Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Шпаргалка по цитологии - файл n1.doc


Шпаргалка по цитологии
скачать (1003 kb.)

Доступные файлы (1):

n1.doc1003kb.21.12.2012 14:52скачать

Загрузка...

n1.doc

  1   2   3   4   5   6   7   8   9
Реклама MarketGid:
Загрузка...
1. Клетка.

Клетка — это ограниченная активной мембраной, упорядоченная структурированная система биополимеров (белков, нуклеиновых кислот) и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. Клетка — самоподдерживающаяся и самовоспроизводящаяся система биополимеров. Это определение дает описание основных свойств «живого» — воспроизведение подобного себе из неподобного себе.
2. История микроскопической техники.

Невозможно точно определить, кто изобрёл микроскоп. По одной версии, изобретатели микроскопа - голландский мастер очков Ханс Янсен и его сын Захарий Янсен в 1590, но это было заявление самого Захария Янсена в середине XVII века. Дата не точна, так как оказалось, что Захария родился около 1590 г. По другой версии, первый микроскоп изобрел Галилео Галилей в 1608-1609. Он разработал «оккиолино» - или составной микроскоп с выпуклой и вогнутой линзами.

1608 – 1609 Галилео Гилилей изобрел телескоп с выпуклым объективом.

1625 –Фабиан ввел термин «микроскоп».

1632 – Антон Ван Левенгук считается первым, кто сумел привлечь к микроскопу внимание биологов, изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения.
3. Первые микроскописты.

Роберт Гук. Результаты своих микроскопических исследования он опубликовал в 1665 г в монографии"Микрография или физиологическое описание мельчайших тел, исследованных при помощи микроскопа". Гук изучал в числе многих других обьектов и тонкие срезы растений. Изучая срезы пробки Гук обнаружил замкнутые пузырьки - ячейки и назвал их "клетками".

Антон-Ван-Левенгук. Он открыл мир микроскопических животных - инфузорий, впервые описал эритроциты и сперматозоиды. 
Каспар Фридрих Вольф - в 1759 г в диссертации "Теория происхождения" впервые попытался обьяснить возникновение новых растительных клеток при росте. Считал, что из уже имеющихся клеток-мешочков выдавливается жидкое вещество в виде капельки, поверхность капли затвердевает и капля превращается в новую клетку-мешочек. 
Ксавье Биша - еще в 1801 г дал классификацию тканей на макроскопическом уровне - выделял 21 тканей; органы образуются путем комбинации различных тканей. 
Ян Пуркинье и его школа в 1830-45 г использовали окраску, просветление срезов бальзамом, создали микротом; все это позволило изучать клетки животных тканей под микроскопом. 
Нем. ученые Лейдиг и Келликер в 1835-37 г попытались создать первую микроскопическую классификацию тканей. 
Матиас Шлейден в 1838 г создал теорию цитогенеза. 
Теодор Шванн в 1839 г основываясь на теории цитогенеза Шлейдена создал клеточную теорию. 
Рудольф Вирхов - оказал большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке.
Э.Страсбургер (1884) выдвинул гипотезу о значении ядра как носителя наследственных свойств. Предложил термины профаза, метафаза,анафаза, гаплоидное и диплоидное число хромосом - т.е. изучал процесс митоза. 
Ковалевский - один из основоположников сравнительной эмбриологии, экспериментальной и эволюционной гистологии; установил единый план развития многоклеточных; обосновал теорию зародышевых листков, как образований лежащих в основе единства развития всех млекопитающих. 
Заварзин - предложил теорию "параллельных рядов в тканевой эволюции" - эволюция тканей у разных типов и классов животных происходит сходно, параллельными рядами, поэтому у разных животных ткани с родственными функциями имеют сходное строение. 
Хлопин - создал теорию "дивергентной эволюции тканей" - ткани развиваются в эволюции и онтогенезе дивергентно, путем расхождения признаков. Поэтому в каждой из 4-х основных группах тканей предлагается выделить подгруппы или типы тканей по их происхождению, источнику развития. 
4. Описание растительной клетки и ткани Р.Гуком (1665), М.Мальпиги (1671) и Н.Грю (1671).

В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и, пытаясь понять, почему пробковое дерево так хорошо плавает, стал рассматривать тонкие срезы пробки. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками. Таким образом, он установил клеточное строение тканей. В 1671 году Мальпиги и Грю одновременно и независимо друг от друга подтвердили открытие Гука, показав, что растения состоят из тесно расположенных «пузырьков» или «мешочков». Свой труд Мальпиги назвал «Обзором анатомии растений», а Грю — «Началом анатомии растений». Величайшая заслуга этих ученых в том, что они основали учение об анатомии растений, хотя Роберт Гук еще в 1667 г. указывал на клетчатое строение некоторых частей растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». Мальпиги и Грю сформулировали первую пенисто-ячеистую клеточную теорию: как пена состоит из пузырьков, так и ткань состоит из пузырьков-клеток. Клетка рассматривалась как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма. После исследований Гука, Мальпиги и Грю факт существования клеток-ячеек в растительных клетках не вызывал сомнений, однако должного значения этому факту не придавалось. Т. е. роль клетки как основной структурной единицы всех живых организмов еще не была осознана. Первые ученые-цитологи придавали большое значение строению клеточной оболочки, недооценивая значение содержимого клетки — протопласта. Эти ошибочные представления господствовали в биологии на протяжении почти полутораста лет. Между тем развитие учения о клетке прогрессировало по мере совершенствования строения микроскопа, у которого вначале появился штатив с подвижным тубусом, затем осветительное зеркало и ахроматическая линза – сложная линза, состоящая из рассеивающей и собирающей линз.
5. Микроскопические наблюдения А.Левенгука (1679).

Левенгук считается первым, кто сумел привлечь к микроскопу внимание биологов. Он изобрел более 250 микроскопиумов с увеличением в 270 раз. Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа. Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Хотя Антуан Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению. В 1679 г. Левенгука избрали членом Лондонского королевского общества. В те годы оно объединяло естествоиспытателей и врачей и считалось самым авторитетным научным обществом. В 1674 году Антуан Ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (инфузории, амёбы, бактерии), которые позднее были названы микроорганизмами. Также Левенгук впервые наблюдал животные клетки — эритроциты и сперматозоиды.
6. Воззрения натурфилософа Л.Окена (1809) на клетку и ее возникновение на Земле.

В 1809 г. Лоренц Окен выдвинул гипотезу клеточного строения и развития организмов. В «Учебнике натурфилософии» (1809) Окен описывает живые тела как скопления частиц, которые он называл «органическими кристаллами», «слизистыми пузырьками», «органическими точками», «гальваническими пузырьками» и даже «инфузориями». Он на основе натурфилософских рассуждений пришел к выводу, что клетки одноклеточных и многоклеточных организмов гомологичны: «Первичный пузырек слизи в философском смысле может быть назван инфузорией... Растения и животные могут быть только лишь метаморфозами инфузорий... Организм представляет собою синтез инфузорий». В 1805 г. Окен заявил: "Зародыш в эмбриональном развитии как бы повторяет эволюцию, историю животного мира". В 1808 г Тидеман завил: «Следя за метаморфозом лягушек, я пришел к заключению, что они во время развития проходят организацию кольчатых червей, моллюсков, рыб и только под конец становятся лягушками". В итоге в 1809 г. Окен пришел к выводу, что "между развитием зародыша и историей животного царства существует полный параллелизм" (принцип параллелизма между онтогенезом и филогенезом). Эта идея стала впоследствии отправной точкой при формулировке биогенетического закона.
6. Работы школ Я.Пуркинье (1837) и И.Мюллера (1838).

Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу. Пуркинье и его ученики выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих, сравнивая отдельные клетки растений и тканевых структур животных, которые Пуркинье чаще всего называл «зернышками» (для некоторых животных структур в его школе применялся термин «клетка»). В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. Ввел термин протоплазма. Установить гомологию клеток растений и клеток животных Пуркинье не смог:

-во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;

-во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур. Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Мюллера. Мюллер изучал микроскопическое строение хорды; его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения. В 1830-е Пуркинье, Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей, а Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.
7. Подготовка клеточной теории.

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов. Представление о том, что все живые организмы состоят из клеток, возникло не сразу, а сложилось в результате многочисленных исследований. В 1802—1808 г Мирбель установил, что все растения состоят из тканей, образованных клетками. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 г Пуркинье открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 г Броун впервые описал ядро растительной клетки, а в 1833 г установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а протопласт. В 1830-е Пуркинье, Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей. В 1838 г. Шлейден сформулировал теорию цитогенеза, согласно которой новые клетки образуются в старых. Опираясь на работы Шлейдена, Шванн провел сравнительное изучение тканей животных и растений. Он нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных. Теория цитобластемы Шлейдена и Шванна была ошибочной. Так Шлейден и Шванн называли жидкость растительных клеток. Стараясь решить вопрос, каким образом происходят клетки, они предполагали, что клетки, подобно кристаллам, возникают из цитобластемы, которую уподобляли маточному раствору. По их мнению, в этой жидкости сначала появляется плотное зернышко — ядрышко будущего ядра, вокруг которого цитобластема уплотняется и образует род оболочки. Жидкость из цитобластемы проникает через указанную оболочку, собирается между нею и ядрышком, вследствие чего получается пузырек — ядро, или цитобласт. Затем тот же процесс происходит и с образовавшимся ядром, около которого цитобластема образуют более плотный слой. Жидкость цитобластемы, проникнув через этот слой, отделяет его от ядра, причем самый слой становится оболочкой новой клетки, а жидкость, расположенная между ним и ядром, — клеточным соком.
8. Обоснование клеточной теории Т. Шванном (1839).

В 1839 г. Шванн сформулировал клеточную теорию, но, поскольку он опирался на работу Шлейдена, Шлейдена считают соавтором. В 1859 г. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток. В противоположность взглядам Шлейдена и Шванна, Вирхов утверждал, что клетки возникают только путем размножения (деления). Именно ему принадлежит знаменитая формулировка "всякая клетка от клетки". Таким образом, Вирхова можно считать одним из соавторов клеточной теории. Однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Согласно этой теории, все организмы имеют клеточное строение, а клетки животных и растений имеют принципиальное сходство строения и формирования.

9. Основные положения клеточной теории.

Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов. Сначала клеточная теория включала в себя три положения, четвертое внес Вирхов. В 1859 г. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток. В настоящее время основные положения клеточной теории можно сформулировать в четырех тезисах: 1.Все живые организмы, исключая вирусы, состоят из клеток и продуктов их жизнедеятельности. Этот тезис отражает единство клеточного происхождения всех организмов и подчеркивает значение неклеточных компонентов. Клетка — единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет. 2.Клетки всех живых организмов имеют принципиальное сходство своего строения и основного обмена веществ, т.е. все клетки гомологичны. 3.Каждая клетка образуется только путем деления материнской клетки. Это положение постулирует невозможность самозарождения клеток в условиях, сложившихся после их возникновения и эволюции. 4.Активность многоклеточного организма слагается из активности его клеток и результатов их взаимодействия. Этот тезис подчеркивает, что многоклеточный организм - это не сумма клеток, а совокупность взаимодействующих клеток, т.е. система. В ней активность каждой клетки зависит от функционирования не только соседних, но и отдаленных от неё клеток. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
10. Развитие клеточной теории.

С 40-х г века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками. В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы и ядра клеток, что нашло своё выражение в определении клетки, данном Шульце: «Клетка — это комочек протоплазмы с содержащимся внутри ядром». В 1861 г Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Желе. Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Вирховом в виде формулировки: «Каждая клетка из клетки». В развитии клеточной теории остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки. Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма. Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

Клеточная теория со второй половины XIX века приобретала всё более механистический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении развития клеточной теории появилась механистическая теория «клеточного государства» (Геккель), согласно которой организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 г с критикой представления Вирхова о клетке выступил Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. В 1950-е Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В ее основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных Лепешинской в основу этой теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».
11. Вклад Р.Вирхова (1859) в учение о клетке.

Клеточная теория получила дальнейшее развитие в работах немецкого ученого Вирхова (1859). Сначала клеточная теория включала в себя три положения, четвертое внес Вирхов. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток, опровергнув теорию цитобластемы Шлейдена и Шванна. Вирхов утверждал, что клетки возникают только путем размножения (деления). Именно ему принадлежит знаменитая формулировка "всякая клетка от клетки". В 1874 г. Чистяковым, а в 1875 г.Страсбургером было открыто деление клетки — митоз, и, таким образом, подтвердилось предположение Вирхова. Таким образом, Вирхова можно считать одним из соавторов клеточной теории. Однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
12. Современное положение клеточной теории.

Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки.

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала.

Существует два типа клеток — прокариотические, не имеющие отграниченного мембранами ядра, и эукариотические, имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды — потомки бактериальных клеток. Эукариотическая клетка — система высокого уровня организации, не может считаться целиком гомологичной клетке бактерии. Гомология всех клеток, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов, рибосом и хромосом — наследственного материала в виде молекул ДНК.

Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Считая клетку всеобщим структурным элементом, клеточная теория рассматривала гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра,но эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений — это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями. Практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур — элементы цитоскелета, рибосомы эукариотического типа и др.

Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных — продукт слияния исходных клеток, а внеклеточное вещество — продукт их секреции, то есть образуется оно в результате метаболизма клеток.

Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма — клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно. К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды. Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.
13. Место цитологии среди других биологических дисциплин.

14. Связь цитологии с молекулярной биологией, генетикой, эмбриологией, физиологией и биохимией.

Система биологических наук чрезвычайно многопланова, что обусловлено как многообразием проявлений жизни, так и разнообразием форм, методов и целей исследования живых объектов, изучением живого на разных уровнях его организации. Всё это определяет условность любой системы биологических наук. Одними из первых в Б. сложились науки о животных — зоология и растениях — ботаника, а также анатомия и физиология человека — основа медицины. Другие крупные разделы Б., выделяемые по объектам исследования, — микробиология — наука о микроорганизмах, гидробиология — наука об организмах, населяющих водную среду, и т.д. Внутри Б. сформировались более узкие дисциплины. Многообразие организмов и распределение их по группам изучают систематика животных и систематика растений. Б. можно подразделить на неонтологию, изучающую современный органический мир, и палеонтологию — науку о вымерших животных и растениях.

Другой аспект классификации биологических дисциплин — по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологические дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды — экология; изучение разных функций живых существ — область исследований физиологии животных и физиологии растений; предмет исследований генетики — закономерности наследственности и изменчивости; этологии — закономерности поведения животных; закономерности индивидуального развития изучает эмбриология или в более широком современном понимании — биология развития; закономерности исторического развития — эволюционное учение. Каждая из названных дисциплин делится на ряд более частных. Одновременно происходит взаимопроникновение и слияние разных отраслей Б. с образованием сложных сочетаний, например гисто-, цито- или эмбриофизиология, цитогенетика, эволюционная и экологическая генетика и др. Анатомия изучает строение органов и их систем макроскопически; микроструктуру тканей изучает гистология, клеток — цитология, а строение клеточного ядра — кариология. В то же время и гистология, и цитология, и кариология исследуют не только строение соответствующих структур, но и их функции и биохимические свойства.

Можно выделить в Б. дисциплины, связанные с использованием определённых. методов исследования, например биохимию, изучающую основные жизненные процессы химическими методами и подразделяемую на ряд разделов (биохимия животных, растений и т.п.), биофизику, вскрывающую значение физических закономерностей в процессах жизнедеятельности и также подразделяемую на ряд отраслей. Биохимическое и биофизическое направления исследований зачастую тесно переплетаются как между собой, так и с другими биологическими дисциплинам.

В связи с изучением живого на разных уровнях его организации выделяют молекулярную биологию, исследующую жизненные проявления на субклеточном, молекулярном уровне; цитологию и гистологию, изучающие клетки и ткани живых организмов; популяционно-видовую Б., связанную с изучением популяций как составных частей любого вида организмов; биогеоценологию, изучающую высшие структурные уровни организации жизни на Земле, вплоть до биосферы в целом. Важное место в Б. занимают как теоретические, так и практические направления исследований, резкую границу между которыми трудно провести, т.к. любое теоретическое направление неизбежно связано с выходами в практику. Теоретические исследования делают возможными открытия, революционизирующие многие отрасли практической деятельности, они обеспечивают успешное развитие прикладных дисциплин, например промышленной микробиологии и технической биохимии, защиты растений, растениеводства и животноводства, охраны природы, дисциплин медико-биологического комплекса (паразитология, иммунология и т.д.). В свою очередь, отрасли прикладной Б. обогащают теорию новыми фактами и ставят перед ней задачи, определяемые потребностями общества. Из практически важных дисциплин быстро развиваются бионика, космическая биология, астробиология или экзобиология. Изучением человека как продукта и объекта биологической эволюции занимается ряд биологических дисциплин — антропология, генетика и экология человека, медицинская генетика, психология,— тесно связанных с социальными науками.

Особо следует выделить несколько фундаментальных областей Б., исследующих наиболее общие, присущие всем живым существам закономерности и составляющих основу современной общей Б. Это наука об основной структурно-функциональной единице организма — клетке, т. е. цитология; наука о явлениях воспроизведения и преемственности морфо-физиологической организации живых форм — генетика; наука об онтогенезе — биология развития; наука о законах исторического развития органического мира — эволюционная теория, а также физико-химическая Б. (биохимия и биофизика) и физиология, изучающие функциональные проявления, обмен веществ и энергии в живых организмах. Из приведённого далеко не полного перечня биологических дисциплин видно, как велико и сложно здание современной Б. и как прочно вместе с соседними науками, изучающими закономерности неживой природы, оно связано с практикой.
15.Методы цитологии. Микроскопирование.

Микроскопия в клеточных исследованиях представлена двумя основными методами: исследования в светлом поле с использованием классических гистологических красителей и анализ флуоресцентно-меченных клеток с возможностью рассмотрения и получения изображений микроэлементов вещества в зависимости от разрешающей способности приборов (микроскопов).
16. Разрешающая способность микроскопа.

Микроскоп-оптический прибор для получения увеличенных изображений, а также измерения объектов или деталей структуры невидимых или плохо видимых невооруженным взглядом.

Разрешающая способность-минимальное расстояние между 2мя точками на плоскости, которое можно различить с помощью микроскопа или любого другого оптического прибора. (чем меньше расстояние, тем больше разрешающая способность). На разрешающую способность влияет: свет, условия, оптическая система.РС=0,61*? / NA. Где NA = числовая апертура характеризующая светособирательную способность. ?-длина волны света (550нм)

Числовая апертура: NA=n*sin Ѕ ?. n=показатель преломления среды между фронтальной линзой, объективом и покровным стеклом.?-апертурный угол.

Апертурный угол-угол между крайними лучами конического светового потока, проходящего через оптическую систему микроскопа.

Разрешающая способность :PC=0,61*? / n*sin1/2 ?. числовое значение апертуры объективов всегда выгравировано на их оправах и указывается в справочиках.
17.Световая микроскопия.

В световой микроскопии лучи света от микрообъекта, проходя через систему собирательных линз — объектив и окуляр,- дают в соответствии с законами оптики увеличенное изображение изучаемого образца. Благодаря многообразию оптических эффектов комплекс микроскопических методов позволяет наглядно выявить наличие различных компонентов в микропробе и их пространственное распределение, а также измерить оптические константы отдельных составляющих, по которым их можно идентифицировать. 
18.Метод «замораживания-скалывания» и «замораживания-травления».

Метод электронной микроскопии «замораживание-скалывание» - дает возможность изучать внутреннее строение клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии антифриза во избежание искажений за счет образования кристаллов льда. Замороженный блок затем раскалывают лезвием ножа. Скол часто проходит через гидрофобную середину двойного слоя липидов, обнажая внутреннюю поверхность клеточных мембран. Образующуюся поверхность скола оттеняют платиной, органический материал удаляют и изучают полученные реплики в электронном микроскопе. Такие реплики усеяны небольшими выпячиваниями - внутримембранными частицами, которые представляют собой крупные мембранные белки.
Метод электронной микроскопии - метод «замораживания-травления» - используется для изучения внешней поверхности клеток и мембран. В данном случае клетки замораживают при очень низкой температуре и замороженный блок раскалывают лезвием ножа. Содержание льда вокруг клеток понижают возгонкой воды в вакууме при повышении температуры. Участки клетки, подвергнутые такому травлению, затем оттеняют для приготовления платиновой реплики. Метод «замораживания – травления» не позволяет использовать антифризы, поскольку они не летучи и по мере возгонки воды остаются в образце. Чтобы добиться высокого качества изображения, необходимо препятствовать образованию больших кристаллов льда. Это возможно при ускоренном замораживании образца.
  1   2   3   4   5   6   7   8   9



Скачать файл (1003 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru