Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Решения алгебраических задач на ЕГЭ по математике - файл 1.rtf


Решения алгебраических задач на ЕГЭ по математике
скачать (6189 kb.)

Доступные файлы (1):

1.rtf6189kb.05.02.2012 09:29скачать

содержание
Загрузка...

1.rtf

  1   2   3
Реклама MarketGid:
Загрузка...
Решения алгебраических задач

Применение метода тригонометрической подстановки при решении задач

Решение уравнений

Иррациональные уравнения

Рациональные уравнения

Показательные уравнения

Решение систем

Доказательство неравенств

Задачи на нахождение наибольшего и наименьшего значений

функции

Решение задач с параметрами
Метод замены переменной при решении задач

Переход к новым обозначениям, замена неизвестных – существенный прием и метод, который применяется при решении самых различных задач как элементарной, так и высшей математики. Очень важно, чтобы этот прием и метод был прочно усвоен и освоен в школе, так как идея замены переменной является сквозной и в том или ином виде фигурирует практически во всех разделах школьной математики.

Существуют два подхода к определению метода замены переменной. Если уравнение удалось преобразовать к виду , то нужно ввести новую переменную , решить уравнение , а затем рассмотреть совокупность уравнений



где корни уравнения . Чтобы при замене не потерять корней, достаточно убедиться, что каждому значению из рассматриваемой области соответствует хотя бы одно значение , удовлетворяющее равенству .

В отличие от описанного выше метод равносильной замены требует нахождения множества значений переменной . В данном случае накладывается требование: каждому значению из рассматриваемой области соответствует ровно одно значение переменной , удовлетворяющее равенству . Такой подход ведет к сохранению области определения исходного уравнения и не требует перехода к совокупности.

Подобные замены порой существенно упрощают решение. Замена переменных и переход к новым обозначениям облегчают выкладки и делают громоздкое алгебраическое выражение компактным и обозримым. Вот почему следует приучать школьников при решении задач не торопиться начинать преобразования: пусть они сначала посмотрят, нельзя ли записать уравнение проще, введя новую переменную. При этом не стоит забывать, что, во-первых, далеко не всегда замена бывает столь уж необходима. Во-вторых, если приходится прибегать к замене неизвестной, то стоит сразу подобрать ее так, чтобы она вбирала в себя по возможности большее количество неприятных деталей, затрудняющих решение.

^ Решение уравнений

    1. Иррациональные уравнения

Иррациональные уравнения часто встречаются на вступительных экзаменах по математике, так как с их помощью легко диагностируется знание таких понятий, как равносильные преобразования, область определения и другие. Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. Эквивалентность не нарушается при возведении обеих частей в нечетную степень. В противном случае требуется проверка найденных решений или оценка знака обеих частей уравнения. Но существуют и другие приемы, которые могут оказаться более эффективными при решении иррациональных уравнений. Например, метод тригонометрической подстановки.

Пример 1. Решите уравнение

[12].

Решение с помощью тригонометрической подстановки

Так как , то . Поэтому можно положить . Уравнение примет вид

.

Положим , где , тогда

.

.

.

Ответ: .

Алгебраическое решение

.

Так как , то . Значит, , поэтому можно раскрыть модуль



.

Ответ: .

Решение уравнения алгебраическим способом требует хорошего навыка проведения тождественных преобразований и грамотного обращения с равносильными переходами. Но в общем оба приема решения равноценны.

Пример 2. Решите уравнение

[14].

^ Решение с помощью тригонометрической подстановки

Область определения уравнения задается неравенством , что равносильно условию , тогда . Поэтому можно положить . Уравнение примет вид



.

Так как , то . Раскроем внутренний модуль

.

Положим , тогда



.

Условию удовлетворяют два значения и .

.





.

Ответ: .

^ Алгебраическое решение



.

Возведем в квадрат уравнение первой системы совокупности, получим

.

Пусть , тогда . Уравнение перепишется в виде

.

Проверкой устанавливаем, что – корень, тогда делением многочлена на двучлен получаем разложение правой части уравнения на множители

.

От переменной перейдем к переменной , получим

.

Условию удовлетворяют два значения

.

Подставив эти значения в исходное уравнение, получаем, что – корень.

Решая аналогично уравнение второй системы исходной совокупности, находим, что тоже корень.

Ответ: .

Если в предыдущем примере алгебраическое решение и решение с помощью тригонометрической подстановки были равноценны, то в данном случае решение подстановкой выгоднее. При решении уравнения средствами алгебры приходится решать совокупность из двух уравнений, то есть дважды возводить в квадрат. После этого неравносильного преобразования получаются два уравнения четвертой степени с иррациональными коэффициентами, избавиться от которых помогает замена. Еще одна трудность – проверка найденных решений подстановкой в исходное уравнение.

Пример 3. Решите уравнение

[31].

^ Решение с помощью тригонометрической подстановки

Так как , то . Заметим, что отрицательное значение неизвестного не может быть решением задачи. Действительно, преобразуем исходное уравнение к виду

.

Множитель в скобках в левой части уравнения положительный, правая часть уравнения тоже положительная, поэтому множитель в левой части уравнения не может быть отрицательным. Вот почему , тогда , поэтому можно положить Исходное уравнение перепишется в виде

.

Так как , то и . Уравнение примет вид

.

Пусть . Перейдем от уравнения к равносильной системе

.

Числа и являются корнями квадратного уравнения

.

.

Ответ: .

Алгебраическое решение

Возведем обе части уравнения в квадрат

.

Введем замену , тогда уравнение запишется в виде





.

Второй корень является лишним, поэтому рассмотрим уравнение





.

Так как , то .

Ответ: .

В данном случае алгебраическое решение в техническом плане проще, но рассмотреть приведенное решение с помощью тригонометрической подстановки следует обязательно. Это связано, во-первых, с нестандартностью самой подстановки, которая разрушает стереотип, что применение тригонометрической подстановки возможно лишь, когда . Оказывается, если тригонометрическая подстановка тоже находит применение. Во-вторых, представляет определенную трудность решение тригонометрического уравнения , которое сводится введением замены к системе уравнений. В определенном смысле эту замену тоже можно считать нестандартной, а знакомство с ней позволяет обогатить арсенал приемов и методов решения тригонометрических уравнений.

Пример 4. Решить уравнение

[4].

Решение с помощью тригонометрической подстановки

Так как переменная может принимать любые действительные значения, положим . Тогда

,

,так как .

Исходное уравнение с учетом проведенных преобразований примет вид





.

Так как , поделим обе части уравнения на , получим

.

Пусть , тогда . Уравнение примет вид

.

.

Учитывая подстановку , получим совокупность из двух уравнений

.

Решим каждое уравнение совокупности по отдельности.

1) .

.

не может быть значением синуса, так как для любых значений аргумента.



.

Откуда

.

Так как и правая часть исходного уравнения положительна, то . Из чего следует, что .

2) .

.

Это уравнение корней не имеет, так как .

Итак, исходное уравнение имеет единственный корень

.

Ответ: .

^ Алгебраическое решение

Данное уравнение легко «превратить» в рациональное уравнение восьмой степени возведением обеих частей исходного уравнения в квадрат. Поиск корней получившегося рационального уравнения затруднен, и необходимо обладать высокой степенью изобретательности, чтобы справиться с задачей. Поэтому целесообразно знать иной способ решения, менее традиционный. Например, подстановку , предложенную И. Ф. Шарыгиным [57].

Положим , тогда



Преобразуем правую часть уравнения :

.

С учетом преобразований уравнение примет вид

.

Введем замену , тогда

.

Второй корень является лишним, поэтому , а .

Ответ: .

Если заранее не известна идея решения уравнения , то решать стандартно возведением обеих частей уравнения в квадрат проблематично, так как в результате получается уравнение восьмой степени , найти корни которого чрезвычайно сложно. Решение с помощью тригонометрической подстановки выглядит громоздким. Могут возникнуть трудности с поиском корней уравнения , если не заметить, что оно является возвратным. Решение указанного уравнения происходит с применением аппарата алгебры, поэтому можно сказать, что предложенное решение является комбинированным. В нем сведения из алгебры и тригонометрии работают совместно на одну цель – получить решение. Также решение указанного уравнения требует аккуратного рассмотрения двух случаев. Решение заменой технически проще и красивее, чем с помощью тригонометрической подстановки. Желательно, чтобы учащиеся знали такой способ замены и применяли его для решения задач.

Подчеркнем, что применение тригонометрической подстановки для решения задач должно быть осознанным и оправданным. Использовать подстановку целесообразно в тех случаях, когда решение другим способом сложнее или вовсе невозможно. Приведем еще один пример, который, в отличие от предыдущего, проще и быстрее решается стандартным способом.

Пример 5. Решить уравнение

[51].

^ Решение с помощью тригонометрической подстановки

Так как переменная может принимать любые действительные значения, можно положить . Уравнение примет вид

.

В силу того, что , можно раскрыть модуль



.

Так как , то .

Ответ: .

Алгебраическое решение

Проверкой убеждаемся, что – корень.

Ответ: .


^ 1.2 Рациональные уравнения

Тригонометрическая подстановка применяется при решении рациональных уравнений, когда уравнение не имеет рациональных корней или найденные рациональные решения не исчерпывают всего множества решений уравнения.

При решении иррациональных уравнений возможность введения тригонометрической подстановки была видна по структуре уравнения. В нескольких следующих задачах применение метода тригонометрической подстановки не так очевидно. Вот почему прежде чем ввести подстановку, нужно доказать законность такого введения.

Пример 1. Сколько корней имеет уравнение

[37].

Решение этой задачи любым методом начинается одинаково. Докажем, что все корни данного уравнения принадлежат промежутку . Действительно, если

.

Но тогда в исходном уравнении слева стоит произведение больше восьми, а справа единица, что невозможно.

^ Решение с помощью тригонометрической подстановки

Положим . Тогда каждому корню исходного уравнения будет соответствовать ровно один корень , где . Наоборот, каждому корню уравнения соответствует ровно один корень исходного уравнения. Таким образом, задача может быть переформулирована так: сколько корней на промежутке имеет уравнение

.

Так как и , то можно взять . Заметим, что если - корень данного уравнения, то и тоже корень. Вот почему достаточно рассмотреть , то есть отыскать только положительные решения. С учетом выше изложенного исходное уравнение перепишется в виде





.

Так как , то можно обе части равенства умножить на , получим



.

Ответ: шесть корней.

Алгебраическое решение

Так как выражение от правой части равенства четное и и , выясним вопрос о наличии корней на промежутке . Проверкой устанавливаем, что – корень. Рассмотрим функции от правой и левой частей уравнения, то есть функции и . Так как



и функция непрерывна на числовой прямой, то найдутся такие значения и , что . Поэтому на промежутке уравнение имеет три корня, а на всей числовой прямой – шесть корней.

Ответ: 6 корней.

В данном случае можно решать любым способом, но если количество корней на небольшом промежутке достаточно велико, вычисления могут оказаться громоздкими, и сам метод неэффективным. В этом случае на помощь приходит метод тригонометрической подстановки. Надо заметить, что решить вопрос о количестве корней можно с помощью производной, но в данном случае такое решение мало эффективно, так как затруднительно найти нули производной.

Пример 2. Решить уравнение

.

Если для выше приведенных задач не удается найти нетрадиционный путь решения, то все равно остается вероятность справиться с задачей с помощью стандартных школьных рассуждений, правда, затратив при этом гораздо больше времени. Эта задача лишает такого выбора, так как ее решение другим способом не представляется возможным.

^ Решение с помощью тригонометрической подстановки

Поделим все члены уравнения на 2. Уравнение примет вид

.

Докажем, что все корни данного уравнения по модулю не превосходят единицы. Пусть , тогда . Получили, что при левая часть уравнения по модулю больше единицы, а правая – меньше единицы, что невозможно.

Положим . Уравнение примет вид

.

Условию удовлетворяют три значения

.

Поскольку кубическое уравнение не может иметь больше трех различных корней, то мы нашли все решения.

Ответ: .

^ 1.3 Показательные уравнения

Приведем пример задания, решить которое без введения тригонометрической подстановки не представляется возможным.

Пример 1. Решить уравнение .

Пусть , тогда уравнение перепишется в виде

.

Введем замену , получим

.

Это уравнение мы уже решали1. Его корни

.

Два последних значения меньше нуля, поэтому нам подходит только . Перейдем к переменной , а затем к переменной

.

Ответ: .

  1   2   3



Скачать файл (6189 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru