Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Гидравлика - файл 1.doc


Лекции - Гидравлика
скачать (1301.5 kb.)

Доступные файлы (1):

1.doc1302kb.16.11.2011 22:57скачать

содержание
Загрузка...

1.doc

1   2   3   4   5
Реклама MarketGid:
Загрузка...

6.3. Турбулентное движение жидкости

^ Структура турбулентного потока. Отличи­тельной особенностью турбулентного движения жидкости является хаотическое движение час­тиц в потоке. Однако при этом часто можно на­ блюдать и некоторую закономерность в таком

движении. С помощью термогидрометра, прибора позволяющего фиксировать изменение скорости в точке замера, можно снять кривую скорости. Если выбрать интервал времени достаточной продолжительности, то окажется, что колебания скорости наблюдаются око­ло некоторого уровня и этот уровень сохраняется постоянным при выборе различных ин­тервалов времени. Величина скорости в данной точке в данный момент времени носит на­звание мгновенной скорости. График изменения мгновенной скорости во времени u(t) представлена на рисунке. Если выбрать на кривой скоростей некоторый интервал времени и провести интегрирование кривой скоростей, а затем найти среднюю величину, то такая величина носит название осреднённой скорости

Разница между мнгновенной и осреднённой скоростью называется скоростью пуль­сации и'.

Если величины осреднённых скоростей в различные интервалы времени будут оставаться постоянными, то такое турбулентное движение жидкости будет устано­вившемся.

При неустановившемся турбулентном движении жидкости величины щсреднённых скоростей меняются во времени

Пульсация жидкости является причиной перемешивания жидкости в потоке. Интен­сивность перемешивания зависит, как известно, от числа Рейнольдса, т.е. при сохранении прочих условий от скорости движения жидкости. Таким образом, в конкретном потоке

жидкости (вязкость жидкости и размеры сечения определены первичными условиями) характер её движения зависит от скоро­сти. Для турбулентного потока это имеет решающее значение. Так в периферийных слоях жидкости скорости всегда будут ми­нимальными, и режим движения в этих слоях естественно будет ламинарным. Увеличение скорости до критического значения приведёт к смене режима движения жидкости с ламинарного ре­жима на турбулентный режим. Т.е. в реальном потоке присутствуют оба режима как ла­минарный, так и турбулентный.

Таким образом, поток жидкости состоит из ламинарной зоны (у стенки канала) и турбулентного ядра течения (в центре) и, поскольку скорость к центру турбулентного по-

тока нарастает интенсивно, то толщина периферийного ламинарного слоя чаще всего не­значительна, и, естественно, сам слой называется ламинарной плёнкой, толщина которой зависит от скорости движения жидкости.

^ Гидравлически гладкие и шероховатые трубы. Состояние стенок трубы в значитель­ной мере влияет на поведение жидкости в турбу­лентном потоке. Так при ламинарном движении жидкость движется медленно и плавно, спокойно обтекая на своём пути незначительные препятст­вия. Возникающие при этом местные сопротивления настолько ничтожны, что их величи­ной можно пренебречь. В турбулентном же потоке такие малые препятствия служат ис­точником вихревого движения жидкости, что приводит к возрастанию этих малых мест­ных гидравлических сопротивлений, которыми мы в ламинарном потоке пренебрегли. Та­кими малыми препятствиями на стенке трубы являются её неровности. Абсолютная вели­чина таких неровностей зависит от качества обработки трубы. В гидравлике эти неровно­сти называются выступами шероховатости, они обозначаются литерой .

В зависимости от соотношения толщины ламинарной плёнки и величины выступов шероховатости будет меняться характер движения жидкости в потоке. В случае, когда толщина ламинарной плёнки велика по сравнению с величиной выступов шероховатости ( , выступы шероховатости погружены в ламинарную плёнку и турбулентному ядру течения они недоступны (их наличие не сказывается на потоке). Такие трубы называются гидравлически гладкими (схема 1 на рисунке). Когда размер выступов шероховатости превышает толщину ламинарной плёнки, то плёнка теряет свою сплошность, и выступы шероховатости становятся источником многочисленных вихрей, что существенно сказы­вается на потоке жидкости в целом. Такие трубы называются гидравлически шероховаты­ми (или просто шероховатыми) (схема 3 на рисунке). Естественно, существует и проме­жуточный вид шероховатости стенки трубы, когда выступы шероховатости становятся соизмеримыми с толщиной ламинарной плёнки (схема 2 на рисунке). Толщину ла-

минарной плёнки можно оценить исходя из эмпирического уравнения

^ Касательные напряжения в турбулентном потоке. В турбулентном потоке величина касательных напряжений должна быть больше, чем в ламинарном, т.к. к касательным на­пряжениям, определяемым при перемещении вязкой жидкости вдоль трубы следует доба­вить дополнительные касательные напряжения, вызываемые перемешиванием жидкости.

Рассмотрим этот процесс подробнее. В турбулентном потоке вместе с перемещением частицы жидкости вдоль оси трубы со скоростью и эта же частица жидкости одновремен­но переносятся в перпендикулярном направлении из одного слоя жидкости в другой со скоростью равной скорости пульсации и . Выделим элементарную площадку dS, распо­ложенную параллельно оси трубы. Через эту площадку из одного слоя в другой будет пе­ремещаться жидкость со скоростью пульсации при этом расход жидко­сти составит:

Масса жидкости dMr, переместившаяся через площадку за время dt будет:

За счёт горизонтальной составляющей скорости пульсации и'х эта масса получит в новом слое жидко­сти приращение количества движения dM,

Если переток жидкости осуществлялся в слой, двигающийся с большей скоростью, то, следовательно, приращение количества движения будет соответствовать импульсу силы dT, направленной в сторону противоположную движению жидкости, т.е. скорости и'х:

Тогда:

^

Для осреднённых значений скорости:

Следует отметить, что при перемещении частиц жидкости из одного слоя в дру­гой они не мгновенно приобретают скорость нового слоя, а лишь через некоторое вре­мя; за это время частицы успеют углубиться в новый слой на некоторое расстояние /, называемое длиной пути перемешивания.

Теперь рассмотрим некоторую частицу жидкости находящуюся в точке ^ А Пусть эта частица переместилась в соседний слой жидкости и углубилась в него на длину пу­ти перемешивания, т.е. оказалась в точке В. Тогда расстояние между этими точками будет равно /. Если скорость жидкости в точке А будет равна и, тогда скорость в точке

В будет равна.

Сделаем допущения, что пульсации скорости пропорциональны приращению скорости объёма жидкости. Тогда:

Полученная зависимость носит название формулы Прандтля и является за­коном в теории турбулентного трения так же как закон вязкостного трения для ла­минарного движения жидкости. , Перепишем последнюю зависимость в форме:

Здесь коэффициент , называемый коэффициентом турбулентного обмена

играет роль динамического коэффициента вязкости, что подчёркивает общность основ теории Ньютона и Прандтля. Теоретически полное касательное напряжение должно быть равно:

* '

но первое слагаемое в правой части равенства мало по сравнению со вторым и его величиной можно пренебречь

^ Распределение скоростей по сечению турбулентного потока. Наблюдения за величи­нами осреднённых скоростей в турбулентном потоке жидкости показали, что эпюра осреднённых скоростей в турбулентном потоке в значительной степени сгла­жена и практически скорости в разных точках живого сечения равны средней скорости. Сопоставляя эпюры скоростей турбулентного потока (эпюра 1) и ламинар­ного потока позволяют сделать вывод о практически равномерном распределении скоро­стей в живом сечении. Работами Прандтля было установлено, что закон изменения каса­тельных напряжений по сечению потока близок к логарифмическому закону. При некото­рых допущениях: течение вдоль бесконечной плоскости и равенстве касательных напря­жений во всех точках на поверхности

После интегрирования:

Последнее выражение преобразуется к следующему виду:

Развивая теорию Прандтля, Никурадзе и Рейхардт предложили аналогичную зависи­мость для круглых труб.

^ Потери напора на трение в турбулентном потоке жидкости. При исследовании во­проса об определении коэффициента потерь напора на трение в гидравлически гладких трубах можно прийти к мнению, что этот коэффициент целиком зависит от числа Рей-нольдса. Известны эмпирические формулы для определения коэффициента трения, наибо­лее широкое распространение получила формула Блазиуса:

По данным многочисленных экспериментов формула Блазиуса подтверждается в пределах значений числа Рейнольдса от до 1-10 5. Другой распространённой эмпири­ческой формулой для определения коэффициента Дарси является формула П.К. Конакова:

Формула П.К. Конакова имеет более широкий диапазон применения до значений числа Рейнольдса в несколько миллионов. Почти совпадающие значения по точности и области применения имеет формула Г.К. Филоненко:

Изучение движения жидкости по шероховатым трубам в области, где потери напора определяются только шероховатостью стенок труб, и не зависят от скорости

движения жидкости, т.е. от числа Рейнольдса осуществлялось Прандтлем и Никурадзе. В результате их экспериментов на моделях с искусственной шероховатостью была установ­лена зависимость для коэффициента Дарси для этой так называемой квадратичной облас­ти течения жидкости:

Для труб с естественной шероховатостью справедлива формула Шифринсона

где: - эквивалентная величина выступов шероховатости. Ещё более сложная обстановка связана с изучением движения жидкости в переход­ной области течения, когда величина потерь напора зависит от обоих факторов,

Наиболее приемлемых результатов добились Кёллебрук - Уайт:

Несколько отличная формула получена Н.З. Френкелем:

Формула Френкеля хорошо согласуется с результатами экспериментов других авто­ров с отклонением (в пределах 2 - 3%). Позднее А.Д. Альтшуль получил простую и удоб­ную для расчётов формулу:

Обобщающие работы, направленные на унификацию результатов экспериментов, проведенных разными авторами, ставили перед собой цель связать воедино исследования потоков жидкости в самых разнообразных условиях. Результаты представлялись в графи-

ческой форме (широко известны графики Никурадзе, Зегжда, Мурина, опубликованные в специальной литературе и учебных пособиях). Графики Никурадзе построены для труб с искусственной шероховатостью, графики Зегжда для прямоугольных лотков с искусст­венно приданной равномерной шероховатостью. Наиболее часто употребляемыми явля­ются графики построенные Никурадзе.

На графике зависимости легко различимы все четыре области течения жидкости.

I ламинарное течение жидкости (прямая А),

II турбулентное течение жидкости в гидравлически гладких трубах (прямая В),

III переходная область течения жидкости,

IV квадратичная область течения жидкости,

^ 6.4. Кавитационные режимы движения жидкости

В жидкости при любом давлении и температуре всегда растворено какое-либо количество газов. Уменьшение давления в жидкости ниже давления насыщения жидко­сти газом сопровождается выделением рас­ творённых газов в свободное состояние, и, ГпасЬики Г.А. Муоина наоборот, при повышении давления, выде-

лившиеся из жидкости газы, вновь переходят в растворённое состояние. Изменение дав­ления в жидкости может приводить и к изменению агрегатного состояния жидкости (пе­реход жидкости в пар и пара в жидкое состояние). Если жидкость движется в закрытой системе, то колебания давления в потоке могут приводить к образованию локальных зон низкого давления и как следствие, в этих зонах происходят процессы образования паров жидкости («холодное» кипение жидкости) и её раз газирование. При этом, процесс разга-зирования, как правило - процесс более медленный, чем процесс парообразования. Одна­ко и в том и в другом случае появление свободного газа и, тем более пара, в замкнутом пространстве крайне не желательно. Появление пузырьков газовой фазы говорит о том, что в жидкости появился разрыв. Далее эти пузырьки переносятся движущейся жидко­стью. Процесс образования пузырьков пара в жидкости носит название паровой кавита­ции, образование пузырьков газа вызывает газовую кавитацию. При попадании в зону вы­сокого давления пузырьки газа растворяются в жидкости, а пузырьки пара конденсируют-

ся. Поскольку последний процесс происходит почти мгновенно, говорят о том, что пу­зырьки схлопываются. Особенно интенсивно процессы схлопывания пузырьков пара про­исходит в месте контакта их с твёрдыми телами (стенки труб, элементы гидромашин и т.д.). Отрицательное воздействие пузырьков пара на элементы гидросистем заключаются в особенности их контакта с твёрдыми телами: при приближении к твёрдой границе пу­зырьки пара деформируются, что приводит к явлению подобному детонации. При таком воздействии свободного пара и газа на твердые элементы внутренних конструкций гидро­машин, они разрушаются и выходят из строя. Для оценки режима течения жидкости вво­дят специальный критерий; число кавитации К f '

^ 7. Истечение жидкости из отверстий и насадков >

7.1. Отверстие в тонкой стенке

Одной из типичных задач гидравлики, которую можно назвать задачей прикладного

характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. При таком движении вся потенциальная энергия жидкости находящейся в ёмкости (резервуаре) в конечном итоге расходуется на кинетическую энер­гию струи, вытекающей в газообразную среду, находящуюся под атмосферным давлением или (в отдельных случаях) в жидкую среду при определённом давлении. Отверстие будет считаться малым, если его размеры несоизмеримо малы по сравнению с размером свобод­ной поверхности в резервуаре и величиной напора. Стенка называется тонкой, если вели­чиной гидравлических сопротивлений по длине канала в тонкой стенке можно пренеб­речь. В таком случае частицы жидкости со всех сторон по криволинейным траекториям движутся с некоторым ускорением к отверстию. Дойдя до отверстия, струя жидкости от­рывается от стенки и испытывает преобразования уже за пределами отверстия.

^ 7.2. Истечение жидкости из отверстия в тонкой стенке при установившемся

движении (жидкости).

Истечение жидкости в газовую среду при атмосферном давлении. При истечении из

отверстия в тонкой стенке криволи­нейные траектории частиц жидкости сохраняют свою форму и за пределами отверстия, т.е. после выхода из отвер­стия сечение струи уменьшается и дос­тигает минимальных значений на рас­стоянии равном (d - диаметр отверстия). Таким образом, в сечении В - В будет находиться как назы­ваемое сжатое сечение струи жидкости. Отношение площади

чения струи к площади отверстия называется коэффсщииитоживинфиясфэ&мзвтачаетр^ивсек

гда:

где: s - площадь отверстия,

зсж - площадь сжатого сечения струи, s - коэффициент сжатия струи.

Запишем уравнение Бернулли для двух сечений А -А и В -В. В связи с тем, что от­верстия в стенке является малым сечение В -В можно считать «горизонтальным» (ввиду малости отверстия), проходящим через центр тяжести сжатого сечения струи.

i. *"*

Поскольку величина скоростного напора на свободной поверхности жидкости (сече­ние А - А) мала из-за малости скорости, то её величиной можно пренебречь. В данном случае истечение жидкости происходит в атмосферу, следовательно р{ - р0. Тогда:

т г

F> f

Поскольку в тонкой стенке потери напора по длине бесконечно малы, то

где' - коэффициент потерь напора в тонкой стенке Следовательно, скорость в сжатом сечении струи будет равна:

Первый сомножитель в равенстве носит название коэффициента скорости'

Определим расход жидкости при её истечении из отверстия (заметим, что скорость истечения жидкости у нас относится к площади сжатого живого сечения струи):

где: - называется коэффициентом расхода.

При изучении процесса истечения жидкости предполага­лось, что ближайшие стенки и дно сосуда находятся на достаточ­но большом удалении от отверстия: , т.е. не ближе тройного расстояния от направляющих стенок. В этом случае все линии тока имеют одинаковую кривизну, и такое сжатие струи

называется совершенным сжатием. В иных случаях близко расположенные стенки явля­ются для струи направляющими элементами, и её сжатие будет несовершенным (не оди-

наковым со всех сторон). В тех случаях, когда отверстие непосредственно примыкает к одной из сторон отверстия (сечение отверстия не круглое), сжатие струи будет неполным. При неполном и несовершенном сжатии струи наблюдается некоторое увеличение коэффициента расхода. При полном совершенном сжатии струи коэффициент сжатия дос­тигает 0,60 - 0,64. Величины коэффициентов сжатия струи, коэффициента расхода зависят

от числа Рейнольдса (см. рисунок), причём коэффициенты сжатия и скорости в разных направлениях: с возрастанием числа Рей­нольдса коэффициент скорости увеличивает­ся, а коэффициент сжатия струи убывает. В результате этого коэффициент расхода оста­ ётся практически неизменным (исключением являются потоки жидкости с весьма малыми числами Рейнольдса).

Величины коэффициента расхода измеряются простым замером фактического расхо­да жидкости через отверстие и сопоставлением его с теоретически вычисленным значени­ем.

Коэффициент сжатия струи измеряется путём непосредственного определения сжа­того сечения струи, коэффициент скорости - по траектории струи.

^ Истечение жидкости через затопленное отверстие. Истечение через затопленное от­верстие в тонкой стенке, т.е. под уровень жидкости ничем существенным не отличается от истечения в атмосферу.

Пусть в резервуаре имеется перегородка с отверстием, уровни жидкости находятся

на отметках и относи­тельно плоскости сравнения, проходящей через центр тя­жести отверстия. Запишем уравнение Бернулли для свободных поверхностей жидкости (сечение А - А и сечение В - В относительно плоскости сравнения О - О).


Потери напора состоят из двух частей: потеря напора при истечении из отверстия в тонкой стенке (как при истечении в атмосферу):

и потеря на внезапное расширение струи от сжатого сечения до сечения резервуара:

р *

Подставив полученные выражения для видов потерь в предыдущее уравнение, полу­чим:

В данном случае действующим напором является разность уровней свободных по­верхностей жидкости z. Скорость истечения будет равна:

j * * *

Обозначив: получим выражение для расхода жидкости1

>

^ 7.3. Истечение жидкости через насадки.

Насадками называются короткие трубки, монти­руемые, как правило, с внешней стороны резервуара таким образом, чтобы внутренний канал насадка пол­ностью соответствовал размеру отверстия в тонкой стенке. Наличие такой направляющей трубки приве­ дет к увеличению расхода жидкости при прочих рав­ных условиях. Причины увеличения следующие При

отрыве струи от острой кромки отверстия струя попадает в канал насадка, а поскольку струя испытывает сжатие, то стенок насадка она касается на расстоянии от 1,0 до 1,5 его диаметра. Воздух, который первоначально находится в передней части насадка, вследст­вие неполного заполнения его жидкостью постепенно выносится вместе с потоком жидко­сти. Таким образом, в этой области образуется «мёртвая зона», давление в которой ниже,

чем давление в окружающей среде (при истечении в атмосферу в «мёртвой зоне» образу­ется вакуум). За счёт этих факторов увеличивается перепад давления между резервуаром и областью за внешней его стенкой и в насадке генерируется так называемый эффект подса­сывания жидкости из резервуара. Однако наличие самого насадка увеличивает гидравли­ческое сопротивление для струи жидкости, т.к. в самом насадке появляются потери напо­ра по длине трубки. Если трубка имеет ограниченную длину, то влияние подсасывающего эффекта с лихвой компенсирует дополнительные потери напора по длине. Практически эти эффекты (подсасывание и дополнительные сопротивления по длине) компенсируются при соотношении: / = 55 d. По этой причине длина насадков ограничивается / = (3 -5)d . По месту расположения насадки принято делить на внешние и внутренние насадки. Когда насадок монтируется с внешней стороны резервуара (внешний насадок), то он оказывается более технологичным, что придаёт ему преимущество перед внутренними насадками. По форме исполнения насадки подразделяются на цилиндрические и конические, а по форме входа в насадок выделяют ещё коноидальные насадки, вход жидкости в которые выпол­нен по форме струи.

^ Внешний цилиндрический насадок. При истечении жидкости из цилиндрического насадка сечение выходящей струи и сечение отверстия одинаковы, а это значит, что ко­эффициент сжатия струи = 1. Скорость истечения:

Приняв , коэффициенты скорости и расхода:

Для вычисления степени вакуума в «мёртвой зоне» запишем уравнение Бернулли для двух сечений относительно плоскости сравнения проходящей через ось насадка: А - А и С - С (ввиду малости поперечного размера насадка сечение С - С будем считать «горизон­тальным»,^ плоским):

Величину часто называют действующим напором, что соответствует

избыточному давлению. Приняв, а0с =1 получим:

Учитывая, что для цилиндрического насадка = 0,82, получим:

Для затопленного цилиндрического насадка все приведенные выше рассуждения ос­таются в силе, только за величину действующего напора принимается разность уровней свободных поверхностей жидкости между питающим резервуаром и приёмным резервуа­ром.

Если цилиндрический насадок расположен под некоторым углом к стенке резервуара

(под углом к вертикальной стенке резер­вуара или горизонтальный насадок к на­клонной стенке резервуара), то коэффи­циент скорости и расхода можно вычис­ лить, вводя соответствующую поправку:

где:

Значения коэффициента расхода можно взять из следующей таблицы:

^ Сходящиеся насадки. Если придать насадку форму конуса, сходящемуся по направ­лению к его выходному отверстию, то такой насадок будет относиться к группе сходящихся конических насадков. Та­кие насадки характеризуются углом конусности а. От ве­личины этого угла зависят все характеристики насадков. Как коэффициент скорости, так и коэффициент расхода увеличиваются с увеличением угла конусности, при угле

» конусности в 13° достигается максимальное значение ко-

эффициента расхода превышающее 0,94. При дальнейшем увеличении угла конусности насадок начинает работать как отверстие в тонкой стенке, при этом коэффициент скоро­сти продолжает увеличиваться, а коэффициент расхода начинает убывать. Это объясняет­ся тем, что уменьшаются потери на расширение струи после её сжатия. Область примене­ния сходящихся насадков связана с теми случаями, когда необходимостью иметь боль­шую выходную скорость струи жидкости при значительном напоре (сопла турбин, гидро­мониторы, брандспойты). - .-. . •

^ Расходящиеся насадки. Вакуум в сжатом сечении расходящихся насадков больше, чем у цилиндрических насадков и увеличивается с возрастанием угла конусности, что увеличивает расход жидкости. Но с увеличением угла конусности расходящихся насадков возрастает опасность отрыва струи от стенок насадков. Необходимо отметить, что потери энергии в расходящемся насадке больше, чем в насадках других типов. Область примене­ния расходящихся насадков охватывает те случаи, где требуется большая пропускная спо­собность при малых выходных скоростях жидкости (водоструйные насо­сы, эжекторы, гидроэлеваторы и др.)

^ Коноидальные насадки. В коноидальных насадках вход в насадки выполнен по профилю входящей струи. Это обеспечивает уменьшение потерь напора до минимума. Так значение коэффициентов скорости и расхода в коноидальных цилиндрических насадков достигает 0,97 - 0,99. 7.4. Истечение жидкости через широкое отверстие в боковой стенке. Истечение жидкости через большое отверстие в боковой стенке сосуда отличается от

истечения через малое отверстие тем, что величина напора будет различной для различных площадок в сечении отвер­стия. Максимальным напором будет напор в площадках примыкающих к нижней кромке отверстия. В связи с этим и скорости в различных элементарных струйках проходящих через сечение отверстия также будут неодинаковы В то же время давление во внешней среде, в которую происходит истечение жидкости одинаково и равно атмосферному давлению.

Выделим в площади сечения отверстия малый элемент его сечения высотой dH, рас­положенный на глубине Н под уровнем свободной поверхности жидкости.

Тогда расход жидкости через этот элемент сечения отверстия будет равен:

где Н - глубина погружения центра тяжести элемента площади сечения отвер­стия под уровень свободной поверхности жидкости. Полный расход жидкости через всё сечение отверстия будет:

Данное выражение будет справедливым, если величиной скоростного напора на сво­бодной поверхности жидкости можно пренебречь.

7.5. ^ Неустановившееся истечение жидкости из резервуаров.

Истечение из резервуара произвольной формы с постоянным притоком. Резервуары являются наиболее распространёнными хранилищами различных жидкостей. К наиболее существенным технологическим операциям с резервуарами относятся операции заполне­ния резервуаров и операции опорожнения. Если операция заполнения никаких существен­ных проблем перед гидравликой не ставит, то опорожнение резервуара может рассматри­ваться как прямая гидравлическая задача.

Пусть, в самом общем случае, имеем резервуар произвольной формы (площадь гори­зонтального сечения резервуара является некоторой функцией его высоты). В резервуар поступает жидкость с постоянным расходом Q0. Задача сводится к нахождению времени

необходимого для того, чтобы уровень жидкости в резервуаре изменился с высоты взлива до . Отметим, что площадь горизонтального сечения резервуара несоизмеримо вели­ка по сравнению с площадью живого сечения вытекающей струи жидкости, т. е величиной скоростного напора в резервуаре можно пренебречь (уровень жидкости в резервуаре ме­няется с весьма малой скоростью).

Величина расхода при истечении жидкости яв­ляется переменной и зависит от напора, т.е. текущей высоты взлива жидкости в резервуаре Уровень жидкости в резервуаре будет подниматься, если и снижаться когда , при притоке

уровень жидкости в резервуаре будет посто­янным. Поскольку движение жидкости при истечении из отверстия является неустановившемся, решение поставленной задачи осуществляется методом смены стационарных состояний. Зафикси­руем уровень жидкости в резервуаре на отметке . Этому уровню будет соответствовать расход жидкости при истечении из отверстия:

За бесконечно малый интервал времени из резервуара вытечет объём жидкости рав­ный:

За этот же интервал времени в резервуар поступит объём жидкости равный:

Тогда объём жидкости в резервуаре изменится на величину :

Выразив величину притока жидкости в резервуар Qo подобно расходу Q, получим:

Тогда время, за которое уровень жидкости изменится на величину dH :

Для дальнейшего решения резервуар следует разбить на бесконечно тонкие слои, для которых можно считать, что площадь сечения резервуара в пределах слоя постоянна.

Тем не менее, практического значения задача (в общем виде) не имеет. Чаще всего требуется искать время полного опорожнения резервуара правильной геометрической формы: вертикальный цилиндрический резервуар (призматический), горизонтальный ци­линдрический, сферический.

^ Истечение жидкости из вертикального ци­линдрического резервуара. Вертикальный цилин­дрический резервуар площадью поперечного се­чения S заполнен жидкостью до уровня Н. Приток жидкости в резервуар отсутствует. Тогда диффе­ренциальное уравнение истечения жидкости будет иметь вид:

i

Для начала определим время необходимое для перемещения уровня жидкости с от­метки до

Когда = Н а = 0, то время полного опорожнения резервуара составит:

Таким образом, время полного опорожнения резервуара в два раза больше, чем вре­мя истечения этого же объёма жидкости при постоянном напоре равном максимальному напору Я.

^ Истечение жидкости из горизонтального цилиндрического резервуара. В отличие от вертикального резервуара, площадь сечения свободной поверхности и горизонтального сечения резервуара - величина переменная и зависит от уровня жидкости в резервуаре.

Время полного опорожнения резервуара:

или, обозначив: D = 2 получим:

Переток жидкости между резервуарами при переменных уровнях жидкости. Если два резервуара соединены между собой, то при разных уровнях жидкости в этих ре­зервуарах будет происходить переток жидкости из резервуара с более высоким положени­ем уровня свободной поверхности в резервуар, где эта поверхность будет расположена на более низкой отметке. Переток будет осуществляться при переменном (убывающем) рас­ходе и продолжаться до тех пор, пока уровни жидкости в обоих резервуарах не сравняют­ся.

Рассмотрим два резервуара ^ А и В, соединённые между собой трубопроводом с площадью сечения s. Питающий резервуар А имеет более высокий уровень жидкости

С - С' относительно плоско­сти сравнения О - О, который равен , площадь сечения ре­зервуара А равна . Приём­ный резервуар В имеет более низкий уровень жидкости D - D', который относительно плоскости сравнения равен z2, площадь сечения этого резер­вуара - . Переток жидкости

обеспечивается переменным действующим напором равным Н = . Поскольку оба

этих уровня меняются во времени,, то и действующий напор Я тоже будет переменным.

Пусть начальный действующий напор будет равен , а действующий на-

пор на конец интересующего нас периода будет равным (в общем случае он может быть не равен 0). Тогда за время dt из резервуара А в резервуар В при некотором напоре Я через соединительный трубопровод перетечёт объём жидкости равный:

?

где: - коэффициент расхода системы, т.е. соединительного трубопровода.

При этом в резервуаре ^ А уровень жидкости понизится на величину , а в резервуа­ре В, наоборот, повысится на величину . При этом действующий напор также изменится на величину:

Изменения уровней жидкости в резервуарах будут связаны между собой:

?

Тогда:

>

откуда:

Поскольку площадь сечения резервуара постоянная, то необходимо лишь выразить через действующий напор Н.

, тогда: , откуда:

Окончательно:

> или:

В том случае, когда уровни в резервуарах сравняются :
1   2   3   4   5



Скачать файл (1301.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru