излучения достаточна для расплавления и испарения любых материалов, в том числе горных пород. Горная порода при этом также растрескива­ется и шелушится.

Экспериментально установлена минимальная плотность мощности лазерного излучения, достаточного для разрушения пород плавлением: для песчаников, алевролитов и глин она составляет примерно 1,2—1,5 кВт/см2. Плотность мощности эффективного разрушения нефтенасыщенных горных пород из-за термических процессов горения нефти, особенно при поддуве в зону разрушения воздуха или кислорода, ниже и составляет 0,7 — 0,9 кВт/см2.

Подсчитано, что для скважины глубиной 2000 м и диамет­ром 20 см нужно затратить около 30 млн кВт энергии лазер­ного излучения. Проводка скважин такой глубины пока не конкурентоспособна в сравнении с традиционными механи­ческими методами бурения. Однако имеются теоретические предпосылки повышения КПД лазеров: при КПД, равном 60 %, энергетические и стоимостные затраты существенно снизятся и его конкурентоспособность повысится. При использовании лазера в случае бурения скважин глубиной 100 — 200 м стои­мость работ относительно невелика. Но во всех случаях при лазерном бурении форма сечения может быть запрограмми­рованной, а стенка скважины будет формироваться из расплава горной породы и будет представлять собой стеклооб­разную массу, позволяющую повысить коэффициент вытес­нения бурового раствора цементным. В некоторых случаях можно, очевидно, обойтись без крепления скважин.

Зарубежные фирмы предлагают несколько конструкций лазеров. Основу их составляет мощный лазер, размещенный в герметичном корпусе, способном выдержать высокое дав­ление. Температуроустойчивость пока не прорабатывалась. По этим конструкциям излучение лазера передается на забой через светопроводящее волокно. По мере разрушения (плавления) горной породы лазеробур подается вниз; он мо­жет быть снабжен установленным в корпусе вибратором. При вдавливании снаряда в расплав породы стенки скважины могут уплотняться.

В Японии начат выпуск углекислотных газовых лазеров, которые при использовании в бурении существенно (до 10 раз) повысят скорость проходки.

Сечение скважины при формировании ствола этим мето­дом может иметь произвольную форму. Компьютер по раз­работанной программе дистанционно задает режим сканиро­вания лазерного луча, что позволяет запрограммировать раз­мер и форму ствола скважины.

Проведение лазеротермических работ возможно в даль­нейшем в перфорационных работах. Лазерная перфорация обеспечит управляемость процесса разрушения обсадной ко­лонны, цементного камня и породы, а также может способ­ствовать проникновению каналов на значительную глубину, что, безусловно, повысит степень совершенства вскрытия пласта. Однако оплавление пород, целесообразное при углуб­лении скважины, здесь неприемлемо, что должно быть учте­но при использовании этого метода в дальнейшем.

В отечественных работах есть предложения о создании ла-зероплазменных установок для термического бурения сква­жин. Однако транспортировка плазмы к забою скважины пока затруднена, хотя и ведутся исследования по возможнос­ти разработки световодов ("световодных труб").

Одним из наиболее интересных методов воздействия на горные породы, обладающих критерием "универсаль­ность", является метод их плавления при помощи непосред­ственного контакта с тугоплавким наконечником — пенетра-тором. Значительные успехи в создании термопрочных мате­риалов позволили перенести вопрос о плавлении горных пород в область реального проектирования. Уже при темпе­ратуре примерно 1200—1300 °С метод плавления работоспо-

собен в рыхлых грунтах, песках и песчаниках, базальтах и других породах кристаллического фундамента. В породах осадочного комплекса проходка глинистых и карбонатных пород требует, по-видимому, более высокой температуры.

Метод бурения плавлением позволяет получить на стенках скважины достаточно толстую ситалловую корку с гладкими внутренними стенками. Метод обладает высоким коэффици­ентом ввода энергии в породу — до 80—90 %. При этом мо­жет быть, хотя бы принципиально, решена проблема удале­ния расплава с забоя. Выходя по выводящим каналам или просто обтекая гладкий пенетратор, расплав, застывая, обра­зует шлам, размерами и формой которого можно управлять. Шлам выносится жидкостью, которая циркулирует выше бу­рового снаряда и охлаждает его верхнюю часть.

Первые проекты и образцы термобуров появились в 60-х годах, а наиболее активно теория и практика плавления гор­ных пород начали развиваться с середины 70-х годов. Эф­фективность процесса плавления определяется в основном температурой поверхности пенетратора и физическими свой­ствами горных пород и мало зависит от механических и прочностных свойств. Это обстоятельство обусловливает оп­ределенную универсальность метода плавления в смысле при­менимости его для проходки различных пород. Температур­ный интервал плавления этих различных полиминеральных многокомпонентных систем в основном укладывается в диа­пазон 1200—1500 °С при атмосферном давлении. В отличие от механического метод разрушения горных пород плавлением с увеличением глубины и температуры залегающих пород по­вышает свою эффективность.

Как уже говорилось, параллельно с проходкой осуществ­ляются крепление и изоляция стенок скважины в результате создания непроницаемого стекловидного кольцевого слоя. Пока еще не ясно, будет ли происходить износ поверхност­ного слоя пенетратора, каковы его механизм и интенсив­ность. Не исключено, что бурение плавлением, хотя и с не­большой скоростью, может проводиться непрерывно в пре­делах интервала, определяемого конструкцией скважины. Сама же эта конструкция из-за непрерывного крепления стенок может быть значительно упрощена, даже в сложных геологических условиях.

Можно себе представить технологические процедуры, свя­занные только с креплением и изоляцией стенок последова­тельно с проходкой ствола способом обычного механическо­го бурения. Эти процедуры могут относиться только к ин-

тервалам, представляющим опасность в связи с возможнос­тью возникновения различных осложнений.

С точки зрения технической реализации следует предус­мотреть токопровод к нагнетательным элементам пенетрато-ра аналогично используемому при электробурении.
^ 3. Классификация скважин

Скважины можно классифицировать по на­значению, профилю ствола и фильтра, степени совершенства и конструкции фильтра, количеству обсадных колонн, распо­ложению на поверхности земли и т.д.

По назначению различают скважины: опорные, парамет­рические, структурно-поисковые, разведочные, нефтяные, га­зовые, геотермальные, артезианские, нагнетательные, наблю­дательные, специальные.

По профилю ствола и фильтра скважины бывают: верти­кальные, наклонные, направленно-ориентированные, гори­зонтальные.

По степени совершенства выделяют скважины: сверхсо­вершенные, совершенные, несовершенные по степени вскрытия продуктивных пластов, несовершенные по характе­ру вскрытия продуктивных пластов.

По конструкции фильтра скважины классифицируют на: незакрепленные, закрепленные эксплуатационной колонной, закрепленные вставным щелевым или сетчатым фильтром, закрепленные гравийно-песчаным фильтром.

По количеству находящихся в скважине колонн выделяют скважины: одноколонные (только эксплуатационная колон­на), многоколонные (двух-, трех-, п-колонные).

По расположению на поверхности земли скважины разли­чают: расположенные на суше, шельфовые, морские.

Назначение структурно-поисковых скважин — установле­ние (уточнение) тектоники, стратиграфии, литологии разреза пород, оценка возможных продуктивных горизонтов.

Разведочные скважины служат для выявления продуктив­ных пластов, а также для оконтуривания разрабатываемых нефтяных и газовых месторождений.

Добывающие (эксплуатационные) предназначены для до­бычи нефти и газа из земных недр. К этой категории отно­сят также нагнетательные, оценочные, наблюдательные и пье­зометрические скважины.

Нагнетательные необходимы для закачки в пласт воды, га­за или пара с целью поддержания пластового давления или обработки призабойной зоны. Эти меры направлены на уд­линение периода фонтанного способа добычи нефти или по­вышение эффективности добычи.

Назначение оценочных скважин-определение начальной водонефтенасыщенности и остаточной нефтенасыщенности пласта и проведение иных исследований.

Контрольные и наблюдательные скважины служат для на­блюдения за объектом разработки, исследования характера продвижения пластовых флюидов и изменения газонефтена-с ыщенности пласта.

Опорные скважины бурят для изучения геологического строения крупных регионов с целью установления общих за­кономерностей залегания горных пород и выявления возмож­ностей образования в этих породах месторождений нефти и газа.
Контрольные вопросы:

1. Как классифицируют скважины ?

2. Какие известны способы бурения скважин ?

3. Что представляет собой лазерное бурение? ?
Литература

1. Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. — М.: Недра,1988. — 501 с.

2. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для

вузов. — М: ООО «Недра-Бизнесцентр», 2000. — 670 с.

3. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных

и газовых скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2000. —679 с.

4. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых

скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2001. — 679 с.

5. Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. — М.:Недра,

1999. — 375 с


Лекция 2

Тема: Разработка нефтяных и газовых скважин.

План:1. Назначение и состав бурильной колонны

2. Цели и способы бурения наклонно-направленных и горизонтальных скважин.

3. Кустовые размещение скважин.

4.Многозабойные и многоярусные скважины.
^ 1. Назначение и состав бурильной колонны.

Основное назначение бурильной колонны обеспечить гидравли­ческую и механическую связь работающего на забое долота и ствола сква­жины с поверхностным механическим и гидравлическим оборудованием. Одновременно бурильная колонна служит инструментом для доставки на глубину буровых и колонковых долот, различных исследовательских приборов и устройств, снарядов и аварийно-ликвидационных приспособ­лений.

Две главные функции выполняет бурильная колонна в процессе про­ходки ствола:

вращает долото и одновременно передает на него осевую нагрузку;

создает замкнутую циркуляцию агента через забой скважины, обеспе­чивая очистку ствола от выбуренной породы и привод погружных гидрав­лических двигателей.

Бурильная колонна включает следующие основные элементы сверху вниз: рабочую (ведущую) трубу (рис. 2.6), бурильные трубы, утяжеленные бурильные трубы (УБТ) (рис. 2.7).

Рабочая труба, обычно квадратного сечения, служит для передачи вра­щения от ротора к бурильной колонне. Она фиксируется в отверстии ро­тора квадратными клиньями, вкладышами, в связи с чем вращается совме­стно со столом ротора и одновременно может перемещаться в осевом на­правлении по мере углубления забоя скважины.

Соединяется рабочая труба при помощи нижнего переводника с верх­ней трубой бурильной колонны, а при помощи верхнего переводника - с вращающимся стволом вертлюга - устройством, связывающим нагнета­тельную линию бурового насоса, подающего промывочный агент, с вра­щающейся бурильной колонной.

Заводами выпускаются ведущие трубы со сторонами квадратного се­чения 112, 140 и 155 мм, с диаметром внутреннего канала соответственно 74, 85 и 100 мм. Длина ведущей трубы 13-14 м, материал - сталь группы прочности Д и марки 36Г2С.

Бурильная колонна может компоноваться из труб следующих конст­рукций:

с высаженными внутрь концами (рис. 2.8, а);

с высаженными наружу концами (рис. 2.8, б);

с приваренными соединительными концами (рис. 2.9);



Рис. 2.6. Рабочая ведущая бурильная труба:

1 - верхний переводник; 2 - рабочая веду­щая труба; 3 - нижний переводник

с блокирующим пояском;

беззамковые раструбные.

Трубы первых двух конструк­ций имеют наружную мелкую трубную резьбу и соединяются ме­жду собой при помощи бурильных замков или муфт (рис. 2.10). Трубы второй конструкции имеют по сравнению с трубами первой кон­струкции улучшенную гидравличе­скую характеристику, так как в них равнопроходной канал и, следова­тельно, минимальны местные гид­равлические сопротивления потоку промывочного агента.

Бурильные трубы с приварен­ными соединительными концами имеют равнопроходной канал и соединяются друг с другом при помощи крупной замковой резьбы.

В бурильных трубах с блоки­рующим пояском вблизи резьбы по телу имеется проточка, на которую в горячем состоянии наворачивает­ся часть замка с внутренней про­точкой, в результате чего, после остывания, создается герметичный напряженный контакт между зам­ком и трубой.

Промышленность выпускает бурильные трубы диаметром от 60 до 168 мм длиной 6; 8; 11,5-12,0 м из стали групп прочности C, Д, E, K, L, M.

Бурильные трубы многократно соединяются в бурильную колонну по мере проводки ствола скважины, так как необходимо периодически заме­нять износившееся долото на новое и выполнять другие работы в скважи­не, требующие спускоподъемных операций с бурильной колонной. Круп­ная замковая резьба со значительной конусностью позволяет быстро за несколько оборотов свинчивать и развинчивать трубы, при этом герметич­ность обеспечивается напряженным контактом торцевых поверхностей замков.

Для соединения бурильных труб используют замки трех типов: ЗШ с диаметром канала, близкого к диаметру канала бурильных труб с высаженными внутрь концами;

ЗН с диаметром канала существенно меньшим диаметра канала труб; ЗУ с увеличенным диаметром канала.

Замки первых двух типов используют для бурильных труб с высаженными внутрь концами, а замки последнего типа - для труб с высаженными наружу концами. Замки типа ЗУ предпочтительны для турбинного бурения, так как не создают значительных местных гидравлических сопротивлений потоку промывочного агента.

Рис. 2.7. Утяжеленные буриль­ные трубы:

а — с одинаковым диаметром; б — с проточным телом; 1 — тело трубы; 2 — замковая резьба



Рис. 2.8. Бурильные трубы:

а - с высаженными внутрь кон­цами; б - с высаженными наружу концами; 1

труба; 2 - муфта

Рис. 2.9. Бурильная труба с приваренными соединитель­ными концами

Рис. 2.10. Соединение бурильных труб с выса­женными концами:

а - при помощи замков; б - при помощи муфт

Для проводки стволов нефтегазовых скважин чаще всего используют бурильные трубы диаметром 114, 121, 146 и 168 мм. Их соединяют по две-три штуки в свечи, которые устанавливают вертикально внутри вышки на специальный подсвечник и тем самым значительно ускоряют и облегчают спускоподъемные операции.

При больших глубинах скважин нагрузки на вышку и талевую систему буровой установки во время спускоподъемных операций могут достигать недопустимых значений за счет силы тяжести бурильной колонны. В связи с этим вместо стальных труб в ряде случает используют бурильные трубы из прочных алюминиевых сплавов, которые позволяют, при прочих равных условиях, снизить эти нагрузки по меньшей мере в 2 раза. Промышлен­ность выпускает легкосплавные бурильные трубы с высаженными внутрь концами диаметром от 73 до 147 мм. На концах легкосплавных труб наре­зана трубная резьба, а их соединение в виде бурильной колонны осуществ­ляют навинчиваемыми на них стальными замками.

Важным элементом бурильной колонны являются утяжеленные бу­рильные трубы, одна из главных функций которых - создавать осевую нагрузку на долото, не допуская изгиба бурильной колонны. УБТ устанав­ливают непосредственно над долотом или погруженным двигателем. Тру­бы массивные за счет большой толщины стальной стенки (толщина стенок УБТ в несколько раз больше толщины стенок обычных бурильных труб).

Необходимым элементом в состав бурильной колонны входят различ­ные переводники, предназначенные для соединения ведущей трубы с верт­люгом и бурильными трубами, бурильных труб с УБТ, УБТ с турбобуром или долотом.

Кроме того, бурильная колонна может оснащаться центраторами для предотвращения изгиба бурильной колонны и одностороннего примыкания ее к стенке ствола скважины, расширителями - долотами для увеличения диаметра ствола, кривыми переводниками и соапстоками для искривления ствола скважины в заданном направлении.
^ 2. Цели и способы бурения наклонно-направленных и горизонтальных скважин

За последние 20 лет доля крупных месторож­дений, среди вновь открываемых, снизилась с 1 5 до 1 0 %. При этом ухудшаются коллекторские свойства продуктивных отложений и качественный состав насыщающих их флюидов. Высокая выработанность запасов углеводородов обусловлива­ет обводненность продукции и снижение дебитов скважин. Из-за несовершенства техники и технологии разработки нефтеотдача нефтегазовых пластов не превышает 30—40 %. Более полное извлечение углеводородов из пластов является важной народнохозяйственной задачей.

Вскрытие продуктивной толщи направленными, в том чис­ле горизонтальными и разветвленно-горизонтальными сква­жинами, позволяет следующее:

повысить продуктивность скважины за счет увеличения площади фильтрации;

продлить период безводной эксплуатации скважин;

увеличить степень извлечения углеводородов на месторож­дениях, находящихся на поздней стадии разработки;

повысить эффективность закачки агентов в пласты;

вовлечь в разработку пласты с низкими коллекторскими свойствами и с высоковязкой нефтью;

освоить труднодоступные нефтегазовые месторождения, в том числе морские;

улучшить технологию подземных хранилищ газа.

Направленной будем называть такую скважину, ко­торую пробурили вдоль запроектированной пространствен­ной трассы и попали в заданную цель, а ее забой и фильтро­вая зона не только располагаются в заданной области горных

пород, но и ориентированы в соответствии с проектом отно­сительно простирания пласта.

Кроме совершенствования технологии разработки нефтя­ных и газовых месторождений направленные скважины эф­фективны во многих других случаях:

при бурении в обход осложненных зон горных пород;

при бурении под недоступные или занятые различными объектами участки земной поверхности;

при глушении открытых фонтанов;

при вскрытии крутопадающих пластов и т.д.

Частными случаями направленной скважины являются вертикальная и горизонтальная.

Горизонтальная скважина — это такая скважина, которая имеет достаточно протяженную фильтровую зону, соизмеримую по длине с вертикальной частью ствола, пробу­ренную преимущественно вдоль напластования между кров­лей и подошвой нефтяной или газовой залежи в определен­ном азимутальном направлении. Основное преимущество го­ризонтальных скважин по сравнению с вертикальными со­стоит в увеличении дебита в 2 — 10 раз за счет расширения области дренирования и увеличения фильтрационной поверх­ности (табл. 10.1).

Таблица 1

^ Эксплуатационные характеристики некоторых горизонтальных скважин по сравнению с вертикальными

Площадь (страна)

Глубина продуктив­ного плас­та, м

Длина горизонта­льного участка, м

Дебит горизонта­льной скважины, т/сут

Дебит вертикаль­ной сква­жины, т/сут

Кратность увеличения дебита

Прадхо Бей(США)

2700

476

1670

400

4

Вирджиния

(США)

1020

600

3400

2100

1,6

Колд Лейк(Канада)

480

1016

4000

500

8

РоспоМаре

(Италия)

1380

470

500—1900

90 — 270

6 — 23

Яблоновская (РФ)

540

150

40

23

1,7

Карташевская (РФ)-

475

51—328

120

6 — 8

15 — 20

Тереклинс кая (РФ)

1300

100

64

32

3—6

Южно Карская

(РФ)

260

1 00

70— 1 40

4—35

2—35


Первоочередными объектами использования направленных скважин являются:

-морские месторождения углеводородов;

-месторождения на территории с ограниченной возможно­стью ведения буровых работ;

-залежи высоковязких нефтей при естественном режиме фильтрации;

-низкопроницаемые, неоднородные пласты-коллекторы ма­лой мощности;

-карбонатные коллекторы с вертикальной трещиноватос-тью;

-переслаивающиеся залежи нефти и газа; залежи на поздней стадии разработки.

Основной недостаток направленных скважин — их срав­нительно высокая стоимость. В начале 80-х годов стоимость горизонтальной скважины превышала стоимость вертикаль­ной скважины в 6—8 раз. В конце 80-х годов это соотноше­ние понизилось до 2 — 3. По мере накопления опыта бурения в конкретном районе стоимость направленных скважин уменьшается и может приблизиться к стоимости вертикаль­ных скважин. С позиций добычи нефти и газа экономичес­ки целесообразно, если извлекаемые запасы из направленной скважины во столько раз больше, во сколько раз дороже направленная скважина по сравнению с вертикальной. При­чем это количество нефти должно быть добыто в более ко­роткие сроки.

Направленное бурение скважин имеет свою историю. В 1930 г. на Хантингтонском пляже в Калифорнии буровой подрядчик предложил разбуривать нефтяное месторождение в океане буровой установкой, смонтированной на длинном, выступающем в океан пирсе. В то время это была обычная практика. Однако по той или иной причине местные офици­альные лица запретили такой метод разбуривания. Тогда не­угомонный буровой подрядчик смонтировал буровую уста­новку на берегу в отдалении от пляжа и пробурил наклон­ную скважину под морское дно.

Этот бурильщик не изобрел наклонное бурение. Скважи­ны отклоняли с 1895 г. для таких целей, как забуривание ствола в сторону в обход оборванного бурового инструмента. Больше того, вертикальные скважины оказывались самопро­извольно искривленными. В Оклахоме в 1 920-е годы отмечали большую разницу в глубинах скважин, пробуренных на один и тот же пласт-коллектор. Исследования инклинометром по­казали, что лишь некоторые из пробуренных скважин вертикальные; в большинстве же случаев проекция забоя оказы­валась достаточно удаленной от точки заложения скважины (от устья). Однако скважина на Хантингтонском пляже была первым зарегистрированным применением управляемого на­правленного бурения: в результате отклонения вдоль запла­нированного курса к подземной цели забой ствола оказался расположенным на заданном расстоянии по горизонтали от устья скважины.

К сожалению, этот опыт управляемого направленного бу­рения был немедленно оценен как возможность совершать запрещенные действия. Действительно, несмотря на все более широкое и законное использование хантингтонского опыта и в других местах, термин направленное бурение означал, что кто-то кого-то обманул. В Восточном Техасе досаждали неф­тяные дельцы, бурившие направленные скважины под за­претные зоны. Однако Восточный Техас был также регио­ном, где впервые использовали управляемое направленное бурение для других важных целей. Так, в 1934 г. для глушения открытого выброса из скважины вблизи каньона Дикого по­тока была пробурена разгрузочная направленная скважина, забой которой подвели близко к забою фонтанирующей скважины. Посредством нагнетания бурового раствора в на­правленную скважину под высоким давлением были созданы каналы между нею и фонтанирующей скважиной, по кото­рым фонтанирующую скважину заполнили буровым раство­ром и заглушили фонтан.

В течение десятилетий управляемое направленное бурение доказало свою полезность во многих аспектах использова­ния. Оно позволило эффективно эксплуатировать месторож­дения нефти и газа, а крупномасштабное морское бурение сделать экономически выгодным.

Направленное бурение становится специальностью. За ру­бежом, как правило, менеджер нефтяной компании нанимает сервисную компанию по направленному бурению, чтобы она составила проект направленной скважины, определила необ­ходимые управляющие инструменты и оказывала помощь на месте.

Как только владелец скважины одобряет проект, предста­витель сервисной компании становится членом буровой бри­гады. Непосредственно на месте сооружения скважины его основная работа — помогать бурильщику держать действи­тельный ствол скважины как можно ближе к ее запланиро­ванному курсу. Эта работа заключается в следующем.

1. Руководство конкретными действиями по управлению проводкой скважины по одиночным измерениям искривления и направления ствола на выбранных глубинах.

2. Расчеты и вычерчивание курса скважины на основании данных измерений.

3. Помощь бурильщику в выборе инструмента для откло­нения, чтобы управлять курсом скважины.

4. Помощь бурильщику ориентировать отклоняющие ин­струменты, чтобы внести необходимые изменения в курс скважины.

5. Определение забойной компоновки, необходимой для обеспечения нужного направления скважины.

6. Участие в рассмотрении специальных проблем бурения направленных скважин.
^ 3. Кустовые размещение скважин.

Под кустовым бурением понимается способ, при котором устья скважин группируются на общей площадке, а конечные за­бои находятся в точках, соответствующих проектам разработки пласта, ме­сторождения.

При кустовом бурении скважин значительно сокращаются строитель­но-монтажные работы в бурении, уменьшается объем строительства дорог, линий электропередачи, водопроводов и т.д. Наибольший эффект от кусто­вого бурения обеспечивается в условиях моря, в болотистых местностях и др. Впервые в СССР кустовое бурение было осуществлено под руко­водством Н.С. Тимофеева на о-ве Артема в Азербайджане. В настоящее время в кустах бурят 8 — 24 скважины и более.

Основными подготовительными работами являются подготовка площадки к строительству наземных сооружений и прокладка коммуникаций. На заболоченной или затопляемой территории технически возможны сле­дующие методы их освоения: сооружение дамб, ограничивающих площад­ку; сооружение искусственных островов; при высоком уровне вод — со­оружение эстакад.

Применяют различные типы и варианты кустований в зависимости от природных условий.

Кусты делят на локальные, т.е. не связанные постоянными дорогами с базой, кусты, расположенные вдоль транспортной магистрали, и кусты, на­ходящиеся в центре транспортной магистрали. В первом случае скважины, как правило, направляют во все стороны (веером), что позволяет собрать в куст максимальное число устьев скважин. При разбуривании многопласто­вых залежей число скважин в кусте увеличивается. В случае расположения кустов вдоль транспортной магистрали (Азербайджан — море, Западная Сибирь) число скважин в кусте уменьшается по сравнению с числом сква­жин на локальном кусте.

Одна из основных особенностей проводки скважин кустами — необ­ходимость соблюдения условий непересечения стволов скважин.

К недостаткам кустового наклонно направленного способа бурения следует отнести: вынужденную консервацию уже пробуренных скважин до окончания некоторой скважины данного куста в целях противопожарной безопасности; увеличение опасности пересечения стволов скважин; труд­ности в проведении капитального и подземного ремонтов скважин, а также в ликвидации грифонов в условиях морского бурения и др.
^ 4.Многозабойные и многоярусные скважины.

Сущность этого способа бурения состоит в том, что из основного ствола скважины с некоторой глубины проводят один или несколько стволов, т.е. основной ствол используется многократно. Полезная же протяженность скважин в продуктивном пласте и, следова­тельно, зона дренирования (поверхность фильтрации) возрастают.

Первая многозабойная скважина была пробурена в 1953 г. на Карта-шевском рифовом месторождении Башкортостана. Первая горизонтальная скважина, проходящая 130 м непосредственно по пласту мощностью около 30 м, была проведена в 1957 г. на Яблоновском месторождении Куйбышев­ской (ныне Самарской) области. Несмотря на то, что скважина была про­бурена на сильно дренированный пласт, ее суточный дебит составил 40 т, что многократно превышало дебиты вертикальных скважин.

Во ВНИИБТ в результате работ по многозабойному и горизонтальному бурению разработаны специальные укороченные турбобуры Т12М2К, в которых впервые была применена проточная пята, отработана технология безошибочного попадания в дополнительные стволы, разработана система доставки геофизических приборов в горизонтальные стволы, которая ис­пользуется с некоторыми модификациями по настоящее время как в РФ, так и за рубежом (система «Симфор»). ВНИИБТ разработаны технические средства и методы, позволяющие достаточно надежно проводить горизон­тальные стволы в заданном направлении.

При использовании электробура в качестве забойного двигателя имеющийся набор серийно выпускаемых технических средств позволяет проводить интенсивное искривление скважины по радиусу 120 м и менее и вести горизонтальное бурение при постоянном контроле за пространствен­ными параметрами ствола.

Большая часть горизонтальных скважин в стране пробурена с помощью гидравлических забойных двигателей. В этой области основным на­правлением работ в последние годы было создание технических средств и отработка технологии бурения стволов горизонтальных скважин с мини­мальными отклонениями от расчетной траектории. ВНИИБТ созданы ком­плексы технических средств «Горизонт-1», включающие отклонитель на основе укороченного забойного двигателя объемного типа диаметром 172 мм, и специальные средства для доставки геофизических приборов в скважину при больших углах наклона ствола. Создан универсальный от­клонитель ОШ-172, который используют как при искривлении ствола скважины, так и при бурении горизонтальных участков ствола, что дости­гается путем замены сменных деталей отклонителя в условиях механиче­ского цеха или буровой. Обеспечивается радиус искривления ствола сква­жины 275,9-мм долотом, равный 40 м и более.

Отработана технология выхода на горизонтальное направление и про­водки горизонтального ствола длиной 150 — 200 м с отклонением от верти­кальной отметки в пределах 4 м. Это достигается за счет высокой степени совпадения расчетной и фактической интенсивности искривления ствола при работе с отклонителем ОШ-172, непрерывного контроля за положени­ем отклонителя при помощи прибора с кабельной линией связи, использо­вания специальных шарнирных компоновок при проводке горизонтального ствола, а также периодических инклинометрических измерений. Крепле­ние стволов скважин проводится эксплуатационной колонной диаметром 140—146 мм, оборудованной в продуктивной зоне фильтром такого же диа­метра. Эксплуатационная колонна цементируется выше башмака 245-мм промежуточной колонны с применением пакера типа ПДМ-140 (ПДМ-146). Геофизические исследования горизонтального ствола проводят с примене­нием радиационных методов.

В зарубежной практике этот метод, а главное узел управления, сбора информации и корректировки ствола скважины и, кроме того, специаль­ные трубы и другой инструмент разработаны в нескольких вариантах, ко­торые обеспечивают проводку скважин по пласту мощностью всего не­сколько метров. Система измерений при бурении позволяет осуществлять процесс в автоматическом режиме.
Контрольные вопросы:

1. Какие разновидности бывают бурильных труб?

2. Что представляет собой горизонтальная скважина?

3. Где эффективно использовать направленную скважину?

4. Что такое кустовое бурение?

5. Сущность бурения многозабойной скважины?
Литература

1. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для

вузов. — М: ООО «Недра-Бизнесцентр», 2000. — 670 с.

2. Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. — М.: Недра,1988. — 501 с.

3. Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. — М.:Недра,

1999. — 375 с

и газовых скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2000. —679 с.

4. Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых

скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2001. — 679 с.

5. .Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных

Лекция 3

Тема:Разрушение горных пород.

План: 1. Горные породы, слагающие разрез нефтяных и газовых месторождений.

2.Механические свойства горных пород.

3.Классификация породоразрушающих инструментов.
^ 1. Горные породы, слагающие разрез нефтяных и газовых месторождений.

Геологическая информация является основой решения практи­чески всех вопросов проектирования сооружения скважин и управления буровыми процессами. Характеристики проходимых скважиной пород и пластовых флюидов во многом обусловливают выбор долот, бурового рас­твора, методов вскрытия продуктивных горизонтов, крепления стенок скважины и разобщения пластов. Для морского бурения огромное значе­ние имеют сведения о гидрометеорологических условиях, а также характе­ристики глубин морей, морских волнений, приливов и отливов, морских течений, ветра, ледовой обстановки.

Геология - наука о составе, строении и истории Земли.

Предполагают, что Земля состоит из нескольких различимых по свой­ствам оболочек: литосферы толщиной 50—70 км; мантии до глубины 2900 км; ядра в интервале глубин 2900-6380 км. Над литосферой находятся водная оболочка - гидросфера, а выше - газовая оболочка - атмосфера. Литосфера сложена горными породами, основу которых составляют раз­личные минералы - природные вещества, приблизительно однородные по химическому составу и физическим свойствам, возникшие в результате физико-химических процессов.

Классификация горных пород по происхождению:

А. Магматические (изверженные) - кристаллические породы, образо­вавшиеся в результате застывания расплавленного вещества (магмы).

Б. Осадочные — породы, составленные из мельчайших кусочков раз­личных минералов, часто сцементированных между собой, содержащие остатки животных и растительных организмов. По способу накопления в земной коре различают механические осадки, породы химического и сме­шанного происхождения.

Механические осадки - результат денудационных процессов солнечно-ветроводяного разрушения и переноса осадков магматических пород (валу­ны, галечник, гравий). Химические породы (и некоторые причисляемые к осадочным породам) образовались путем химических реакций и накопле­ния на земной поверхности сложных солей (каменная соль, ангидрид, гипс). Породы смешанного происхождения включают в себя обломочный материал, вещества органического и химического происхождения (извест­няки, мел, глины, пески, песчаники).

В. Метаморфические горные породы - это вторично переплавленные осадочные и изверженные породы в результате погружения их в расплав­ленную часть Земли (кварциты, мраморы, сланцы, гнейсы).

Основной признак осадочных горных пород - их слоистость, т.е. накопление в виде более или менее однородных пластов (слоев). По­верхность, ограничивающую пласт сверху, называют кровлей, а поверх­ность, ограничивающую пласт снизу, - подошвой.

Кровля нижележащего пласта является одновременно подошвой вы­шележащего, а подошва вышележащего - кровлей нижележащего. Первич­но образовавшиеся пласты залегали почти горизонтально, но в результате последующей деформации земной коры форма залегания часто изменялась до существенно наклонной или даже вертикальной.

Пласт характеризуется мощностью и углом падения в данной точке в конкретном направлении Различают истинную (кратчайшее расстояние между кровлей и подошвой), горизонтальную (расстояние между кровлей и подошвой по горизонтали) и вертикальную (расстояние между кровлей и подошвой по вертикали) мощности пластов.

Тектонические движения земной коры привели к образованию скла­док пластов, их разрывам, разломам и смещениям по плоскостям нару­шений.

Различают складки в виде синклинали, антиклинали и моноклинали Синклиналь — это складка, обращенная выпукло­стью вниз к центру Земли, в ядре которой более «молодые» породы, чем по краям. Антиклиналь - это складка, обращенная выпуклостью к поверхности Земли, в ядре которой находятся более древние породы. Последовательно расположенные антиклиналь и синклиналь образуют полную складку.

Синклиналь и антиклиналь имеют крылья - боковые части складки, замок - линия перегиба складки (у антиклинали называется седлом, а у синклинали - мульдой). Угол между крыльями называют углом складки. Если у складки только одно крыло, то ее называют моноклиналью





Рис. 1. Складчатые дислокации:

моноклиналь; б—флексура; а —антиклиналь, г — синклиналь; К— крылья; О—ось складок; поверхность земли
^ 2.Механические свойства горных пород.

Под механическими свойствами горных по­род понимаются такие особенности, которые определяют ха­рактер их деформации и разрушения под воздействием при­ложенной нагрузки. Иными словами, механические свойства горных пород проявляются в характере изменения внутрен­них связей и распределении материала в зависимости от изменения интенсивности и структуры полей напряжений. В массиве горных пород и в образце механические свойства проявляются по-разному. В массиве с изменением условий нагружения происходит перераспределение полей напряже­ний, которое оказывает влияние на состояние горной поро­ды и при определенной концентрации напряжений влечет местное разрушение. В ограниченном объеме образца уже созданы условия для концентрации напряжений, изменение условий нагружения образца приводит к изменению его фор­мы и в конечном счете вызывает его разрушение.

Механические свойства горных пород зависят от их со­става, строения, текстуры, структуры и условий залегания глубина залегания, тектоническая нарушенность и т.п.). Состав и строение горной породы в значительной степени определяются ее происхождением.

Условия формирования горной породы накладывают су­щественный отпечаток на ее строение. Магматические гор­ные породы, образовавшиеся на глубине, имеют, как прави­ло, крупнокристаллическое строение, тогда как эффузивные горные породы, застывшие на поверхности, характеризуют­ся скрытокристаллическим строением. Магматические поро­ды, не затронутые процессами выветривания и метаморфиз­ма и не подвергавшиеся тектоническим нарушениям, состав­ляют в земной коре плотные, достаточно монолитные тела. Породы осадочного комплекса характеризуются слоистым строением, что и обусловливает их анизотропию, т.е. суще­ственное различие механических свойств вдоль напластова­ний и перпендикулярно к ним. Механические свойства оса­дочных горных пород варьируют в широких пределах. Про­цессы метаморфизма оказывают существенное влияние на механические свойства горных пород. Например, выветрива­ние значительно снижает монолитность даже наиболее креп­ких магматических пород, а процессы регионального мета­морфизма приводят к повышению монолитности осадочных, первоначально довольно рыхлых, горных пород.

Для характеристики внутреннего строения горных пород введены понятия текстуры и структуры.

Текстура определяется положением и распределением ми­неральных зерен в горной породе. К текстурным признакам относятся слоистость, сланцеватость и пористость горной породы. Пористостью называется совокупность всех пустот в горной породе между минеральными зернами, образующи­ми минеральный скелет породы. Пористость характеризуется коэффициентом пористости, равным отношением объема пор к объему скелета. Помимо пор в горной породе принято выделять трещины (плоский разрыв сплошности среды) и ка­верны — полости больших размеров, превышающие разме­ры минеральных зерен и нарушающие целостность мине­рального скелета.

Под структурой понимают такие особенности горной по­роды, которые определяются размерами, формой и характе­ром поверхности минеральных зерен. По структуре различают, например, горные породы кристаллические, аморфные и обломочные. Механические свойства обломочных пород в значительной степени зависят от размера зерен и характера связи между ними, т.е. от состава и структуры цемента, скрепляющего минеральные зерна.

Пластичность — это способность материала к увеличению интенсивности деформирования по мере роста нагрузки и к сохранению остаточной деформации после снятия нагрузки. Для характеристики пластических свойств материала вводит­ся понятие модуля пластичности и коэффициента пластич­ности. Под модулем пластичности £пд понимается предельный секущий модуль, т.е. отношение прироста напряжений в пла­стической зоне к полной относительной деформации в этой зоне.

Прочность — это способность материала без разрушения выдержать нагрузку в процессе деформирования. Прочность характеризуется пределом прочности, т.е. максимальным напряжением, которое материал может выдержать, не разру­шаясь. Когда напряжения в горной породе превосходят предел прочности, происходит разрушение, т.е. необратимое поражение внутренних связей. Предел прочности определяет­ся характером внутренней связи между частицами в горной породе.

Абразивность — это способность горной породы изнаши­вать породоразрушающий инструмент (или любое иное тело) при его перемещении в контакте с породой.

В практике бурения используется еще одна характерис­тика горных пород — буримость. Буримость — это свойство горной породы, которое характеризует ее разрушаемость на ограниченной поверхности забоя скважины. Это относитель­ная характеристика, зависящая от уровня развития техники и технологии бурения. Мера буримости той или иной горной породы — средняя скорость углубления ствола скважины.

Обычно механические свойства горных пород изучаются в условиях простой деформации: при растяжении, сжатии и т.п. Но необходимо учитывать, что на забое скважины гор­ная порода находится в условиях напряженного состояния. На нее действуют давление на контакте с породоразрушаю-щим инструментом, гидростатическое давление столба жид­кости в скважине, поровое (или пластовое) давление жидкос­ти, находящейся в порах, и другие факторы, поэтому надо рассматривать сложное деформированное состояние, возни­кающее при всем многообразии действующих нагрузок.
^ 3.Классификация породоразрушающих инструментов.

ДОЛОТА

Породоразрушающий инструмент предназна­чен для концентрированной передачи энергии горной породе с целью ее разрушения. В машиностроении трудно найти аналогичный инструмент, условия работы которого были бы такими же жесткими, сложными и трудно контролируемыми, как для буровых долот. Так, реализуемая через долото мощ­ность, приходящаяся на 1 см его диаметра, может достигать 5—10 кВт, статическая осевая нагрузка — 10—15 кН. Дина­мическая осевая нагрузка может превышать статическую в 1,5 — 2 раза.

Нормальные динамические и статические нагрузки, крутя­щий момент, продольные, поперечные и крутильные колеба­ния приводят к тому, что элементы долот при бурении испы­тывают практически все виды напряжений, достигающих иногда предела текучести и прочности материала. Реализуе­мая механическая энергия при разрушении горной породы и в узлах трения долот практически полностью переходит в тепловую, в связи с чем тонкие поверхностные слои элемен­тов вооружения и опоры разогреваются до 800— 1000 °С.

Для условий работы буровых долот также характерна аб­разивная и коррозионная активность окружающей среды (разрушаемая горная порода, буровой раствор со шламом и химическими реагентами, минерализованные пластовые во­ды), повышенные пластовые давления (до 100 МПа) и темпе­ратура (‰Ó 150-250 °ë).

^ ДОЛОТА ЛОПАСТНЫЕ

Лопастное долото в качестве рабочего эле­мента имеет лопасти, которые изготовляют либо с корпусом, либо приваривают к корпусу (рис. 2.1).

Лопастные долота относятся к инструменту режущего или режуще-скалывающего действия. Они предназначены для бу­рения в породах мягких и отчасти средней твердости.



Рис.2.1. Лопастное долото: 1 - головка с присоединительной резьбой;2 - корпус; 3- лопасть;4-промывочное отверстие;5-твердо­сплавное покрытие;6 - режущая кромка;
По ГОСТ 26-02-1282 — 75 выпускаются двух- и трехлопаст­ные долота: двухлопастные диаметрами от 76,0 до 165,1 мм и трехлопастные — от 120,6 до 469,9 мм. Для геологоразведоч­ного бурения ОСТ 7918 — 75 также предусмотрены лопастные долота диаметрами от 76 до 132 мм. Простейшим по конст­рукции является двухлопастное долото (см. рис. 2.1). Оно со­стоит из корпуса и двух лопастей, в головке корпуса имеется присоединительная резьба, а в нижней части ближе к лопас­ти расположены каналы для подачи промывочной жидкости к забою. У гидромониторных долот в каналах устанавливают насадки для формирования высокоскоростной струи промы­вочной жидкости.

На эффективность работы долота наиболее существенное влияние оказывают профиль лопасти долота и правильный подбор его конструкции по свойствам проходимых горных пород.

В профиле режущей части долота различают углы: перед­ний у (может быть положительным и отрицательным), реза­ния 0, приострения р, задний угол заточки а (рис. 2.2).

Чем мягче порода, тем меньше угол резания. По данным B.C. Федорова, для мягких и вязких глинистых пород опти­мальный угол резания примерно равен 70°, а для хрупких по­род - 90°.

Профиль режущей части лопастного долота отраслевой нормалью не регламентирован.

^ ИСТИРАЮЩЕ-РЕЖУЩИЕ ДОЛОТА (ДИР)

Истирающе-режущие долота могут быть от­несены к лопастным, но от последних отличаются тем, что, как правило, имеют разновысокие лопасти, армированные мелкими твердосплавными резцами.

Такое долото формирует ступенчатый забой и в зависимо­сти от свойств проходимых пород может работать как режу­щее долото, т.е. по всей длине лопасти снимать слой с забоя, или как истирающее, когда каждый мелкий резец обособлен­но взаимодействует с забоем и скалывает очень мелкие час­тицы горной породы.

Предложены различные конструкции истирающе-режущих долот. Наиболее распространены две конструкции: долота ДИР, разработанные Азинмашем, и ДФЛ, разработанные ГрозНИИ. Нормалью ОН 26-02-88 — 68 предусмотрено 15 ти­поразмеров долот диаметром от 76 до 269 мм с шифром ИР и ИРГ. Шифр ИРГ присваивается долотам с гидромонитор­ными насадками.

^ ШАРОШЕЧНЫЕ ДОЛОТА

Шарошечным долотом называется такой по-родоразрушающий инструмент, у которого основным рабо­чим органом является шарошка — стальная конусообразная деталь, свободно посаженная на ось и несущая на своей по­верхности иденторы — зубцы, штыри (рис. 2.3). Оно пред­ставляет собой своеобразный механизм, у которого враще­ние его корпуса преобразуется во вращательное движение шарошек вокруг их оси, в результате чего происходит пора­жение забоя зубцами, периодически вступающими с ним в контакт.

Долото может иметь от одной до трех и более шарошек. Наиболее распространены трехшарошечные долота; одно- и двухшарошечные долота производят в ограниченном количе­стве. Одношарошечные долота предназначены для бурения твердых неабразивных пород на больших глубинах, двухша­рошечные — в основном для бурения на небольших глуби­нах в мягких породах с пропластками пород средней твердости.

Рис.2.2. Шарошечное долото: 1 - корпус с резьбовой головкой;2 - лапа с опорой; 3 - шарошка;
Каждая шарошка снабжена множеством резцов, которые располагаются венцами. Венцы соседних шарошек располо­жены таким образом, что позволяют разрушать породу по всей поверхности забоя. Применяют два способа оснащения шарошки зубцами: фрезерование зубцов из тела шарошки с последующей наплавкой зерненого твердого сплава (релита и т.п.) или установка твердосплавных штырей (резцов) в гнезда методом холодного прессования. У одного и того же долота шарошки могут различаться по виду. Так, у некоторых трех-шарошечных долот только первая шарошка имеет полный

конус, а две (вторая и третья по ходу часовой стрелки с тор­ца) имеют форму усеченного конуса.

Шарошечные долота выпускаются в соответствии с ГОСТ 20692 — 75. Этим документом предусматривается изготовле­ние шарошечных долот 39 различных номинальных диамет­ров — ÓÚ 46 ‰Ó 508 ÏÏ.

Промышленностью производятся шарошечные долота многих типов, различных по вооружению и по конструкции опоры. По вооружению они отличаются друг от друга кон­фигурацией и расположением шарошек, размером и формой зубцов, их размещением на шарошке, использованием твер­дого сплава для армирования шарошек.

Характер взаимодействия зубцов шарошки с забоем, а следовательно, и специфика разрушения горных пород на за­бое зависят от размеров и плотности размещения зубцов в венце, а также от конфигурации шарошек и расположения их осей.
^ АЛМАЗНЫЕ ДОЛОТА

В настоящее время алмаз широко применяет­ся в технике как режущий инструмент и высокоабразивный материал. Его абсолютная твердость в 150 раз превышает твердость кварца. Плотность алмазов колеблется в пределах 3100 — 3520 кг/м3. Масса алмазных зерен измеряется в кара­Ú‡ı (1 кар = 0,2 „).

Тип алмазного долота определяется формой торцовой час­ти и конструкцией промывочных каналов. Форма рабочей поверхности алмазного долота зависит от условий бурения. По форме алмазные долота подразделяются на спиральные, радиальные, ступенчатые с торовидными выступами.



Рис.6.19.Алмазное долото: I - корпус; 2 матрица; 3 - алмазные зерна;
Наиболее распространенная и совершенная технология изготовления алмазных долот в настоящее время базируется на методах порошковой металлургии. В качестве исходных материалов для матрицы используют вольфрам, карбид воль­фрама и медь. По этой технологии смесь порошков исход­ных материалов засыпают в пресс-форму, на дне которой предварительно в определенном порядке разложены зерна алмазов, и производят холодное прессование до давления 30 — 50 МПа, а затем форму помещают в вакуумную или во­дородную печь, где при температуре около 1100°С порошки спекаются.

На изготовление алмазного долота диаметром 141,3 мм расходуется около 40 — 45 г алмазов, диаметром 188,9 мм — 65 — 80 г, диаметром 214,3 мм — 80 — 90 г, диаметром 267,5
Контрольные вопросы:

1.Что такое абразивность?

2.Классификация горных пород

3.Для бурения каких пород предназначены лопастные долота?

4.Конструкция алмазного долота.
Литература

1. Ангелопуло O.K., Подгорнов В.М., Аваков Б.Э. Буровые растворы для осложненных условий. — М.: Недра, 1988.

2.Аскеров М.М., Сулейманов А.Б. Ремонт скважин: Справ, пособие. — : Недра, 1993.

3. Броун СИ. Нефть, газ и эргономика. — М: Недра, 1988.

4. Броун СИ. Охрана труда в бурении. — М: Недра, 1981.

5. Булатов А.И., Аветисов А.Г. Справочник инженера по бурению: В 3 т.: 2-е изд., перераб. и доп. - М: Недра, 1993-1995. - Т. 1-3.

6.Булатов А.И. Формирование и работа цементного камня в скважи­на, Недра, 1990.

7.Варламов П.С Испытатели пластов многоциклового действия. — М: Недра, 1982.

8. Геолого-технологические исследования в процессе бурения. РД 39-0147716-102-87. ВНИИпромгеофизика, 1987.

9. Геолого-технологические исследования скважин / Л.М. Чекалин, А.С. Моисеенко, А.Ф. Шакиров и др. — М: Недра, 1993.

10. Городнов В.Д. Физико-химические методы предупреждения осложне­ний в бурении. 2-е изд., перераб. и доп. — М: Недра, 1984.


Лекция 4

Тема:

План: 1. Долото для бурения сплошным забоем и с отбором керна.

2. Снаряды для колонкового бурения.

3. Буровые долота специального назначения.
^ 1. Долото для бурения сплошным забоем и с отбором керна

Для отбора керна в процессе строительства геологоразведочных, раз­ведочных, поисковых и параметрических скважин используются керноотборные инструменты, состоящие из керноотборных устройств в сочетании с бурильными головками различного типа: режущего действия (бесшарошечные), шарошечные и алмазные.

За 49 лет своего существования специалистами ОАО НПО «Буровая техника» разработаны и переданы в серийное производство комплексы керноотборного инструмента, включающие керноприемные устройства и бурильные головки, предназначенные дли бурении нефтяных и газовых скважин различного назначении с отбором керна различными способами в интервалах залегании различных по физико-механическим свойствам гор­ных пород и условий бурении. Опытные образцы и партии указанных из­делий в основном изготавливаются на опытном и экспериментальных заво­дах ОАО НПО «Буровая техника». Испытания к ер но отборного инструмен­та проводились во всех нефтегазовых регионах бывшего СССР при буре­нии в осадочных породах, а также в отложениях коренных пород при бу­рении самой глубокой скважины на земле — СГ-3 Кольская.

Кроме того, в создании и освоении производства керноотборных уст­ройств и бурильных шловок к ним различных конструкций принимали участие и ряд других организаций и предприятий.



Рис. 2.1. Общий вид керноотборного устройства серии К:

1 — регулировочная головка; 2 — узел подшипника; 3 — корпус; 4 — керно-приемная труба с кернорвателем
  1   2   3   4   5   6   7   8   9   ...   16



Скачать файл (7288 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru