Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Ответы на билеты по дисциплине Организация ЭВМ и систем - файл 1.doc


Загрузка...
Ответы на билеты по дисциплине Организация ЭВМ и систем
скачать (1876 kb.)

Доступные файлы (1):

1.doc1876kb.16.11.2011 22:22скачать

1.doc

  1   2   3   4   5   6   7   8
Реклама MarketGid:
Загрузка...

  1. Понятие архитектуры ЭВМ. Эволюция универсальных ЭВМ. Поколения ЭВМ. Элементная база ЭВМ.

Архитектура компьютера определяется совокупностью ее свойств, существенных для пользователя. При этом основное внимание уделяется структуре и функциональным возможностям ЭВМ. Основные функции определяют назначения ЭВМ (обработка, хранение информации; обмен информации с внешними источниками). Дополнительные функции - это функции повышающие эффективность работы ЭВМ (удобный интерфейс пользователя, ввод/вывод данных, надежность/безопасность работы и др.)

^ Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия компонентов ЭВМ.


Поколения ЭВМ

1. Основной признак – элементарная база, состоящая из электровакуумных ламп. Недостатки: большие габариты, большие затраты электроэнергии, большое время переключения состояний, высокая стоимость, быстрый износ.

2. Середина 50-х. Элементная база – транзистор. Это позволило уменьшить габариты, увеличить скорость и уменьшить стоимость. ЭВМ 2-го поколения производились уже серийно. Принципиальное отличие: работа с алгоритмическими языками программирования высокого уровня. Появились телетайпы для ввода и печатающие устройства для вывода информации, накопители на магнитных дисках.

3. Элементная база – интегральные микросхемы, появившиеся в 1960-х гг. В их состав были включены дисплеи, накопители на магнитных дисках, и некоторые другие элементы. ЭВМ 3-го поколения уже производились промышленно, и решались на них достаточно серьезные задачи.

4. В 1970-х гг. появились большие интегральные схемы (БИС), где на одной полупроводниковой пластине находилось несколько тысяч транзисторов. Такая высокая степень интеграции позволила создать микропроцессор (1972г). На их основе появился ПК. Кроме того, ЭВМ 4-го поколения имели цветные графические дисплеи, магнитные диски, электронные печатающие устройства.

5. ЭВМ 5-го поколения имеют элементной базой так называемые большие интегральные схемы, которые на одной пластине имеют миллионы транзисторов. Это позволило увеличить вычислительную мощность компьютера и все остальные элементы ПК должны соответствовать.


^ Классы современных ЭВМ:

1. Супер ЭВМ – многопроцессорный вычислительный комплекс, имеющий 64- или 128-разрядный процессор, десятки, а то и сотни гигабайт оперативной памяти; десятки, сотни терабайт ПЗУ. Единственный недостаток – высокая стоимость. Супер ЭВМ фирмы Cray стоит около 70 млн. долларов

2. Рабочая станция (Power Station) – ЭВМ, основанная на RISK-процессорах (имеют меньшую производительность, чем супер ЭВМ, но большую, чем ПК). Выпускаются серийно и предназначены для определенных задач: САПР, геоинформационных систем, систем аудио- и видеомонтажа, банковских систем. В настоящее время большинство рабочих станций работает на UNIX-подобных ОС, которые называются AIX. Стоимость рабочей станции – от 20 до 100 тыс. долларов.

3. ^ Персональные компьютеры – предназначены для решения очень широкого класса задач. Первый персональный компьютер был выпущен фирмой Apple в 1972 году. В 1981 году появился первый ПК IBM.

В ПК IBM используется принцип «открытой архитектуры»: регламентируется и стандартизируется только принцип действия компьютера и его конфигурации. Таким образом, компьютер можно собирать из отдельных узлов, выпущенных независимыми производителями. Кроме того, в компьютер можно вставлять различные устройства, удовлетворяющие стандартам.



  1. ^ Основы классификации ЭВМ. Классификационные признаки. Принципы устройства последовательной ЭВМ (архитектура фон Неймана). Технические показатели ЭВМ.


Принципы фон-Неймана:

1. ^ Принцип произвольного доступа к основной памяти означает, что основная память состоит из одинаковых ячеек, и процессору в любой момент времени доступна любая из ячеек для чтения и записи данных. Все ячейки пронумерованы, и номер ячейки определяет ее адрес. Общее количество ячеек называется объемом памяти.

2. ^ Принцип хранимой программы: программа хранится в основной памяти наряду с обрабатываемыми данными. Достаточно сменить программу и данные, и ЭВМ будет решать другую задачу.

3. Принцип универсальности: информация, находящаяся в основной памяти не имеет признаков принадлежности к определенному типу, то есть команды могут рассматриваться как данные.

^ Классификация ЭВМ

  1. Назначению. Обычно выделяют ЭВМ общего применения и ЭВМ ориентированные на вполне определенный класс задач. Традиционную электронную вычислительную технику (ЭВТ) подразделяют на аналоговую и цифровую. В аналоговых вычислительных машинах (АВM) обрабатываемая информация представляется соответствующими значениями аналоговых величин: тока, напряжения, угла поворота какого-то механизма и т.п. Эти машины обеспечивают приемлемое быстродействие, но не очень высокую точность вычислений (0.001:0.01). АВМ используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализированные вычислительные машины. В цифровых вычислительные машинах (ЭВМ) информация кодируется двоичными кодами чисел. ЭВМ обладают универсальными свойствами и являются самой массовой ЭВТ.

  2. Производительности: ЭВМ подразделяются по величине производительности. Классификация средств вычислительной техники. Можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их разделение по быстродействию:

    • Супер ЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.

    • Большие ЭВМ (mainframe), которые представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных, с различными формами удаленного доступа. Для комплектования ведомственных, территориальных и региональных вычислительных центров.

    • Средние ЭВМ широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов. В этих машинах особое внимание уделяется сохранению и безопасности данных, программной совместимости и т.д.

    • Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.

    • Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.

  3. Режимам работы:

    • однопрограммные ЭВМ

    • мультипрограммные ЭВМ (Эти ЭВМ должны иметь большую оперативную память, средства управления временем, ввода-вывода, средства позволяющие исключить влияния программ друг на друга);

    • ЭВМ для построения многомашинных и многопроцессорных вычислительных систем (дополнительно к мультипрограммным ЭВМ должны реализовывать функции взаимного обмена между ЭВМ);

    • ЭВМ для работы в системах реального времени (Говоря о машинах реального времени наиболее очевиден пример, когда ЭВМ управляет техническим объектом (автопилот). К ним предъявляют требования быстродействия и способность получать массу сигналов от внешних источников).

  4. Способ структурной организации. Для увеличения скорости ЭВМ в ее состав включают несколько процессоров. Различают:

    • Однопроцессорные ЭВМ;

    • Мультипроцессорные ЭВМ (можно также выделить квазипроцессорные ЭВМ), состоят как из однотипных, так и из разнотипных процессоров (неоднородные ЭВМ).


Производительность - пиковая, номинальная, системная, эксплуатационная.

Номинальная - с обращениями к ОЗУ. Системная - с учётом взаимодействия всех у-в.

Эксплуатационная - исходя из реальных задач.

Ед. измерения - MIPS (для целых чисел), MFlOps, GFlOps, TFlOps. Тактовая частота - длительность такта - в наносекундах.

Стандарт, по которому определяется интегральная производительность ПК, а также оценка его отдельных частей, создан фирмой Ziff-Davis. Время доступа - для ОЗУ и кэша - в нс, для ЖД и CD-ROM - в мс, для НГМД - в 0.1 с. Скорость передачи

  1. ^ Архитектура универсальной ЭВМ с последовательным выполнением команд. Функциональное назначение, физические принципы действия и организация основных блоков.


Основы учения об архитектуре вычислительных машин заложил выдающийся американский математик Джон фон Нейман.

Использование двоичной системы для представления чисел имеет преимущества для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной поистине революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип "хранимой программы”. Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ) (обычно объединяемые в центральный процессор), память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком. Так, накопитель на магнитных дисках относится к внешней памяти, а клавиатура – устройство ввода, дисплей и печать – устройства вывода.



Устройство управления и арифметико-логическое устройство в современных компьютерах объединены в один блок – процессор, являющийся преобразователем информации, поступающей из памяти и внешних устройств (сюда относятся выборка команд из памяти, кодирование и декодирование, выполнение различных, в том числе и арифметических, операций, согласование работы узлов компьютера). Более детально функции процессора будут обсуждаться ниже.

Память (ЗУ) хранит информацию (данные) и программы. Запоминающее устройство у современных компьютеров "многоярусно” и включает оперативное запоминающее устройство (ОЗУ), хранящее ту информацию, с которой компьютер работает непосредственно в данное время (исполняемая программа, часть необходимых для нее данных, некоторые управляющие программы), и внешние запоминающие устройства (ВЗУ) гораздо большей емкости, чем ОЗУ. но с существенно более медленным доступом (и значительно меньшей стоимостью в расчете на 1 байт хранимой информации). На ОЗУ и ВЗУ классификация устройств памяти не заканчивается – определенные функции выполняют и СОЗУ (сверхоперативное запоминающее устройство), и ПЗУ (постоянное запоминающее устройство), и другие подвиды компьютерной памяти.

В построенной по описанной схеме ЭВМ происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти. из которой будет извлечена следующая команда программы, указывается специальным устройством – счетчиком команд в УУ. Его наличие также является одним из характерных признаков рассматриваемой архитектуры.

Разработанные фон Нейманом основы архитектуры вычислительных устройств оказались настолько фундаментальными, что получили в литературе название "фон-неймановской архитектуры”. Подавляющее большинство вычислительных машин на сегодняшний день – фон-неймановские машины. Исключение составляют лишь отдельные разновидности систем для параллельных вычислений, в которых отсутствует счетчик команд, не реализована классическая концепция переменной и имеются другие существенные принципиальные отличия от классической модели (примерами могут служить потоковая и редукционная вычислительные машины).

По-видимому, значительное отклонение от фон-неймановской архитектуры произойдет в результате развития идеи машин пятого поколения, в основе обработки информации в которых лежат не вычисления, а логические выводы.

  1. Конструктивное устройство современной ПЭВМ: - основные узлы и их функциональное назначение. Схемотехнические элементы компьютера: - генплата, микропроцессор (МП), комплект интегральных микросхем окружения (Chipset). Микросхемы памяти (ОЗУ) и их типы. Контроллеры и адаптеры. Органы управления и внешние интерфейсы.


Основные узлы ЭВМ.


Основными узлами ЭВМ являются :


- центральный процессор (ЦП)

(ЦП) = (УУ) + (АЛУ)

- оперативная память (ОЗУ)

- постоянное запоминающее устройство (ПЗУ)

- внешняя память (ВЗУ)

- устройства Ввода (УВв)

- устройства Вывода (УВыв)


Все устройства ЭВМ подсоединены к единой ИНФОРМАЦИОННОЙ

ШИНЕ





Материнская плата является основой системного блока, определяющей архитектуру и производительность компьютера. На ней устанавливаются следующие обязательные компоненты:

  • Процессоры

  • Память постоянная(BIOS), оперативная

Микропроцессорный комплект(чипсет – набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы.).

  • Системные шины

  • Разъемы для подключения дополнительных устройств(слоты)

Существуют и системные платы с интегрированными видео- и аудиоустройствами, адаптером локальной сети и прочими, обеспечивающими полную функциональность компьютера без всяких карт расширения.

^ Системная шина:

- это интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Микропроцессор(Central Processing Unit) – функционально законченное программно-управляемое устройство, обработка информации в котором управляется в виде БИС или СБИС.

Микропроцессор выполняет:

  • Чтение и дешифрацию команд из основной памяти

  • Чтение данных из основной памяти и регистров адаптеров внешних устройств

  • Прием и обработка запросов и команд от адаптеров на обслуживание внешних устройств

  • Обработка данных и их запись основную память и регистр адаптеров внешних устройств

  • Выработка управляющих сигналов для всех прочих узлов и блоков PC

Группы микропроцессоров:

  • CISC(Complex Instruction Set Computing) – полный набор команд

  • RISC(Reduced Instruction Set Computing ) – сокращенный набор команд – рабочие станции, сервера


ОЗУ – служит для оперативной записи и хранения, считывания данных, непосредственно участвующих в информационно-вычислительном процессе. Является энергозависимой, после выключения питания никакие данные в ней не сохраняются.


   Семейство ОЗУ содержит два важных типа запоминающих устройств: статическое ОЗУ (SRAM) и динамическое ОЗУ (DRAM). Главное различие между ними – это долговечность хранимых ими данных. SRAM сохраняет свое содержимое до тех пор, пока к микросхеме подается энергия. Если же энергия отключена, или временно отсутствует, содержимое чипа будет потеряно навсегда. DRAM, с другой стороны, имеет чрезвычайно короткий период продолжительности работы данных – обычно около четырех миллисекунд, даже если энергия подается непрерывно.


   Словом, SRAM имеет все свойства памяти, с которыми ассоциируется слово RAM. В сравнении с ней, DRAM кажется, как будто бы, бесполезной. Сама по себе, она таковой и является. Однако можно использовать простой элемент конструкции, именуемый контроллером DRAM, для того, чтобы DRAM вела себя скорее как SRAM. Работа контроллера DRAM заключается в периодическом обновлении данных, хранящихся в DRAM. Обновляя данные до того, как они исчезнут, содержимое памяти может сохраняться так долго, как это необходимо. Таким образом, DRAM так же эффективна, как и SRAM.


Контроллер— устройство управления в электронике и вычислительной технике.

Контроллер прерываний (КП).

Таймер и ЧРВ, контроллеры шины и памяти, системный и периферийный контроллеры,

кэш-контроллеры.

^ Устройство управления (УУ) -- формирует и подает во все блоки машины управляющие импульсы; выдает адреса требуемых ячеек памяти, и передает их в другие блоки ЭВМ.



  1. ^ Серия IBM-совместимых ПЭВМ (IBM PC). Основные современные конфигурации. Технические показатели и характеристики. Другие типы аппаратных платформ ПЭВМ.







IBM-совместимыми компьютерами называют ПК тех производителей, которые при создании своих ПК ориентируются на IBM PC. IBM-совместимый ПК может использовать большинство внешних устройств и программ, предназначенных для IBM PC. Все IBM-совместимые компьютеры используют операционную систему Microsoft DOS (PS-DOS у IBM, MS-DOS у ПК других производителей) и процессоры Intel (или совместимые с ними). Вообще говоря, все ПК, работающие в DOS, являются совместимыми. Принцип совместимости дает значительную экономию средств и времени при модернизации старых и создании новых систем.

В настоящее время MS—DOS фирмы Microsoft остается самой популярной в мире операционной системой для IBMPC-совместимых персональных компьютеров. Ее поставки начались в 1981 году вместе с компьютерами IBM PC (под названием PC—DOS). Многие черты MS—DOS были унаследованы от операционной системы CP/M—80 фирмы Digital Research, применявшейся в 8—разрядных персональных компьютерах.

Операционная система MS—DOS позволяет использовать программное обеспечение, созданное для MS—DOS, и предоставляет пользователю ряд возможностей по работе с файлами данных, их организации в каталоги и использованию устройств ввода-вывода. MS—DOS является однозадачной однопользовательской операционной системой, работающей в реальном режиме микропроцессоров x86, использующей 640 Кбайт памяти компьютера и поддерживающей сравнительно простую файловую систему (File Allocation Table, FAT). Изначально MS—DOS ориентирована на работу с микропроцессорами 8086 и 8088, имевшими только один режим работы — так называемый реальный. Защищенный режим работы микропроцессоров Intel 80286 и выше (с адресацией до 16 Мбайт памяти) могут использовать только некоторые драйверы MS—DOS, с виртуальной памятью система не работает.


Альтернативой IBM-совместимым персональным компьютерам являются компьютеры AppleMacintosh.



  1. ^ Блочно-функциональное устройство персонального компьютера с магистральной организацией ( общей системной шиной ). Понятие открытой архитектуры.


Основным устройством ПК является материнская плата, которая определяет его конфигурацию. Все устройства ПК подключаются к этой плате с помощью разъемов расположенных на этой плате. Соединение всех устройств в единую систему обеспечивается с помощью системной магистрали (шины), представляющей собой линии передачи данных, адресов и управления.
Ядро ПК образуют процессор (центральный микропроцессор) и основная память, состоящая из оперативной памяти и постоянного запоминающего устройства (ПЗУ) или перепрограммируемого постоянного запоминающего устройства ППЗУ. ПЗУ предназначается для записи и постоянного хранения данных.
Подключение всех внешних устройств: клавиатуры, монитора, внешних ЗУ, мыши, принтера и т.д. обеспечивается через контроллеры, адаптеры, карты.
Контроллеры, адаптеры или карты имеют свой процессор и свою память, т.е. представляют собой специализированный процессор.




Микропроцессор

Центральный микропроцессор (небольшая микросхема, выполняющая все вычисления и обработку информации) – это ядро ПК. В компьютерах типа IBM PC используются микропроцессоры фирмы Intel и совместимые с ними микропроцессоры других фирм.

Компоненты микропроцессора:

 АЛУ выполняет логические и арифметические операции

 Устройство управления управляет всеми устройствами ПК

 Регистры используются для хранения данных и адресов

 Схема управления шиной и портами – осуществляет подготовку устройств к обмену данными между микропроцессором и портом ввода – вывода, а также управляет шиной адреса и управления.
^ Оперативная память

Оперативное запоминающее устройство (ОЗУ или RAM) - область памяти, предназначенная для хранения информации в течение одного сеанса работы с компьютером. Конструктивно ОЗУ выполнено в виде интегральных микросхем.Из нее процессор считывает программы и исходные данные для обработки в свои регистры, в нее записывает полученные результаты. Название “оперативная” эта память получила потому, что она работает очень быстро, в результате процессору не приходится ждать при чтении или записи данных в память.
Кэш-память

Компьютеру необходимо обеспечить быстрый доступ к оперативной памяти, иначе микропроцессор будет простаивать, и быстродействие компьютера уменьшится. Поэтому современные компьютеры оснащаются Кэш-памятью или сверхоперативной памятью.
Контроллеры

Только та информация, которая хранится в ОЗУ, доступна процессору для обработки. Поэтому необходимо, чтобы в его оперативной памяти находились программа и данные.

В ПК информация с внешних устройств (клавиатуры, жесткого диска и т.д.) пересылается в ОЗУ, а информация (результаты выполнения программ) с ОЗУ также выводится на внешние устройства (монитор, жесткий диск, принтер и т.д.).Таким образом, в компьютере должен осуществляться обмен информацией (ввод-вывод) между оперативной памятью и внешними устройствами. Устройства, которые осуществляют обмен информацией между оперативной памятью и внешними устройствами называются контроллерами или адаптерами, иногда картами. Контроллеры, адаптеры или карты имеют свой процессор и свою память, т.е. представляют собой специализированный процессор.

Контроллеры или адаптеры (схемы, управляющие внешними устройствами компьютера) находятся на отдельных платах, которые вставляются в унифицированные разъемы (слоты) на материнской плате

^ Системная магистраль

Системная магистраль (шина) - это совокупность проводов и разъемов, обеспечивающих объединение всех устройств ПК в единую систему и их взаимодействие.Для подключения контроллеров или адаптеров современные ПК снабжены такими слотами как PCI. Слоты PCI – E  Express для подключения новых устройств к более скоростной шине данных. Слоты AGP предназначены для подключения видеоадаптера
Для подключения накопителей (жестких дисков и компакт-дисков) используются интерфейсы IDE и  SCSI. Интерфейс – это совокупность средств соединения и связи устройств компьютера.
Подключение периферийных устройств (принтеры, мышь, сканеры и т.д.) осуществляется через специальные интерфейсы, которые называются портами.

^ Внешняя память. Классификация накопителей

Для хранения программ и данных в ПК используются накопители различных типов. Накопители - это устройства для записи и считывания информации с различных носителей информации. Различают накопители со сменным и встроенным носителем.

По типу носителя информации накопители разделяются на накопители на магнитных лентах и дисковые накопители. К накопителям на магнитных лентах относятся стримеры и др. Более широкий класс накопителей составляют дисковые накопители.

По способу записи и чтения информации на носитель дисковые накопители разделяются на магнитные, оптические и магнитооптические.

К дисковым накопителям относятся:
накопители на флоппи-дисках;
накопители на несменных жестких дисках (винчестеры);
накопители на сменных жестких дисках;
накопители на магнитооптических дисках;
накопители на оптических дисках (CD-R CD-RW CD-ROM) с однократной записью и
накопители на оптических DVD – дисках (DVD-R  DVD-RW   DVD-ROM и др.)

^ Дополнительные устройства


Периферийные устройства - это устройства, которые подключаются к контроллерам ПК и расширяют его функциональные возможности
По назначению дополнительные устройства разделяются на:
устройства ввода (трэкболлы, джойстики, световые перья, сканеры, цифровые камеры, диджитайзеры)
устройства вывода (плоттеры или графопостроители)
устройства хранения (стримеры, zip - накопители, магнитооптические накопители, накопители HiFD и др.)
устройства обмена (модемы)

^ Открытая архитектура — архитектура компьютера, периферийного устройства или же программного обеспечения, на которую опубликованы спецификации, что позволяет другим производителям разрабатывать дополнительные устройства к системам с такой архитектурой.



  1. ^ Внутренние интерфейсы ЭВМ. Системные и локальные шины. Контроллер шины. Иерархическая организация шин.


Системная шина:

- это интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Включает:

  • Кодовую шину данных (параллельная передача всех разрядов числового кода)

  • Кодовая шина адреса (параллельная передача всех разрядов кода адреса, ячейки памяти или порта ввода-вывода внешнего устройства )

  • Кодовая шины инструкции (передача управляющих сигналов во все блоки РС)

  • Шина Эл.Питания(подключение некоторых элементов РС к системе Эл.питания)

Обеспечивает 3 направления передачи данных:

1. Между микропроцессором и основной памятью

2. Между микропроцессором и портами ввода-вывода устройств

3. Между основной памятью и портами ввода-вывода внешних устройств(режим прямого доступа к памяти)

Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VL-Bus и PCI.
  1   2   3   4   5   6   7   8



Скачать файл (1876 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru