Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Искусственный интеллект - файл 1.doc


Искусственный интеллект
скачать (517.5 kb.)

Доступные файлы (1):

1.doc518kb.20.12.2011 08:28скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...
Люгер, Дж.Ф.

Искусственный интеллект. Часть 1-2. 2001.

Люгер, Джордж, Ф. Искусственный интеллект: стратегии и методы решения сложных проблем, 4-е издание. : Пер. с англ. - М.: Издательский дом "Вильяме", 2003. - 864 с.-С.5-217.

Данная книга посвящена одной из наиболее перспективных и привлекательных облас­тей развития научного знания - методологии искусственного интеллекта. В ней детально описываются как теоретические основы искусственного интеллекта, так и примеры по­строения конкретных прикладных систем. Книга дает полное представление о современ­ном состоянии развития этой области науки.

Искусственный интеллект- это увлекательная и благодарная дисциплина. Осознав его силу и глубину, вы получите удовольствие от изучения этой книги.

Джордж Люгер 1 июля 2001 года

Часть I

Искусственный интеллект: его истоки и проблемы

Всему есть начало, как говорил Санчо Панса, и это начало должно опираться на нечто, ему предшествующее. Индусы придумали слона, кото­рый удерживал мир, но им пришлось поставить его на черепаху. Нужно отметить, что изобретение состоит в сотворении не из пустоты, но из хаоса: в первую очередь следует позаботиться о материале...

- Мэри Шелли (Mary Shelley), Франкенштейн

Попытка дать определение искусственному интеллекту

Искусственный интеллект (ИИ) можно определить как область компьютерной науки, занимающуюся автоматизацией разумного поведения. Это определение наиболее точно соответствует содержанию данной книги, поскольку в ней ИИ рассматривается как часть компьютерной науки, которая опирается на ее теоретические и прикладные принципы. Эти принципы сводятся к структурам данных, используемым для представления знаний, алгоритмам применения этих знаний, а также языкам и методикам программиро­вания, используемым при их реализации.

Тем не менее это определение имеет существенный недостаток, поскольку само понятие интеллекта не очень понятно и четко сформулировано. Большинство из нас увере­ны, что смогут отличить "разумное поведение", когда с ним столкнутся. Однако вряд ли кто-нибудь сможет дать интеллекту определение, достаточно конкретное для оценки предположительно разумной компьютерной программы и одновременно отражающее жизнеспособность и сложность человеческого разума.

Итак, проблема определения искусственного интеллекта сводится к проблеме определения интеллекта вообще: является ли он чем-то единым, или же этот термин объеди­няет набор разрозненных способностей? В какой мере интеллект можно создать, а в какой он существует априори? Что именно происходит при таком создании? Что такое творчество? Что такое интуиция? Можно ли судить о наличии интеллекта только по наблюдаемому поведению, или же требуется свидетельство наличия некоего скрытого ме­ханизма? Как представляются знания в нервных тканях живых существ, и как можно применить это в проектировании интеллектуальных устройств? Что такое самоанализ и как он связан с разумностью? И, более того, необходимо ли создавать интеллектуальную компьютерную программу по образу и подобию человеческого разума, или же достаточно строго "инженерного" подхода? Возможно ли вообще достичь разумности посредст­вом компьютерной техники, или же сущность интеллекта требует богатства чувств и опыта, присущего лишь биологическим существам?

На эти вопросы ответа пока не найдено, но все они помогли сформировать задачи и методологию, составляющие основу современного ИИ. Отчасти привлекательность искусственного интеллекта в том и состоит, что он является оригинальным и мощным ору­дием для исследования именно этих проблем. ИИ предоставляет средство и испытатель­ную модель для теорий интеллекта: такие теории могут быть переформулированы на языке компьютерных программ, а затем испытаны при их выполнении.

По этим причинам наше первоначальное определение, очевидно, не дает однозначной характеристики для этой области науки. Оно лишь ставит новые вопросы и открывает парадоксы в области, одной из главных задач которой является поиск самоопределения. Однако проблема поиска точного определения ИИ вполне объяснима. Изучение искусственного интеллекта - еще молодая дисциплина, и ее структура, круг вопросов и мето­дики не так четко определены, как в более зрелых науках, например, физике.

Искусственный интеллект призван расширить возможности компьютерных наук, а не определить их границы. Одной из важных задач, стоящих перед исследователями, является поддержание этих усилий ясными теоретическими принципами.

Из-за специфики проблем и целей искусственный интеллект не поддается простому определению. Поэтому на первых порах просто опишем его как спектр проблем и методологий, изучаемых разработчиками систем искусственного интеллекта. Это опреде­ление может показаться глупым и бессмысленным, но оно отражает важный факт: искус­ственный интеллект, как и любая наука, является сферой интересов человека, и лучше всего рассматривать его в этом контексте.

Любая наука, включая ИИ, рассматривает некоторый круг проблем и разрабатывает подходы к их решению. Краткое изложение истории искусственного интеллекта, рассказ о личностях и их гипотезах, положенных в основу этой науки, поясняет, почему некото­рые проблемы стали доминировать в этой области и почему для их решения были взяты на вооружение методы, описываемые в этой книге.

1.Искусственный интеллект: история развития и области приложения

Слушайте далее и вы еще более изумитесь ремеслам и богатствам природы, от­крытым мною. Величайшим было такое: в старину, если человек заболевал, у него не было защиты против болезни, ни исцеляющей еды, ни питья, ни мази; люди вы­мирали от отсутствия лекарств, но я показал им, как смешивать мягкие ингредиенты, чтобы изгонять всяческие хвори...

Это я сделал видимыми для человеческих очей пылающие знаки в небесах, что до

тех пор были в тумане. Недра земли, скрытое благословение человечества, медь,

железо, серебро и золото - осмелится ли кто-нибудь заявить, что он открыл их

ранее меня? Я уверен, никто, если он не лжец. Говоря кратко: все ремесла, что

есть у смертных, идут от Прометея.

- Эсхил (Aeschylus), Прикованный Прометей

1.1. Отношение к интеллекту, знанию и человеческому мастерству

Прометей говорит о результатах своего неповиновения богам Олимпа: его целью было не только украсть огонь для людей, но и просветить их посредством дара ума, nous, или же "сообразительности". Интеллект является основой всех разработанных человеком техноло­гий и цивилизации вообще. Работа классического греческого драматурга иллюстрирует глубокую и давнюю уверенность в необычайной силе знания. Искусственный интеллект применяется во всех сферах наследия Прометея: медицине, психологии, биологии, астрономии, геологии и многих областях науки, которые Эсхил не в силах был себе представить.

Хотя поступок Прометея освободил людей от невежества, он навлек на него гнев Зевса. За кражу знаний, прежде принадлежавших лишь богам Олимпа Зевс приказал прико­вать Прометея к голой скале, чтобы стихии причиняли ему вечные страдания. Мысль о том, что человеческое стремление к знаниям является проступком перед богами или природой, прочно укоренилась в западной философии. На ней основана история Эдема, она пронизывает сочинения Данте и Мильтона. И Шекспир, и древнегреческие трагики считали амбиции разума причинами всех бедствий. Упорная вера в то, что жажда знаний в конечном счете приведет к катастрофе, пережила и эпоху Возрождения, и век Просвещения и даже научные и философские открытия XIX и XX веков. Поэтому не стоит удивляться тому, что в научных и общественных кругах не утихает бурная полемика по поводу искусственного интеллекта.

И вправду, современная технология не развеяла древний страх губительных последствий интеллектуального честолюбия, она, скорее, сделала их более вероятными, а мо­жет, и неотвратимыми. Легенды о Прометее, Еве, Фаусте пересказываются на языке тех­нологического общества. В своем предисловии к работе "Франкенштейн" (которая, кста­ти, носит подзаголовок "Современный Прометей") Мэри Шелли пишет:

"Я была верным молчаливым слушателем долгих бесед между лордом Байроном и Шелли. В одной из них обсуждались различные философские доктрины, в частности, сущность первопричин жизни, возможность их постижения и изучения. Они говорили об экс­периментах доктора Дарвина (я имею в виду не то, что действительно делал доктор, а то, что ему приписывали), который хранил вермишель в стеклянной емкости, пока она не на­чала сама двигаться каким-то непостижимым образом. Это не значит, что таким образом можно дать жизнь. Но, должно быть, возможно оживить труп. Об этом свидетельствует гальванизм: может быть, и можно изготовить составные части создания, соединить их вместе и наполнить живительным теплом". [Buttler, 1998]

Шелли демонстрирует нам, в какой мере научные достижения, такие как работы Дарвина и открытие электричества, убедили даже далеких от науки людей в том, что творе­ния природы не являются божественной тайной - их можно "разбирать" и систематиче­ски изучать. Чудовище Франкенштейна - не продукт шаманских заклинаний или сделок с преисподней; его собрали из отдельно "изготовленных" компонентов и наполнили жи­вительной силой электричества. Хотя наука девятнадцатого века не способна была по­нять цель изучения принципов и создания в полной мере разумного агента, она призна­вала мысль, что тайны жизни и разума можно приоткрыть с помощью научного анализа.

1.1.1. Историческая подоплека

К тому времени как Мэри Шелли окончательно и, вероятно, бесповоротно соединила современную науку с мифом о Прометее, философские корни современных работ в сфе­ре искусственного интеллекта развивались уже несколько тысячелетий. Хотя моральные и культурные проблемы, поднятые искусственным интеллектом, интересны и важны, данное введение в большей степени касается интеллектуального наследия ИИ. Логической отправной точкой этой истории можно считать гений Аристотеля, или, как его на­зывал Данте, "мастера тех, кто знает". Аристотель объединил интуитивное понимание, тайны и предчувствия ранней греческой традиции с тщательным анализом и строгим мышлением, которому суждено было стать стандартом для современной науки.

Для Аристотеля наиболее пленительным аспектом природы была ее изменчивость. В работе "Физика" он определил свою "философию природы" как "изучение изменяющихся вещей". Он делал различие между материей и формой: например, скульптура сделана из материи бронзы и имеет форму человека. Изменение происходит в тот момент, когда бронзе придают другую форму. Разделение материи и формы представляет философский базис для современных научных концепций, таких как символьное исчисление или абст­ракция данных. В любом исчислении (даже в работе с числами!) мы манипулируем образами, которые являются формой электромагнитной материи, а изменения формы этой материи передают аспекты процесса решения. Абстрагирование формы от средства ее представления не только позволяет производить вычисления над этой формой, но и слу­жит основой теории структур данных - ядра современных компьютерных наук.

В своей работе "Метафизика" Аристотель разработал теории неизменных вещей - космологию и теологию. Но ближе всего к искусственному интеллекту подходит аристотелевская эпистемология, или наука познания, обсуждаемая в его "Логике". Аристотель счи­тал эту книгу важным инструментом познания, поскольку чувствовал, что основой знания является изучение самой мысли. В "Логике" рассматриваются вопросы истинности сужде­ний на основе их взаимосвязи с другими истинными утверждениями. Например, если из­вестно, что "все люди смертны" и "Сократ- человек", то можно заключить, что "Сократ - смертен". В этом примере силлогизма используется дедуктивное правило modus ponens. Хотя формальная аксиоматизация логических рассуждений в полном объеме пред­ставлена лишь в работах Готлоба Фреге, Бертрана Рассела, Курта Геделя, Алана Тьюринга, Альфреда Тарского и других, корни этих работ можно проследить вплоть до Аристотеля.

Идеи Ренессанса, основанные на греческой традиции, дали толчок развитию иного, мощного представления о человечестве и его роли в природе. На смену мистицизму как средству объяснения вселенной пришел эмпиризм. Часы (а следовательно, и расписание работы фабрик) заменили собой ритм природы для тысяч городских жителей. Большинство современных социальных и физических теорий уходят корнями к идее о возможности математического анализа и постижимости природных или искусственных процессов. В част­ности, ученые и философы поняли, что мышление само по себе как образ представления знаний является трудным, но принципиальным предметом для научного изучения.

Должно быть, главным событием в развитии современных представлений стала революция, произведенная Коперником, - замена древней геоцентрической модели вселен­ной, где Земля и другие планеты на самом деле вращаются вокруг Солнца. После столе­тий господства "очевидности", в которой научное объяснение природы и космоса согла­совывалось с религиозным учением и здравым смыслом, была предложена радикально иная (и вовсе не очевидная) модель, объясняющая движение небесных тел. Возможно в первый раз наши представления о мире рассматривались как фундаментально отлич­ные от их видимости. Этот разрыв между человеческим разумом и окружающей его ре­альностью, между понятиями о вещах и самими вещами принципиален для современной теории интеллекта и его организации. Эта брешь была расширена работами Галилея, чьи научные наблюдения еще более расходились с "очевидными" истинами о мире, и чье развитие математики как инструмента для описания мира усилило разрыв между миром и нашими идеями о нем. Именно из этой "бреши" развивалось современное представле­ние о формировании разума: самоанализ стал важным мотивом в литературе, философы начали изучать эпистемологию и математику, и систематизированное применение науч­ного метода стало соперничать с чувствами как орудиями познания мира.

Хотя в XVII и XVIII столетиях было получено немало результатов в эпистемологии и смежных областях, ограничимся рассмотрением работ Рене Декарта. Декарт является центральной фигурой в развитии современных концепций мышления и разума. В своих знаме­нитых "Размышлениях" Декарт сделал попытку найти основу реальности исключительно методами когнитивной интроспекции. Отвергая информацию, поступающую от органов чувств, как неблагонадежную, Декарт был вынужден подвергнуть сомнению даже сущест­вование физического мира и остался наедине с реальностью мысли. Ему пришлось доказы­вать существование самого себя: "Cogito ergo sum" ("Я мыслю, следовательно, существую").

После того как он достоверно установил свое собственное существование как мыс­лящей сущности, Декарт вывел существование Бога как творца и, в конечном счете, под­твердил реальность физической вселенной как необходимого творения Господа.

Здесь можно сделать два интересных наблюдения. Во-первых, раскол между физическим миром и его интеллектуальным осмыслением стал таким значительным, что появи­лась возможность рассматривать процесс мышления отдельно от чувственного воспри­ятия или предмета осмысления. Во-вторых, связь между разумом и физическим миром стала столь тонкой, что понадобилось вмешательство всемилостивого Бога, чтобы дать достоверное знание о физическом мире! Это понимание дуализма разума и физического мира пронизывает всю картезианскую мысль, включая открытие аналитической геомет­рии. Как иначе Декарт мог объединить столь "практичную" область математики, как геометрия, с таким абстрактным математическим основанием, как алгебра?

Почему эта философская дискуссия включена в книгу по искусственному интеллекту? Для ИИ особое значение имеют два важных следствия этих работ.

Разделив разум и физический мир, Декарт и его последователи установили, что

строение идей о мире не обязательно соответствует изучаемому предмету. На этом

основывается методология ИИ, а также эпистемологии, психологии, большей части

высшей математики и современной литературы: ментальные процессы существуют

сами по себе, подчиняются своим законам и могут изучаться посредством себя же.

Поскольку разум и тело оказались разделенными, философы сочли нужным найти

способ воссоединить их, ведь взаимодействие между умственным, res cogitans, и

физическим, res extensa, необходимо для человеческого существования.

По поводу проблемы "ума и тела" были написаны миллионы трудов и было предложено множество решений, однако ни одно из них не смогло успешно объяснить очевид­ные взаимодействия между умственными состояниями и физическими действиями. Наи­более приемлемый ответ на этот вопрос, дающий необходимое основание для изучения ИИ, состоит в том, что ум и тело вовсе не принципиально разные сущности. Согласно этой точке зрения ментальные процессы происходят в таких физических системах, как мозг (или компьютер). Умственные процессы, как и физические, можно, в конечном сче­те, охарактеризовать с помощью формальной математики. Или, как сказал философ XVII века Гоббс (1651), "мышление есть лишь расчет".

1.1.2. Развитие логики

Поскольку мышление стало рассматриваться как форма вычислений, последующими шагами в его изучении стали формализация и окончательная механизация. В XVIII в. Готфрид Вильгельм фон Лейбниц в работе "Calculus Philosophicus" представил первую систему формальной логики, а также соорудил машину для автоматизации ее вычислений [Leibniz, 1887]. Эйлер в начале восемнадцатого века в своем анализе задачи о ке-нигсбергских мостах (см. введение в главу 3) создал учение о представлениях, которые абстрактно отражают структуру взаимосвязей реального мира [Euler, 1735].

Формализация теории графов также сделала возможным поиск в пространстве состояний (state space search) - основной концептуальный инструмент искусственного интеллекта. Графы можно использовать для моделирования скрытой структуры задачи. Узлы графа состояний (state space graph) представляют собой возможные стадии решения задачи; ребра графа отражают умозаключения, ходы в игре или другие шаги в решении.

Решение задачи - это процесс поиска пути к решению на графе состояний (см. раздел 1.3 и главу 3). Описывая все пространство решений задачи, графы состояний предоставляют мощный инструмент для измерения структурированности и сложности проблем., адшиш. эффективности, корректности и общности стратегий решения.

Как один из основоположников науки исследования операций, а также разработчик первых программируемых механических вычислительных устройств, математик XIX в. Чарльз Бэббидж может также считаться одним из первых практиков искусственного интеллекта [Morrison и Morrison, 1961]. "Разностная машина" Бэббиджа являлась специали­зированным устройством для вычисления значений некоторых полиномиальных функ­ций и была предшественницей его "аналитической машины". Аналитическая машина, спроектированная, но не построенная при жизни Бэббиджа, была универсальным про­граммируемым вычислительным устройством, которое предвосхитило многие архитек­турные положения современных компьютеров.

Описывая аналитическую машину, Ада Лавлейс [Lovelace, 1961], друг Бэббиджа, его помощница и единомышленница, отмечала:

"Можно сказать, что аналитическая машина плетет алгебраические узоры подобно тому, как станок Жаккарда ткет узоры из цветов и листьев. В этом, как нам кажется, заключается куда больше оригинальности, чем в том, на что могла бы претендовать разностная машина".

Бэббиджа вдохновляло желание применить технологию его времени для освобождения людей от рутины арифметических вычислений. В этом отношении, как и в представ­лении о вычислительных машинах как механических устройствах, Бэббидж рассуждал всецело с позиций XIX века. Тем не менее его аналитическая машина также основыва­лась на многих идеях современности, таких как разделение памяти и процессора ("склад" и "мельница", в терминах Бэббиджа), концепция цифровой, а не аналоговой машины и программируемость, основанная на выполнении серий операций, закодированных на картонных перфокартах. Отличительная черта описания Ады Лавлейс и работы Бэббид­жа в целом - это отношение к "узорам" алгебраических взаимосвязей как сущностям, которые могут быть изучены, охарактеризованы, наконец, реализованы и подвергнуты механическим манипуляциям без заботы о конкретных значениях, которые проходят че­рез "мельницу" вычислительной машины. Это и есть реализация принципа "абстракции и манипуляции формой", впервые описанного Аристотелем.

Целью создания формального языка для описания мышления задавался также Джордж Буль, математик XIX столетия, чью работу необходимо упомянуть при рассмотрении истоков искусственного интеллекта [Boole, 1847, 1854]. Хотя Буль внес вклад во множество областей математики, его наиболее известным открытием стала математиче­ская формализация законов логики- свершение, сформировавшее самую сердцевину современных компьютерных наук. Роль булевой алгебры в проектировании логический цепей хорошо всем известна, однако цели самого Буля в разработке его системы по духу ближе к современному ИИ. В первой главе книги "Исследование законов мышления, на которых основываются математические теории логики и вероятностей" Буль описывает свои цели следующим образом.

Исследовать фундаментальные законы таких операций разума, какими совершается рассуждение: дать им выражение в символическом языке исчисления и на этом основании воз­двигнуть науку логики и обучать логическому методу; ...наконец, из различных элементов истины, усмотренной в этих изысканиях, составить некоторые вероятные догадки каса­тельно природы и склада человеческого ума.

Значимость работы Буля состоит в необычайной силе и простоте предложенной им системы. Три операции: "И" (обозначаемая * или л), "ИЛИ" (обозначаемая + или v) и "НЕ" (обозначаемая символом -0 составляют ядро его логического исчисления. Эти операции стали базой для последующего развития формальной логики, включая разработку современных компьютеров. Сохраняя значения этих символов практически иден­тичными соответствующим логическим операциям, Буль отмечал, что "символы логики относятся к специальному закону, к которому символы количества как таковые не имеют отношения". Этот "закон" утверждает, что для каждого элемента X алгебры Х*Х=Х (поскольку мы знаем истинность чего-либо, повторение не может изменить это знание). Это привело к ограничению булевых значений всего до двух чисел, которые удовлетво­ряют этому уравнению, - 1 и 0. Стандартные определения операций булевого умноже­ния (И) и сложения (ИЛИ) следуют из этих соображений.

Булева система не только легла в основу двоичной арифметики, но и показала, что необычайно простая формальная система может передать полную мощь логики. Это предположение и система, разработанная Булем для демонстрации этого факта, стали фундаментом для всех попыток современности формализовать логику, от работы [Whitehead и Russell, 1950], последующих работ Тьюринга и Геделя до современных систем автоматических рассуждений.

Готлоб Фреге (Frege) в своих "Основах арифметики" [Frege, 1884] создал ясный и точный язык спецификации для описания основ арифметики. С помощью этого языка Фреге формализовал многие вопросы, затронутые ранее в аристотелевской "Логике". Язык Фреге, сейчас именуемый исчислением предикатов первого порядка, служит инструментом для записи теорем и задания значений истинности, которые образуют элементы математиче­ских умозаключений и описывают аксиоматический базис "смысла" этих выражений. Предполагалось, что формальная система исчисления предикатов, которая включает сим­волы предикатов, теорию функций и квантированных переменных, станет языком для опи­сания математики и ее философских основ. Она также сыграла принципиальную роль в создании теории представления для искусственного интеллекта (см. главу 2). Исчисление предикатов первого порядка обеспечивает средства автоматизации рассуждений: язык для построения выражений, теорию, позволяющую судить об их смысле, и логически безу­пречное исчисление для вывода новых истинных выражений.

Работа Рассела и Уайтхеда особенно важна для фундаментальных принципов ИИ, поскольку заявленной ими целью было вывести из набора аксиом путем формальных опе­раций всю математику. Хотя многие математические системы строились на основе акси­ом, интересно отношение Рассела и Уайтхеда к математике как к чисто формальной сис­теме. Это означает, что аксиомы и теоремы должны рассматриваться исключительно как наборы символов: доказательства должны выводиться лишь посредством применения строго определенных правил для манипулирования такими строками. При этом исключа­ется использование интуиции или "смысла" теорем в качестве основы доказательств. Каждый шаг доказательства следует из строгого применения формальных (синтаксических) правил к аксиомам или уже выведенным теоремам, даже если в тради­ционных доказательствах этот шаг назывался "очевидным". Смысл, содержащийся в теоремах и аксиомах системы, имеет отношение только к внешнему миру и совершенно не зависит от логического вывода. Такой полностью формальный (реализуемый техни­ческими средствами) подход к математическим умозаключениям предоставил сущест­венную основу для его автоматизации в реальных вычислительных машинах. Логиче­ский синтаксис и формальные правила вывода, разработанные Расселом и Уайтхедом, лежат в основе систем автоматического доказательства теорем, рассматриваемых в главе 12, а также составляют теоретические основы искусственного интеллекта.

Альфред Тарский (Tarski) - еще один математик, чьи работы сыграли принципиальную роль в процессе формирования искусственного интеллекта. Тарский [Tarski, 1944, 1956] создал теорию ссылок (theory of reference), согласно которой пра­вильно построенные формулы (well-formed formulae) Фреге или РасселаУайтхеда опре­деленным образом ссылаются на объекты реального мира (см. главу 2). Эта концепция лежит в основе большинства теорий формальной семантики. В работе "Семантическая концепция истинности и основание семантики" Тарский описывает свою теорию ссылок и взаимосвязей между значениями истинности. Современные исследователи компьютер­ных наук связали эту теорию с языками программирования и другими компьютерными реалиями [Burstall и Darlington, 1977].

Хотя в XVIII-XIX вв. и начале XX в. формализация науки и математики создала интеллектуальные предпосылки для изучения искусственного интеллекта, он не стал жиз­неспособной научной дисциплиной до появления цифровых вычислительных машин. К концу 1940-х гг. электронные цифровые компьютеры продемонстрировали свои возмож­ности в предоставлении памяти и процессорной мощности, требуемой для интеллекту­альных программ. Стало возможным реализовать формальные системы рассуждений в машине и эмпирически испытать их достаточность для проявления разумности. Сущест­венной составляющей теории искусственного интеллекта является взгляд на цифровые компьютеры как на средство создания и проверки теорий интеллекта.

Но цифровые компьютеры - не только рабочая лошадка для испытания теорий интеллекта. Их архитектура наталкивает на специфичное представление таких теорий: интел­лект - это способ обработки информации. Например, концепция поиска как методики ре­шения задач обязана своим появлением в большей степени последовательному характеру компьютерных операций, нежели какой-либо биологической модели интеллекта. Большин­ство программ ИИ представляют знания на некотором формальном языке, а затем обраба­тывают их в соответствии с алгоритмами, следуя заложенному еще фон Нейманом принци­пу разделения данных и программы. Формальная логика возникла как важный инструмент представления для исследований ИИ, равно как теория графов играет неоценимую роль в анализе пространства, а также предоставляет основу для семантических сетей и схожих моделей. Эти методы и формализмы детально обсуждаются в последующих главах книги. Здесь они упоминаются для подчеркивания симбиотических отношений между цифровыми компьютерами и теоретическими основами искусственного интеллекта.

Мы часто забываем, что инструменты, которые мы создаем для своих целей, влияют своим устройством и ограничениями на формирование наших представлений о мире. Такое казалось бы стесняющее наш кругозор взаимодействие является важным аспектом развития человеческого знания: инструмент (а научные теории, в конечном счете, тоже инструменты) создается для решения конкретной проблемы. По мере применения и совершенствования инструмент подсказывает другие способы его использования, которые приводят к новым вопросам и, в конце концов, разработке новых инструментов.

1.1.3. Тест Тьюринга

Одна из первых работ, посвященных вопросу о машинном разуме в отношении современных цифровых компьютеров, "Вычислительные машины и интеллект" была напи­сана в 1950 г. британским математиком Аланом Тьюрингом и опубликована в журнале "Mind" [Turing, 1950]. Она не теряет актуальности, как по части аргументов против возможности создания разумной вычислительной машины, так и по части ответов на них. Тьюринг, известный в основном благодаря своим трудам по теории вычислимости, рас­смотрел вопрос о том, можно ли заставить машину действительно думать. Отмечая, что фундаментальная неопределенность в самом вопросе (что такое "думать"? что такое "машина"?) исключает возможность рационального ответа, он предложил заменить вопрос об интеллекте более четко определенным эмпирическим тестом.

Рис. 1.1. Тест Тьюринга

Тест Тьюринга сравнивает способности предположительно разумной машины со способностями человека- лучшим и единственным стандартом разумного поведения. В тесте, который Тьюринг назвал "имитационной игрой", машину и ее человеческого соперника (следователя) помещают в разные комнаты, отделенные от комнаты, в которой находится "имитатор" (рис. 1.1). Следователь не должен видеть их или говорить с ними напрямую - он сообщается с ними исключительно с помощью текстового устройства, например, компьютерного терминала. Следователь должен отличить компьютер от человека исключительно на основе их ответов на вопросы, задаваемые через это устройство. Если же следователь не может отличить машину от человека, тогда, утверждает Тью­ринг, машину можно считать разумной.

Изолируя следователя от машины и другого человека, тест исключает предвзятое отношение - на решение следователя не будет влиять вид машины или ее электронный голос. Следователь волен задавать любые вопросы, не важно, насколько окольные или косвенные, пытаясь раскрыть "личность" компьютера. Например, следователь может попросить обоих подопытных осуществить довольно сложный арифметический подсчет, предполагая, что компьютер скорее даст верный ответ, чем человек. Чтобы обмануть эту стратегию, компьютер должен знать, когда ему следует выдать ошибочное число, чтобы показаться человеком. Чтобы обнаружить человеческое поведение на основе эмоциональной природы, следователь может попросить обоих субъектов высказаться по поводу стихотворения или картины. Компьютер в таком случае должен знать об эмоциональном складе человеческих существ.

Этот тест имеет следующие важные особенности.

1. Дает объективное понятие об интеллекте, т.е. реакции заведомо разумного существа на определенный набор вопросов. Таким образом, вводится стандарт для опре­деления интеллекта, который предотвращает неминуемые дебаты об "истинности" его природы.

2. Препятствует заведению нас в тупик сбивающими с толку и пока безответными вопросами, такими как: должен ли компьютер использовать какие-то конкретные внутренние

процессы, или же должна ли машина по-настоящему осознавать свои действия.

3. Исключает предвзятость в пользу живых существ, заставляя опрашивающего сфокусироваться исключительно на содержании ответов на вопросы.

Благодаря этим преимуществам, тест Тьюринга представляет собой хорошую основу для многих схем, которые используются на практике для испытания современных интеллектуальных программ. Программа, потенциально достигшая разумности в какой-либо предметной области, может быть испытана сравнением ее способностей по решению данного множества проблем со способностями человеческого эксперта. Этот метод ис­пытания всего лишь вариация на тему теста Тьюринга: группу людей просят сравнить "вслепую" ответы компьютера и человека. Как видим, эта методика стала неотъемлемым инструментом как при разработке, так и при проверке современных экспертных систем.

Тест Тьюринга, несмотря на свою интуитивную притягательность, уязвим для многих оправданных нападок. Одно из наиболее слабых мест - пристрастие в пользу чисто символь­ных задач. Тест не затрагивает способностей, требующих навыков перцепции или ловкости рук, хотя подобные аспекты являются важными составляющими человеческого интеллекта. Иногда же, напротив, тест Тьюринга обвиняют в попытках втиснуть машинный интеллект в форму интеллекта человеческого. Быть может, машинный интеллект просто настолько отли­чается от человеческого, что проверять его человеческими критериями - фундаментальная ошибка? Нужна ли нам, в самом деле, машина, которая бы решала математические задачи так же медленно и неточно, как человек? Не должна ли разумная машина извлекать выгоду из своих преимуществ, таких как большая, быстрая, надежная память, и не пытаться сымитиро­вать человеческое познание? На самом деле, многие современные практики ИИ (например [Ford и Hayes, 1995]) говорят, что разработка систем, которые бы выдерживали всесторонний тест Тьюринга, - это ошибка, отвлекающая нас от более важных, насущных задач: разработ­ки универсальных теорий, объясняющих механизмы интеллекта людей и машин и примене­ние этих теорий к проектированию инструментов для решения конкретных практических проблем. Все же тест Тьюринга представляется нам важной составляющей в тестировании и "аттестации" современных интеллектуальных программ.

Тьюринг также затронул проблему осуществимости построения интеллектуальной программы на базе цифрового компьютера. Размышляя в терминах конкретной вычислительной модели (электронной цифровой машины с дискретными состояниями), он сде­лал несколько хорошо обоснованных предположений касательно ее объема памяти, сложности программы и основных принципов проектирования такой системы. Наконец, он рассмотрел множество моральных, философских и научных возражений возможности создания такой программы средствами современной технологии. Отсылаем читателя к статье Тьюринга за познавательным и все еще актуальным изложением сути споров о возможностях интеллектуальных машин.

Два возражения, приведенных Тьюрингом, стоит рассмотреть детально. "Возражение леди Лавлейс", впервые сформулированное Адой Лавлейс, сводится к тому, что компьютеры могут делать лишь то, что им укажут, и, следовательно, не могут выполнять ориги­нальные (читай: разумные) действия. Однако экспертные системы (см. подраздел 1.2.3 и главу 7), особенно в области диагностики, могут формулировать выводы, которые не были заложены в них разработчиками. Многие исследователи считают, что творческие способности можно реализовать программно.

Другое возражение, "аргумент естественности поведения", связано с невозможностью создания набора правил, которые бы говорили индивидууму, что в точности нужно делать при каждом возможном стечении обстоятельств. Действительно, гибкость, позволяющая биологическому разуму реагировать практически на бесконечное количество различных ситуаций приемлемым, если даже и не оптимальным образом - отличитель­ная черта разумного поведения. Справедливо замечание, что управляющая логика, ис­пользуемая в большинстве традиционных компьютерных программ, не проявляет вели­кой гибкости или силы воображения, но неверно, что все программы должны писаться подобным образом. Большая часть работ в сфере ИИ за последние 25 лет была направле­на на разработку таких языков программирования и моделей, призванных устранить упомянутый недостаток, как продукционные системы, объектные системы, сетевые представления и другие модели, обсуждаемые в этой книге.

Современные программы ИИ обычно состоят из набора модульных компонентов, или правил поведения, которые не выполняются в жестко заданном порядке, а активизируются по мере надобности в зависимости от структуры конкретной задачи. Системы обнаружения совпадений позволяют применять общие правила к целому диапазону задач. Эти системы необычайно гибки, что позволяет относительно маленьким программам проявлять разнообразное поведение в широких пределах, реагируя на различные задачи и ситуации.

Можно ли довести гибкость таких программ до уровня живых организмов, все еще предмет жарких споров. Нобелевский лауреат Герберт Саймон сказал, что большей частью своеобразие и изменчивость поведения, присущие живым существам, возникли скорее благодаря сложности их окружающей среды, чем благодаря сложности их внутренних "программ". В [Simon, 1981] Саймон описывает муравья, петляющего по неровной, пересеченной поверхности. Хотя путь муравья кажется довольно сложным, Саймон утверждает, что цель муравья очень проста: вернуться как можно скорее в колонию. Изгибы и повороты его пути вызваны встречаемыми препятствиями. Саймон заключает, что:

"Муравей, рассматриваемый в качестве проявляющей разумное поведение системы, на самом деле очень прост. Кажущаяся сложность его поведения в большей степени отражает сложность среды, в которой он существует".

Эта идея, если удастся доказать применимость ее к организмам с более сложным интеллектом, составит сильный аргумент в пользу простоты, а следовательно, постижимо-сти интеллектуальных систем. Любопытно, что, применив эту идею к человеку, мы при­дем к выводу об огромной значимости культуры в формировании интеллекта. Интеллект, похоже, не взращивается во тьме, как грибы. Для его развития необходимо взаимодейст­вие с достаточно богатой окружающей средой. Культура так же необходима для созда­ния человеческих существ, как и человеческие существа для создания культуры. Эта мысль не умаляет могущества наших интеллектов, но подчеркивает удивительное богат­ство и связь различных культур, сформировавших жизни отдельных людей. Фактически на идее о том, что интеллект возникает из взаимодействий индивидуальных элементов общества, основывается подход к ИИ, представленный в следующем разделе.

1.1.4. Биологические и социальные модели интеллекта: агенты

Итак, мы рассмотрели математический подход к задаче построения интеллектуальных устройств, подразумевающий, что основой самого интеллекта являются логические умозаключения, а также основанный на "объективности" самих логических рассуждений. Этот взгляд на знание, язык и мышление отражает традицию рационализма западной философии, развитую в работах Платона, Галилея, Декарта, Лейбница и многих других философов, упомянутых ранее в этой главе. Также он отражает неявные предположения теста Тьюринга, осо­бенно его взгляд на символьные рассуждения как критерий интеллекта, и веру, что "лобовое" сравнение с человеческим поведением пригодно для подтверждения интеллекта машины.

Опора на логику как способ представления языка и логические выводы как основной механизм разумных рассуждений настолько доминирует в западной философии, что их "истинность" часто кажется очевидной и неоспоримой. Поэтому не удивительно, что подходы, основанные на этих предположениях, главенствуют в науке искусственного интеллекта от ее зарождения до сегодняшнего дня.

Во второй половине XX века устои рационализма пошатнулись. Философский релятивизм в разных своих формах задавался вопросом об объективном базисе языка, науки, общества и самой мысли. Философия поздних работ Виттгенштейна [Wittgenstein, 1953] вынудила пересмотреть понятие смысла в естественных и формальных языках. Труды Геделя и Тьюринга подвергли сомнению основания самой математики. Постмодернист­ские идеи изменили наши взгляды на значимость и ценность в художественном и соци­альном контекстах. Искусственный интеллект также стал жертвой подобной критики. Действительно, трудности, которые встали на пути ИИ к его целям, часто рассматрива­ются как свидетельства ошибочности рационалистического взгляда [Winograd и Floras, 1986], [Lakoff и Johnson, 1999].

Две философские традиции- Виттгенштейна с Хассерлом [Husserl, 1970, 1972] и Хайдеггера [Heidegger, 1962] являются основополагающими в этом пересмотре западной философии. В своей работе Виптенштейн затронул многие допущения рационалистской традиции, включая основания языка, науки и знания. Естественный язык был главным предметом анализа Виттгенштейна. Этот философ опровергает мнение, что смысл человеческого языка можно вывести из каких-либо объективных основ.

В трудах Виттгенштейна, как и в теории речи (speech act theory), развитой Остином [Austin, 1962] и его последователями [Grice, 1975], [Searle, 1969], значение любого вы­сказывания зависит от человеческого, культурного контекста. Значение слова "сиденье", к примеру, зависит от наличия физического объекта, который можно применить для сидения на нем, а также культурных соглашений об использовании сидений. Когда, напри­мер, большой плоский камень можно назвать сиденьем? Почему нелепо так называть ко­ролевский трон? Какая разница между человеческим пониманием "сиденья" и понима­нием кота или собаки, которые в человеческом смысле сидеть не могут? Атакуя основы смысла, Витггенштейн утверждал, что мы должны рассматривать использование языка посредством выбора и действий в изменчивом культурном контексте. Виттгенштейн да­же распространил свою критику на науку и математику, утверждая, что они в такой же мере общественные конструкции, как и языки.

Хассерл, отец феноменологии, рассматривал абстракции как объекты, укоренившиеся в конкретном "жизненном мире": рационалистская модель отодвигает конкретный поддерживающий ее мир на второй план. Для Хассерла, как и для его ученика Хайдеггера и их сторонника Мерло-Понти [Merleau-Ponty, 1962], интеллект заключался не в знании истины, а в знании, как вести себя в постоянно меняющемся и развивающемся мире. Та­ким образом, в экзистенциалистско-феноменологической традиции интеллект рассмат­ривается скорее с точки зрения выживания в мире, чем как набор логических утвержде­ний о мире (в сочетании со схемой вывода).

Многие авторы, например Дрейфусы [Dreyfus и Dreyfus, 1985], а также Виноград и Флорес [Winograd и Flores, 1986], опирались на работы Виттгенштейна, Хассерла и Хайдеггера в своей критике ИИ. Хотя многие практики ИИ продолжают разработку рациональнологической программной системы (также известной как GOFAI, или Good Old Fashioned AI - старый-добрый ИИ), все возрастающее число исследователей этой об­ласти, приняв во внимание эту критику, строят новые занимательные модели интеллекта. Придерживаясь идей Виттгенштейна об антропологических и культурных корнях знания, они обратились к социальным моделям интеллектуального поведения, иногда называе­мым ситуативными.

Пример альтернативы логическому подходу - исследования в области коннекционистского обучения (см. подраздел 1.2.9 и главу 10), в которых логике и работе рациональ­ного разума уделяется мало внимания, но сделана попытка достичь разумности посред­ством моделирования архитектуры реального мозга. В нейронных моделях интеллекта упор делается на способность мозга адаптироваться к миру, в котором он существует, с помощью изменений связей между отдельными нейронами. Знание в таких системах не выражается явными логическими конструкциями, а представляется в неявной форме, как свойство конфигураций таких взаимосвязей.

Иная модель интеллекта, заимствованная из биологии, навеяна процессами адаптации видов к окружающей среде. В разработках искусственной жизни и генетических алгоритмов (см. главу 11) принципы биологической эволюции применяются для решения сложных проблем. Такие программы не решают задачи посредством логических рассуждений. Они порождают популяции соревнующихся между собой решенийкандидатов и заставляют их совершенствоваться с помощью процессов, имитирующих биологическую эволюцию: не­удачные кандидаты на решения отмирают, в то время как подающие надежды выживают и воспроизводятся путем создания новых решений из частей "успешных" родителей.

Социальные системы дают еще одно модельное представление интеллекта с помощью глобального поведения, которое позволяет им решать проблемы, которые бы не удалось решить отдельным их членам. Например, хотя ни один индивидуум не в состоянии точно предсказать количество буханок хлеба, которое потребит в заданный день Нью-Йорк, ситема всех нью-йоркских пекарен отлично справляется со снабжением города хлебом и де­лает это с минимальными затратами. Рынок акций отлично устанавливает относительную ценность сотен компаний, хотя каждый отдельный инвестор имеет лишь ограниченное зна­ние о нескольких компаниях. Можно привести также пример из современной науки. От­дельные исследователи из университетской, производственной или правительственной сре­ды сосредоточиваются на решении общих проблем. С помощью конференций и журналов, служащих основным средством сообщения, важные для общества в целом проблемы рас­сматриваются и решаются отдельными агентами, работающими отчасти независимо, хотя прогресс во многих случаях также направляется субсидиями.

Эти примеры имеют два общих аспекта. Во-первых, корни интеллекта связаны с культурой и обществом, а следовательно, разум является эмерджентным (emergent). Вовторых, разумное поведение формируется совместными действиями большого числа очень простых взаимодействующих полуавтономных индивидуумов, или агентов. Являются агенты нервными клетками, индивидуальными особями биологического вида или же отдельными личностями в обществе, их взаимодействие создает интеллект.

Рассмотрим основные аспекты агентских и эмерджентных взглядов на интеллект.

1. Агенты автономны или полуавтономны. Следовательно, у каждого агента есть определенный круг подзадач, причем он располагает малым знанием (или вовсе не располагает знанием) о том, что делают другие агенты или как они это делают. Каждый агент выполняет свою независимую часть решения проблемы и либо выдает собственно результат (что-то совершает) либо сообщает результат другим агентам.

Агенты являются "внедренными". Каждый агент чувствителен к своей окружаю­ щей среде и (обычно) не знает о состоянии полной области существования агентов.

Таким образом, знание агента ограничено его текущими задачами: "файл, который я обрабатываю" или "стенка рядом со мной", агент не владеет информацией обо всех файлах одновременно или физических границах предметной области.

Агенты взаимодействуют. Они формируют коллектив индивидуумов, которые со­ трудничают над решением задачи. В этом смысле их можно рассматривать как "сообщество". Как и в человеческом обществе, знания, умения и обязанности рас­пределяются среди отдельных индивидуумов.

Сообщество агентов структурировано. В большинстве агентно-ориентированных методов решения проблем каждый индивидуум, работая со своим собственным ок­ружением и навыками, координирует общий ход решения с другими агентами. Та­ким образом, окончательное решение можно назвать не только коллективным, но и кооперативным. Наконец, явление интеллекта в этой среде является "эмерджентным". Хотя инди­видуальные агенты обладают некоторыми совокупностями навыков и обязанно­стей, общий, совместный, результат сообщества агентов следует рассматривать как нечто большее, чем сумма отдельных вкладов. Интеллект рассматривается как яв­ление, возникающее в сообществе, а не как свойство отдельного агента.

Основываясь на этих наблюдениях, определим агента как элемент сообщества, который может воспринимать (часто ограниченно) аспекты своего окружения и взаимодейст­вовать с этой окружающей средой либо непосредственно, либо путем сотрудничества с другими агентами. Большинство интеллектуальных методов решений требуют наличия разнообразных агентов. Это могут быть простые агенты-механизмы, задача которых - собирать и передавать информацию; агенты-координаторы, которые обеспечивают взаи­модействие между другими агентами; агенты поиска, которые перебирают пакеты ин­формации и возвращают какие-то избранные частицы; обучающие агенты, которые на основе полученной информации формируют обобщающие концепции; и агенты, прини­мающие решения, которые раздают задания и делают выводы на основе ограниченной информации и обработки. Возвращаясь к старому определению интеллекта, агенты мож­но рассматривать как механизмы, обеспечивающие выработку решения в условиях огра­ниченных ресурсов и процессорных мощностей.

Для разработки и построения таких сообществ необходимы следующие компоненты.

Структуры для представления информации.

Стратегии поиска в пространстве альтернативных решений.

Архитектура, обеспечивающая взаимодействие агентов.

В последующих главах, в частности в разделе 6.4, приводятся рекомендации для создания средств поддержки таких агентских сообществ.

Это предварительное рассмотрение возможностей теории автоматизированного интеллекта ни в коей мере не ставит себе целью преувеличить достижения, полученные до настоящего времени или преуменьшить работу, которую еще предстоит проделать. В этой книге постоянно подчеркивается, как важно четко представлять себе границы наших текущих возможностей и сегодняшних свершений. Например, очень ограниченные успехи сделаны в построении программ, которые могут "учиться" в интересном для че­ловека смысле. Также очень скромны достижения в моделировании семантической сложности естественных языков, к примеру, английского. Даже в фундаментальных во­просах, таких как организация знаний или управление сложностью и корректностью большой компьютерной программы (например, большой базы знаний), требуются значи­тельные дальнейшие исследования. Основанные на знаниях системы, хотя и достигли коммерческого успеха, имеют все еще много ограничений в качестве и общности своих выводов. В частности, они не способны рассуждать на основе "здравого смысла" (commonsense reasoning) или же проявлять знания о простейших свойствах реального мира, например, о том, как изменяются со временем разные вещи.

Но следует сохранять трезвый взгляд на вещи. Обозреть достижения искусственного интеллекта легче, честно представляя предстоящую работу. В следующем разделе мы рассмотрим некоторые сферы исследований и разработок ИИ.

1.2. Обзор прикладных областей искусственного интеллекта

Аналитическая машина не претендует на создание чего-либо нового. Ее способности не превосходят наших знаний о том, как приказать ей что-либо исполнить...

?- Ада Байрон (Ada Byron), графиня Лавлейс

Прости, Дейв, я не могу позволить тебе это сделать... - HAL 9000, компьютер из фильма 2001: Космическая одиссея

Вернемся к заявленной цели дать определение искусственному интеллекту путем обозрения стремлений и достижений исследователей этой области. Две наиболее фундаментальные проблемы, занимающие разработчиков ИИ, - это представление знаний (knowledge representation) и поиск (search). Первая относится к проблеме получения новых знаний с помощью формального языка, подходящего для компьютерных манипуляций, всего спектра знаний, требуемых для формирования разумно­го поведения. В главе 2 рассматривается исчисление предикатов как язык описания свойств и отношений между объектами предметной области. Здесь для решения нужны скорее рассуждения качественного характера, чем арифметические расчеты. В главах 6-8 обсуждаются языки, разработанные для отражения неопределенностей и структурной сложности таких областей, как рассуждения на основе "здравого смысла" и понимание естественных языков. В главах 14 и 15 демонстрируется ис­пользование языков LISP и PROLOG для реализаций этих представлений.

Поиск - это метод решения проблемы, в котором систематически просматривается пространство состояний задачи (problem states), т.е. альтернативных стадий ее решения. Примеры состояний задачи: различные размещения фигур на доске в игре или же промежуточные шаги логического обоснования. Затем в этом пространстве альтернативных решений производится перебор в поисках окончательного ответа. Ньюэлл и Саймон [Newell и Simon, 1976] утверждают, что эта техника лежит в основе человеческого спо­соба решения различных задач. Действительно, когда игрок в шахматы анализирует по­следствия различных ходов или врач обдумывает различные альтернативные диагнозы, они производят перебор среди альтернатив. Результаты применения этой модели и средства ее реализации обсуждаются в главах 3,4,5 и 16.

Как и большая часть наук, ИИ разбивается на множество поддисциплин, которые, разделяя основной подход к решению проблем, нашли себе различные применения. Очертим в этом разделе некоторые из основных сфер применения этих отраслей и их вклад в искусственный интеллект вообще.

1.2.1. Ведение игр

Многие ранние исследования в области поиска в пространстве состояний совершались на основе таких распространенных настольных игр, как шашки, шахматы и пятнаш­ки. Вдобавок к свойственному им "интеллектуальному" характеру такие игры имеют не­которые свойства, делающие их идеальным объектом для экспериментов. Большинство игр ведутся с использованием четко определенного набора правил: это позволяет легко строить пространство поиска и избавляет исследователя от неясности и путаницы, при­сущих менее структурированным проблемам. Позиции фигур легко представимы в ком­пьютерной программе, они не требуют создания сложных формализмов, необходимых для передачи семантических тонкостей более сложных предметных областей. Тестиро­вание игровых программ не порождает никаких финансовых или этических проблем. Поиск в пространстве состояний - принцип, лежащий в основе большинства исследова­ний в области ведения игр, - представлен в главах 3 и 4.

Игры могут порождать необычайно большие пространства состояний. Для поиска в них требуются мощные методики, определяющие, какие альтернативы следует рассматривать. Такие методики называются эвристиками и составляют значительную область исследований ИИ. Эвристика- стратегия полезная, но потенциально способная упус­тить правильное решение. Примером эвристики может быть рекомендация проверять, включен ли прибор в розетку, прежде чем делать предположения о его поломке, или вы­полнять рокировку в шахматной игре, чтобы попытаться уберечь короля от шаха. Боль­шая часть того, что мы называем разумностью, по-видимому, опирается на эвристики, которые люди используют в решении задач.

Поскольку у большинства из нас есть опыт в этих простых играх, можно попробовать разработать свои эвристики и испытать их эффективность. Для этого нам не нужны консультации экспертов в каких-то темных для непосвященных областях, вроде медицины или математики. Поэтому игры являются хорошей основой для изучения эвристического поиска. Глава 4 рассказывает об эвристиках на примере этих простых игр; в главе 7 их использование распространяется на построение экспертных систем. Программы ведения игр, несмотря на их простоту, ставят перед исследователями новые вопросы, включая вариант, при котором ходы противника невозможно детерминировано предугадать (см. главу 8). Наличие противника усложняет структуру программы, добавляя в нее эле­мент непредсказуемости и потребность уделять внимание психологическим и тактиче­ским факторам игровой стратегии.

1.2.2. Автоматические рассуждения и доказательство теорем

Можно сказать, что автоматическое доказательство теорем - одна из старейших частей искусственного интеллекта, корни которой уходят к системам Logic Theorist (логический теоретик) Ньюэлла и Саймона [Newell и Simon, 1963a] и General Problem Solver (универсальный решатель задач) [Newell и Simon, 19636] и далее, к попыткам Рассела и Уайтхеда построить всю математику на основе формальных выводов теорем из начальных аксиом. В любом случае эта ветвь принесла наиболее богатые плоды. Благодаря исследованиям в области доказательства теорем были формализованы алгоритмы поиска и разработаны языки формальных представлений, такие как исчисление предика­тов (см. главу 2) и логический язык программирования PROLOG (глава 14).

Привлекательность автоматического доказательства теорем основана на строгости и общности логики. В формальной системе логика располагает к автоматизации. Разнообразные проблемы можно попытаться решить, представив описание задачи и существенную относя­щуюся к ней информацию в виде логических аксиом и рассматривая различные случаи задачи как теоремы, которые нужно доказать. Этот принцип лежит в основе автоматического доказа­тельства теорем и систем математических обоснований (см. главу 12).

К сожалению, в ранних пробах написать программу для автоматического доказательства не удалось разработать систему, которая бы единообразно решала сложные задачи. Это было обусловлено способностью любой относительно сложной логической системы сгенерировать бесконечное количество доказуемых теорем: без мощных методик (эвристик), которые бы направляли поиск, программы доказывали большие количества не относящихся к делу теорем, пока не натыкались на нужную. Из-за этой неэффективности многие утверждают, что чисто формальные синтаксические методы управления поиском в принципе не способны справить­ся с такими большими пространствами, и единственная альтернатива этому - положиться на неформальные, специально подобранные к случаю (лат. "ad hoc") стратегии, как это, похоже, делают люди. Это один из подходов, лежащих в основе экспертных систем (см. главу 7), и он оказался достаточно плодотворным.

Все же привлекательность рассуждений, основанных на формальной логике, слишком сильна, чтобы ее игнорировать. Многие важные проблемы, такие как проектирование и проверка логических цепей, проверка корректности компьютерных программ и управление сложными системами, по-видимому, поддаются такому подходу. Вдобавок исследователям автоматического доказательства удалось разработать мощные эвристики, основанные на оценке синтаксической формы логического выражения, которые в результате понижают сложность пространства поиска, не прибегая к используемым людьми методам "ad hoc".

Еще одной причиной неувядающего интереса к автоматическому доказательству теорем является понимание, что системе не обязательно решать особо сложные проблемы без человеческого вмешательства. Многие современные программы доказательств работают как ум­ные помощники, предоставляя людям разбивать задачи на подзадачи и продумывать эвристи­ки для перебора в пространстве возможных обоснований. Программа для автоматического доказательства затем решает более простые задачи доказательства лемм, проверки менее су­щественных предположений и дополняет формальные аспекты доказательства, очерченного человеком [Воуег и Moore, 1979], [Bundy, 1988], [Veroff, 1997].

1.2.3. Экспертные системы

Одним из главных достижений ранних исследований по ИИ стало осознание важности специфичного для предметной области (domain-specific) знания. Врач, к примеру, хорошо диагностирует болезни не потому, что он располагает некими врожденными общими способно­стями к решению задач, а потому, что многое знает о медицине. Точно так же геолог эффек­тивно находит залежей ископаемых, потому что он способен применить богатые теоретиче­ские и практические знания о геологии к текущей проблеме. Экспертное знание- это сочетание теоретического понимания проблемы и набора эвристических правил для ее решения, которые, как показывает опыт, эффективны в данной предметной области. Экспертные системы создаются с помощью заимствования знаний у человеческого эксперта и кодирова­ния их в форму, которую компьютер может применить к аналогичным проблемам.

Стратегии экспертных систем основаны на знаниях человека-эксперта. Хотя многие программы пишугся самими носителями знаний о предметной области, большинство экспертных систем являются плодом сотрудничества между таким экспертом, как врач, химик, геолог или инженер, и независимым специалистом по ИИ. Эксперт предоставляет необходимые знания о предметной области, описывая свои методы принятия решений и демонстрируя эти навыки на тщательно отобранных примерах. Специалист по ИИ, или инженер по знаниям (knowledge engineer), как часто называют разработчиков экспертных систем, отвечает за реализацию это­го знания в программе, которая должна работать эффективно и внешне разумно. Экспертные способности программы проверяют, давая ей решать пробные задачи. Эксперт подвергает критике поведение программы, и в ее базу знаний вносятся необходимые изменения. Процесс повторяется, пока программа не достигнет требуемого уровня работоспособности.

Одной из первых систем, использовавших специфичные для предметной области знания, была система DENDRAL, разработанная в Стэнфорде в конце 1960-х [Lindsay и др., 1980]. DENDRAL была задумана для определения строения органических молекул из химических формул и спектрографических данных о химических связях в молекулах. Поскольку органические молекулы обычно очень велики, число возможных структур этих молекул также весь­ма внушительно. DENDRAL решает проблему большого пространства перебора, применяя эвристические знания экспертов-химиков к решению задачи определения структуры. Методы DENDRAL оказались весьма работоспособными. Она методично находит правильное строе­ние из миллионов возможных всего за несколько попыток. Данный подход оказался столь эффективным, что "потомки" этой системы до сих пор используются в химических и фарма­цевтических лабораториях по всему миру.

Программа DENDRAL одной из первых использовала специфичное знание для достижения уровня эксперта в решении задач, однако методика современных экспертных систем связана с другой программой- MYCIN [Buchanan и Shortliffe, 1984]. В ней использовались знания экспертов медицины для диагностики и лечения спинального менингита и бактериальных инфекций крови.

Программа MYCIN, разработанная в Стэнфорде в середине 1970-х, одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Она выводит ясные и логичные пояснения своих рассуждений, используя структуру управ­ляющей логики, соответствующую специфике предметной области, и критерии для надежной оценки своей работы. Многие методики разработки экспертных систем, использующиеся се­годня, были впервые разработаны в рамках проекта MYCIN (см. главу 7).

К числу других классических экспертных систем относится программа PROSPECTOR, определяющая предполагаемые рудные месторождения и их типы, основываясь на геологических данных о местности [Dudanflp., 1979a, 19796]; программа INTERNIST, применяемая для диагностики в сфере медицины внутренних органов; про­грамма Dipmeter Advisor, интерпретирующая протоколы бурения нефтяных скважин [Smith и Baker, 1983]; и XCON, используемая для настройки компьютеров VAX. Про­грамма XCON была разработана в 1981 г., и одно время все машины VAX, распростра­няемые компанией Digital Equipment, настраивались этой программой. Многочисленные экспертные системы решают в настоящее время задачи в таких областях, как медицина, образование, бизнес, дизайн и научные исследования [Waterman, 1986], [Durkin, 1994].

Интересно отметить, что большинство экспертных систем были написаны для специализированных предметных областей. Эти области довольно хорошо изучены и распо­лагают четко определенными стратегиями принятия решений. Проблемы, определенные на нечеткой основе "здравого смысла", подобными средствами решить сложнее. Не­смотря на воодушевляющие перспективы экспертных систем, было бы ошибкой пере­оценивать возможности этой технологии. Основные проблемы перечислены ниже.
  1   2   3   4   5



Скачать файл (517.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru