Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Теория переходных процессов - файл per_proc2.doc


Загрузка...
Лекции - Теория переходных процессов
скачать (841.8 kb.)

Доступные файлы (2):

per_proc1.doc1336kb.03.01.2006 15:10скачать
per_proc2.doc2968kb.03.01.2006 15:11скачать

per_proc2.doc

1   2   3   4   5   6
Реклама MarketGid:
Загрузка...
^

7. СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ АСИНХРОННОГО ДВИГАТЕЛЯ



В промышленности и сельском хозяйстве основными потребителями электроэнергии являются асинхронные двигатели (60-70%), синхронные двигатели составляют 10%, осветительная нагрузка 20-30%. В связи с этим, представляет интерес исследование статической устойчивости асинхронных двигателей в нормальном режиме работы энергосистемы при малых возмущениях, т.к. если группа асинхронных двигателей имеет мощность, соизмеримую с мощностью источника питания, то в этом случае их режим работы может оказать существенное влияние на устойчивость энергосистемы в целом.

Снижение напряжения в питающей сети влечет за собой увеличение токов статора и ротора асинхронных двигателей (при неизменной нагрузке на валу двигателя), что обуславливает дальнейшее снижение напряжения и возникновение резкого снижения напряжения в сети, т.е. “лавины напряжения”. При рассмотрении статической механической характеристики, у асинхронного двигателя имеется только одна область устойчивой работы - это область, расположенная на восходящей части характеристики . Область между критическим скольжением и скольжением, равным 1, является неустойчивой (рис. 7.1).



Рис. 7.1. Характеристика асинхронного двигателя при различных значениях питающего напряжения
В нормальных условиях двигатель работает на устойчивой части своей характеристики при скольжении меньше критического. Однако при снижении напряжения или увеличении механического вращающего момента двигатель может оказаться в критическом режиме (точки , на рис. 7.1). При дальнейшем снижении напряжения точка, характеризующая режим, перейдет на спадающую часть характеристики, двигатель будет тормозиться, ток и реактивная мощность будут резко расти, а затем двигатель остановится - “опрокинется” (точки , на рис. 7.1).
Статическая устойчивость асинхронных двигателей

Под статической устойчивостью электрической машины понимается ее способность возвращаться к установившемуся режиму после малых возмущений. Причинами, вызывающими нарушение статической устойчивости, могут быть: значительное увеличение внешнего сопротивления (отключение части питающих линий) или мощности приводного механизма, а также снижение напряжения в узле нагрузки. Обычно запас по статической устойчивости нагрузки оценивается величиной допустимого снижения напряжения в точке питания.

Значения напряжения на зажимах двигателей и независимой от режима работы двигателей э.д.с. источника питания называются критическими, если они соответствуют пределу статической устойчивости. Значения и обычно определяются при номинальной частоте.

,

(7.1)

,

(7.2)


где - номинальный коэффициент мощности двигателя,

,

- внешнее сопротивление двигателя,

при номинальном скольжении




(7.3)

где - кратность максимального момента двигателя,

, - определяются по паспортным данным двигателя.
В формулах (7.1) - (7.3) и во всех последующих все входящие величины подставляются в относительных единицах (о.е.).

Нарушение статической устойчивости двигателя можно пояснить, рассматривая механические характеристики приводного механизма (кривая 1 на рис. 7.2) и двигателя, определенные при различных значениях напряжения. Механические характеристики асинхронного двигателя при номинальном и критическом напряжениях представлены кривыми 2 и 3 на рис. 7.2. Кривая 1 характеризует приводной механизм.

При напряжении рабочей точкой двигателя является точка А, скольжение при этом равно номинальному. При напряжении наступает критический режим (точка В) и двигатель работает со скольжением, равным критическому.

При напряжении происходит нарушение устойчивости при скольжении несколько большем, чем критическое (точка С, кривая 4). Критический режим характеризуется критериями и .

Статическая устойчивость асинхронного двигателя обычно определяется по следующим критериям:





(7.4);




(7.5)






Рис. 7.2. Механические характеристики асинхронного двигателя и приводного механизма
При этом коэффициент запаса статической устойчивости может быть определен по выражениям:


,


(7.6)

,


(7.7)

,


(7.8)


В выражении (7.7) максимальная мощность берется по асинхронной характеристике согласно выражениям:





(7.9) либо




(7.10)


где - определяется как номинальная мощность двигателя.
Влияние напряжения и коэффициента загрузки двигателя на потребляемую им реактивную мощность и запас статической устойчивости

Реактивная мощность, потребляемая асинхронным двигателем, определяется двумя составляющими: - реактивной мощности намагничивания и - реактивной мощности рассеяния:





(7.11)


Реактивная мощность намагничивания зависит от величины напряжения:
,
т.к. , то принимаем:



(7.12)


где ,

- фактическое напряжение на шинах двигателя,

.
Реактивная мощность рассеяния зависит как от величины напряжения сети, так и от коэффициента загрузки двигателя и определяется по выражению:


,

(7.13)


где - приведенный ток ротора.



где , .

При номинальном режиме реактивная мощность двигателя составит:

С учетом изменения напряжения и величины загрузки двигателя, потребляемая реактивная мощность будет равна:






(7.14)


При критическом режиме величина потребляемой реактивной мощности равна:

Отношение реактивных мощностей






(7.15)



При помощи выражения (7.14) можно определить изменение потребления реактивной мощности двигателя при изменении нагрузки на валу двигателя и напряжения сети.

Следует отметить, что увеличение реактивной мощности вызывает увеличение потерь активной мощности и потерь энергии в двигателе и сети.


^ 7.1 Рабочие характеристики асинхронного двигателя
Под рабочими ха­рактеристиками асинхронного двигателя мы понимаем:



Кроме того, к важным показателям относится коэффициент перегрузочной способности , а для короткозамкнутых двигате­лей—также кратности пускового тока и пускового момента.

^ А. Скорость вращения двигателя





(7.16)




Таким образом, скольжение асинхронного двигателя численно равно отношению потерь в обмотке ротора к развиваемой дви­гателем электромагнитной мощности .

При холостом ходе потери , малы по сравнению с мощностью ; поэтому здесь и . По мере увеличе­ния нагрузки отношение (7.16) растет, но из соображений высо­кого к. п. д. двигателя оно ограничено весьма узкими пределами. Обычно при номинальной нагрузке =1,5—5%. Меньшая цифра относится к двигателям большей мощности, большая - к двигателям малой мощности, порядка 3—10 кВт. Зависимость представляет собой кривую, весьма слабо наклоненную к оси абсцисс (рис. 7.3). Мы видим, что асинхрон­ный двигатель имеет скоростную характеристику типа характе­ристики двигателя постоянного тока параллельного возбуждения.



Рисунок 7.3 - Рабочие характеристики короткозамкнутого асинхронного двигателя мощностью 50 кВт, 220/380 В, 1470 об/мин, построенные в относитель­ных единицах

^ Б. Зависимость . При установившемся режиме ра­боты , где - полезный тормозной момент двига­теля, а -момент холостого хода. Так как при изменении на­грузки в пределах от холостого хода до номинальной скорость вращения асинхронных двигателей остается почти постоянной, то зависимость асинхронного двигателя почти прямоли­нейна (рис 7.3).

^ В. Потери и к. п. д. двигателя. В асинхронных двигателях имеют место все те же виды потерь, что и в других электрических машинах,— механические потери, потери в стали, потери в меди и добавочные потери.

Особую группу потерь состав­ляют добавочные потери. Они состоят из а) добавочных потерь в меди и б) добавочных потерь в стали. При синусоидальном напряжении на зажимах двигателя добавочные потери в меди возникают частью под влиянием высших гармонических н. с., частью вследствие эффекта вытеснения тока.

Добавочные потери в меди от высших гармонических н. с. имеют место главным образом в обмотках ротора с беличьей клеткой. При вращении ротора в магнитных полях, создаваемых высшими гармоническими н. с. статора, в обмотке ротора возни­кают токи, имеющие частоту, отличную от частоты скольжения и зависящую от скорости вращения ротора. Для уменьшения этих потерь производят: а) укорочение шага обмотки статора, веду­щее к уменьшению высших гармонических н. с., б) скос пазов ротора относительно пазов статора, играю­щий ту же роль, что и укорочение шага, и в) соответствующий подбор числа пазов на статоре и роторе и . Анализ пока­зывает, что если добавочные потери в ро­торе не должны превышать 10% от основ­ных потерь, вызванных первой гармониче­ской тока, то при нескошенных пазах




Рис. 7.4. Кривая индукции в воздушном зазоре


Явление вытеснения тока наблюдается как в обмотках статора, так и в обмотках ротора, особенно с беличьей клеткой. Здесь оно может быть использовано для улучше­ния пусковых характеристик двигателей с короткозамкнутым ротором. Но при нормальной работе частота тока в роторе обычно не превышает 3 Гц. В этих условиях выте­снение тока практически незаметно.

Поскольку добавочные потери от высших гармонических н. с. создаются токами, имеющими частоту, отличную от частоты пер­вой гармонической тока, они покрываются развиваемой двигате­лем механической мощностью.

Можно считать с достаточной точностью, что добавочные потери в меди изменяются пропорционально квадрату тока.

Добавочные потери в стали асинхронных машин состоят, так же как и в синхронных машинах, из а) пульсационных потерь и б) поверхностных потерь.

Пульсационные потери вызываются продольными пульсациями магнитного потока вследствие изменения магнитной проводимости, обусловленного непрерывным изменением взаимного положения зубцов статора и ротора при вращении последнего. Частота пуль­саций в статоре , а частота пульсаций в роторе , где и - числа пазов статора и ротора и п - скорость враще­ния ротора.

Поверхностные потери обусловливаются главным образом тем, что под влиянием пазов распределение индукции в зазоре оказы­вается неравномерным (рис. 7.4). Частота поверхностных пуль­саций та же, что и пульсаций в зубцах. Анализ показывает, что поверхностные потери зависят от частоты в степени 1,5 и квад­рата среднего значения индукции в зазоре.

Так как добавочные потери в стали имеют частоту, отличную от основной, то они покрываются за счет механической мощности, развиваемой двигателем.

Можно считать с достаточной точностью, что добавочные по­тери в стали изменяются пропорционально квадрату подводимого к двигателю напряжения.

Степень точности, с которой рассчитываются добавочные по­тери, относительно невысока. Поэтому обычно они учитываются приближенно, определенным количеством процентов от полезной мощности при работе машины генератором или от подводимой мощности при работе машины двигателем. Согласно ГОСТ 183-66 добавочные потери в асинхронных машинах при номиналь­ной нагрузке составляют 0,5% от подводимой мощности. Нужно, однако, помнить, что это - средняя цифра, установленная опыт­ным путем, от которой в ряде случаев наблюдаются заметные отклонения.

Полные потери в двигателе:



(7.17)

При нагрузках в пределах от холостого хода до номинальной под следует понимать только потери в стали статора, так как при обычных частотах в роторе (1—3 Гц) потери в его стали исчезающе малы.

При увеличении нагрузки сумма потерь несколько уменьшается вследствие уменьшения основного потока, а также уменьшения скорости вращения. Обычно это уменьшение не пре­вышает 4—8%, поэтому и данные потери относят к постоянным потерям двигателя.

В противоположность потерям в стали потери в меди изме­няются пропорционально квадрату тока.

Добавочные потери, как мы видели, зависят частью от тока, частью от напряжения. Для простоты считают, что они изменя­ются пропорционально подводимой мощности.

Максимум к. п. д. достигается при равенстве постоянных и переменных потерь; та­ким образом, соответственно перераспределяя потери, мы можем получить двигатели с различной формой кривых к.п.д. На рис. 7.3 показана типичная кривая к. п. д. асинхронного двигателя, достигающая максимума примерно при 75% номинальной на­грузки.

Для иллюстрации в табл. 7.3 приведены значения к. п. д. и коэффициента мощности для двигателей разной мощности с контактными кольцами и короткозамкнутым ротором при n =1000 об/мин и 2р=6.
Таблица 7.3 - значения к. п. д. и коэффициента мощности различных двигателей

Двигатели с кольцами

Двигатели с короткозамкнутым ротором

















В

кВт

%




В

кВт

%




220/380

8

83

0,8

220/380

9,1

86

0,825

220/380

13,5

85

0,81

220/380

15,2

87,1

0,835

220/380

29

87

0,845

220/380

32

89

0,855

220/380

44

88,2

0,87

220/380

48

90,3

0,87

220/380

67

89,5

0,88

220/380

72

90,7

0,88

220/380

100

91,5

0,88

220/380

100

91,5

0,88

6000

260

91

0,86

6000

260

91

0,85

6000

430

92,5

0,88

6000

430

92,5

0,87

6000

875

93,5

0,89

6000

875

93,5

0,88
1   2   3   4   5   6



Скачать файл (841.8 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru