Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Гидравлика - файл 1.doc


Лекции - Гидравлика
скачать (1301.5 kb.)

Доступные файлы (1):

1.doc1302kb.16.11.2011 22:57скачать

содержание
Загрузка...

1.doc

1   2   3   4   5
Реклама MarketGid:
Загрузка...

8. Движение жидкостей в трубопроводах

^ 8.1. Классификация трубопроводов

Роль трубопроводных систем в хозяйстве любой страны, отдельной корпорации или просто отдельного хозяйства трудно переоценить. Системы трубопроводов в настоящее время являются самым эффективным, надёжным и экологически чистым транспортом для жидких и газообразных продуктов. Со временем их роль в развитии научно-технического прогресса возрастает. Только с помощью трубопроводов достигается возможность объе­динения стран производителей углеводородного сырья со странами потребителями. Большая доля в перекачке жидкостей и газов по праву принадлежит системам газопрово­дов и нефтепроводов, но значительную роль играют такие системы как водоснабжение и канализация, теплоснабжение и вентиляция, добыча некоторых твёрдых ископаемых и их гидротранспорт. Практически в каждой машине и механизме значительная роль принад­лежит трубопроводам.

По своему назначению трубопроводы принято различать по виду транспортируемой по ним продукции:

газопроводы,

- нефтепроводы,

- водопроводы, воздухопроводы,

- продуктопроводы.

По виду движения по ним жидкостей трубопроводы можно разделить на две катего­рии:

напорные трубопроводы,

безнапорные (самотёчные) трубопроводы.

Также трубопроводы можно подразделить по виду сечения: на трубопроводы круг­лого и не круглого сечения (прямоугольные, квадратные и другого профиля). Трубопро­воды можно разделить и по материалу, из которого они изготовлены: стальные трубопро­воды, бетонные, пластиковые и др.

Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов.

^ 8.2. Простой трубопровод

Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым

трубопроводом является трубопровод, собранный из труб одинакового диаметра и качест­ва его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений.

При напорном движении жидкости простой трубопровод работает полным

сечением = const. Размер

сечения трубопровода (диаметр или ве­личина гидравлического радиуса), а так­же его протяжённость (длина) трубопровода (/, L) являются основными геометрическими характеристиками трубопровода. Основными технологическими характеристиками тру­бопровода являются расход жидкости в трубопроводе Q и напор (на головных сооруже­ниях трубопровода, т.е. в его начале). Большинство других характеристик простого тру­бопровода являются, не смотря на их важность, производными характеристиками. По­скольку в простом трубопроводе расход жидкости транзитный (одинаковый в начале и конце трубопровода), то средняя скорость движения жидкости в трубопроводе постоянна . Для установившегося движения жидкости по трубопроводу средняя скорость движения жидкости определяется по формуле Шези:

5

где: - скоростной коэффициент Шези,

- гидравлический радиус сечения, для круглого сечения при полном заполнении жидкостью

- гидравлический уклон.

Полагая, что весь имеющийся напор на головных сооружениях (в начале) трубопро­вода тратится на преодоление сил трения в трубопроводе (в простом трубопроводе это по­тери напора по длине ), уравнение движения жидкости (Бернулли) примет вид:

Расход жидкости в трубопроводе:

Обозначив: , получим основное уравнение простого трубопровода:

где: К - модуль расхода - расход жидкости в русле заданного сечения при гид­равлическом уклоне равном единице (иначе модуль расхода называют расходной характе­ристикой трубопровода). Другой и более известный вид основного уравнения простого трубопровода получим, решив уравнение относительно напора:

Величину называют удельным сопротивле­нием трубопровода, - - его полным сопротив­лением

График уравнения простого трубопровода носит название его гидравлической харак­ теристики. Вид гидравлической характеристики зави­сит от режима движения жидкости в трубопроводе: при ламинарном движении жидкости гидравлическая характеристика трубопровода - прямая линия, проходящая через начало координат (1). При турбулентном режиме гидравлическая характеристика - парабола (2).

Если на трубопроводе собранном из труб одинакового диаметра имеются местные сопротивления, то такой трубопровод можно привести к простому трубопроводу эквива­лентной длины

8.3. Сложные трубопроводы

К сложным трубопроводам следует относить те трубопроводы, которые не подходят к категории простых трубопроводов, т.е к сложным трубопроводам следует отнести:

трубопроводы, собранные из труб разного диаметра (последовательное соедине­ние трубопроводов),

трубопроводы, имеющие разветвления: параллельное соединение трубопроводов, сети трубопроводов, трубопроводы с непрерывной раздачей жидкости.

^ Последовательное соединение трубопроводов. При последовательном соединении

трубопроводов конец предыдущего просто­го трубопровода одновременно является началом следующего простого трубопрово­да. В сложном трубопроводе, состоящем из последовательно соединённых простых трубопроводов, последние в литературе на­зываются участками этого трубопровода. Расход жидкости во всех участках сложного трубопровода остаётся одинаковым Q = const. Общие потери напора во всём трубопрово­де будут равны сумме потерь напора во всех отдельных его участках.

где - потери напора на - том участке трубопро-

вода.

Таким образом, потери напора в трубопроводе, состоящем из последовательно со­единённых друг с другом участков равны квадрату расхода жидкости в трубопроводе ум­ноженному на сумму удельных сопротивлений всех участков.

Гидравлическая характеристика трубопровода состоящего из последовательно со­единённых участков представляет собой графическую сумму (по оси напоров) гидравли­ческих характеристик всех отдельных участков. На рисунке кривая 1 представляет гид­равлическую характеристику 1-го участка трубопровода, кривая 2 - гидравлическую ха­рактеристику 2-го участка, кривая 3 - сумму гидравлических характеристик обеих участ­ков.

Сложный трубопровод, состоящий из последовательно соединённых простых трубо­проводов можно свести к простому трубопроводу с одинаковым (эквивалентным) диамет­ром, при этом длины участков будут пересчитываться, чтобы сохранить реальные гидрав­лические сопротивления участков трубопровода.

Так приведённая длина - того участка будет:



Следует отметить, что величина скоростного напора также зависит от диаметра трубопровода, и при определении приведённой длины участка мы вносим некоторую

ошибку, которая будет тем большей, чем больше разница в величинах фактического и эк­вивалентного диаметров. В таких случаях можно рекомендовать другой, более сложный способ.

^ Параллельное соединение трубопроводов. Схема прокладки параллельных трубо­проводов используется в тех случаях, когда на трассе магистрального трубопровода есть

участки, где требуется уменьшить гидрав­лические сопротивления трубопровода (вы­сокие перевальные точки трубопровода) или при заложении трубопровода в трудно­ доступных местах (переход через реки и др.). При параллельном соединении трубо­проводов имеются две особые точки, называемые точками разветвления. В этих точках находятся концы параллельных ветвей трубопровода (точки А и В). Будем считать, что жидкость движется слева направо, тогда общий для всех ветвей напор в точке А будет больше напора в другой общей для всех ветвей трубопровода точке В (НА Н к ). В точке А поток жидкости растекается по параллельным ветвям, а в точке В вновь собирается в еди­ный трубопровод. Каждая ветвь может иметь различные геометрические размеры: диа­метр и протяжённость (длину). Поскольку вся система трубопроводов является закрытой, то поток жидкости в данной системе будет транзитным, т.е.

Жидкость движется по всем ветвям при одинаковой разности напоров:

> тогда расход жидкости по каждой ветви можно записать в виде:

Поскольку ветвей в системе п,, а число неизвестных в системе уравнений будет п+1, включая напор, затрачиваемый на прохождение жидкости по всем ветвям , то в каче­стве дополнительного уравнения в системе будет использовано уравнение неразрывности:

При решении системы уравнений можно воспользоваться соотношением:

Для построения гидравлической характери­стики системы параллельных трубопроводов можно воспользоваться методом графического суммирования. Суммирование осуществляется по оси расходов Q. т.к.

^ Трубопроводы с непрерывным (распределённым расходом). В данном случае пред­полагается, что вдоль всей длины трубопровода располагаются одинаковые равномерно

распределённые потребители жидкости. Классиче­ским примером такого трубопровода может слу­жить оросительная система. В начальной точке трубопровода напор составляет Н. В общем слу­чае, расход по трубопроводу состоит из транзит­ного Qm и расхода Qp ,который непрерывно раз­ даётся по всей длине трубопровода.

Тогда в некотором сечении трубопровода на расстоянии х от его начала расход будет равен:

Тогда гидравлический уклон в сечении х на малом отрезке dx:

Уравнение падения напора вдоль элемента dx запишется следующим образом:

После интегрирования от 0 до / получим:

и при :

^ Сети трубопроводов. Если магистральные трубопроводы принято рассматривать как сред­ства внешнего транспорта жидкостей и газов, то сети используются в качестве оборудования для внутреннего транспорта жидких или газообраз­ных продуктов. По направлению движения жидкости (газа) сети различают на сборные и раздаточные (распределительные). В сборных сетях имеется группа источников возникнове­ ния жидкости (газа). Жидкость от этих источни­ков направляется в своеобразные узлы сбора и от­туда - в магистральный трубопровод. Классиче­ским примером сборной сети может служить неф-тесборная система со скважин, канализационная сеть. В раздаточных (распределительных) сетях жидкость или газ поступает из магистрального трубопровода и по сети распределяется по потре­бителям (абонентам). Распространённым приме­ ром распределительной сети является система во­доснабжения. К такому же типу сетей можно так­же отнести систему принудительной вентиляции,

где воздух подаётся в служебные помещения или на рабочие места. К такому же типу се­тей можно отнести систему теплоснабжения и др. Сети строятся в населённых пунктах, на предприятиях, отдельных территориях. Трубы в таких системах могут изготавливаться из различных материалов в зависимости от технологических требований, предъявляемых к сетям. В сборных сетях источники жидкости и газа располагают напором, обеспечиваю­щим движение жидкости (газа) до магистралей. Если напоры недостаточны, то создаются специальные, узлы, где напор обеспечивается принудительным образом. Имеется, по крайней мере, две группы задач для гидравлического расчёта сетей: проектирование но­вых сетей и расчёт пропускной способности существующих сетей. Принципы расчёта по­хожи. В основе расчётных формул положены уравнения Дарси-Вейсбаха и Шези. Предва­рительно в сети выбирается ветвь с наибольшей нагрузкой (расход и напор). Эта ветвь рассматривается как своеобразный трубопровод, который, в общем случае можно отнести к категории последовательного соединения простых трубопроводов. Другие участки рас-

считываются самостоятельно. После завершения расчётных работ, осуществляется про­верка соответствия результатов расчётов в узлах сети. После анализа расхождений резуль­татов решений в узлах сети осуществляется корректировка исходных данных. Таким обра­зом, метод итераций является наиболее приемлемым для расчёта сетей.

^ Трубопроводы некруглого профиля. Подавляющее большинство трубопроводов со­бирается из круглых труб. Преимущество круглого сечения очевидны: круглое сечение обладает максимальной пропускной способностью и минимальным гидравлическим со­противлением. Так гидравлический радиус для круглого сечения:

для треугольного сечения для квадратного сечения

для шестиугольного сечения

Тем не менее, трубы некруглого сечения применяются в промышленности там, где потери напора не играют особой роли. Это, в первую очередь, воздуховоды с малыми ско­ростями движения воздуха, и т.д.

^ Трубопроводы, работающие под вакуумом (сифоны). Сифоном называется такой са­мотёчный трубопровод, часть которого располагается выше уровня жидкости в резервуа­ре. Действующий напор представляет собой разницу уровней в резервуарах Az. Для приведения сифона в действие необходимо предварительно откачать из си­фона воздух и создать в нём разряжение. При этом жид­кость поднимется из резервуара А до верхней точки сифона, после чего жидкость начнёт двигаться по нис­падающей части трубопровод в резервуар В. Другой ме­ тод запуска сифона - заполнить его жидкостью извне. Запишем уравнение Бернулли для двух сечений а-а и b-b относительно плоскости сравне­ния О - О.

Поскольку: , то:

?

Критическим сечением в сифоне будет сечение х - х в верхней точке сифона. Давле­ние в этой точке будет минимальным и для нормальной работы сифона необходимо, что­бы оно выло выше упругости паров перекачиваемой по сифону жидкости.

^ Трубопроводы со стенками из упругого материала. В практике предприятий нефтя­ной отрасли нередки случаи использования специальных трубопроводов, стенки которых деформируются при изменении давления в перекачиваемой по ним жидкости. К трубо­проводам такого типа относятся мягкие и гибкие рукава, резиновые и армированные шланги. Опыты Фримана показали, что в данных случаях можно пользоваться формулой аналогичной формуле Дарси-Вейсбаха:

' > , и

где; можновзять из таблицы:

Характеристика трубопровода Величина rj

Гладкие резиновые рукава 0,000860

Обыкновенные резиновые рукава 0,000899

Очень гладкие, прорезинненые внутри 0,000884

Шероховатые внутри 0,021300

Кожаные 0,013700

Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.



Характеристика трубопровода

Величина rj

Гладкие резиновые рукава

0,000860

Обыкновенные резиновые рукава

0,000899

Очень гладкие, прорезинненые внутри

0,000884

Шероховатые внутри

0,021300

Кожаные

0,013700

Для упругих деформируемых рукавов и шлангов В формулу Дарси-Веёсбаха следует ввести необходимые поправки.

Номинальный диа­метр в мм



Средний внутренний диаметр в мм




При р- lam

Прнр=3ат

25

24,42

24,79

0,055

32

31,84

32,53

0,060

38

39,84

40,80

0,080

50

54,00

55,40

0,090

65

65,93

67,73

0,095

^ 9. Неустановившееся движение жидкости в трубопроводе 9.1. Постановка вопроса, требования к модели и допущения

Вопросы изучения неустановившегося движения реальной жидкости очень сложны. Если окажется необходимым получить самое общее решение поставленной задачи, то придётся рассматривать систему уравнений, в составе которой будут входить:

уравнение Навье-Стокса,

уравнение неразрывности,

уравнение состояния жидкости,

- уравнение термического состояния жидкости, уравнение первого закона термодинамики.

Следует отметить, что данная система настолько сложна и трудоёмка в своём реше­нии, что сразу же стоит рассмотреть вопросы о необходимости принятия некоторых до­пущений и ограничений, облегчающих решение поставленной задачи. Другими словами, необходимо определить из соображений практики степень детальности построения моде­ли, откуда станут очевидными требования к описанию объекта изучения. Так, рассматри­ваемый объект (жидкость) должна обладать упругими свойствами (быть сжимаемой), де­формация жидкости должна происходить в пределах пропорциональности, что соответст­вует закону Гука. Следует также учитывать упругие свойства самого трубопровода, дру­гие внешние среды не рассматриваются. Движение жидкости считается одномерным. Можно также пренебречь и теплопотерями во внешнюю среду.

Приняв такие ограничения, можно полную систему уравнений заменить на систему из двух дифференциальных уравнений Н.Е. Жуковского:

где: - адиабатический модуль упругости жидкости.

Однако даже для решения этой довольно простой системы придётся преодолеть не­малые трудности. По сути дела обычно рассматривают одну из хорошо известных моде­лей процесса неустановившегося движения жидкости: модель несжимаемой жидкости,

- модель сжимаемой жидкости с сосредоточенными параметрами,

- модель сжимаемой жидкости с рассосредоточенными параметрами.

Строго говоря, процесс изменения давления в жидкости во времени уподобляется волновым процессам в упругой среде, модель среды должна относиться к моделям с рас-

пределёнными параметрами. Однако подходить к выбору модели следует, прежде всего, исходя из практики работы предприятий горных отраслей промышленности. По этой при­чине остановимся на изучении проблем, связанных с явлением гидравлического удара в круглых трубах и на базе решения этой практической задачи рассмотрим основные урав­нения неустановившегося движения жидкости. Явление гидравлического удара характе­ризуется большими скоростями распространения ударной волны и значительными вели­чинами возникающих при этом давлений, периоды колебаний давления составляют доли секунды, благодаря чему действием сил трения можно пренебречь. 9.2. Явление гидравлического удара

Явление гидравлического удара возникает при резком изменении скорости движения жидкости в трубопроводе (вплоть до его мгновенного закрытия). В таких случаях проис­ходит переход кинетической энергии движущейся жидкости в потенциальную энергию покоящейся жидкости. Однако такой переход не мгновенный, а протекает с определённой скоростью, зависящей от свойств жидкости и материала трубопровода. Кроме того, этот процесс носит волновой характер. Покажем на простом примере, что гидравлический удар - процесс колебательный, т.е. волновой.

Резервуар А соединён с трубопрово­дом длиной /, на конце трубопровода уста­новлена задвижка. Размеры резервуара та­ковы, что при отборе жидкости из него уро­вень жидкости в резервуаре практически не понижается. Также для упрощения модели пока будем считать саму трубу недеформи­руемой. Примем за начало отсчёта точку О, расположенную на оси трубы в плоскости задвижки. Если потерями напора на трение при движении жидкости пренебречь, то пьезометрическая линия будет горизон­ тальной. Если бы жидкость была несжи­маемой, то при резком закрытии задвижки

мгновенно остановилась бы вся масса жидкости находящаяся в трубе, что вызвало бы мгновенный рост давления во всей жидкости. На самом деле в упругой жидкости процесс будет развиваться иначе. В момент резкого закрытия задвижки остановится только тонкий слой жидкости, непосредственно примыкающий к задвижке, остальная масса жидкости

будет продолжать движение За бесконечно малый промежуток времени (длительность процесса остановки) остановится масса жидкости в объеме первого тонкого слоя.

где: - - толщина тонкого слоя жидкости,

S - площадь внутреннего сечения трубы.

Если обозначить давление в точке О до закрытия затвора через , а через дав-

ление после мгновенного закрытия задвижки, то по теореме об изменении количества движения можно вычислить

или: где:

Или;

Затем в следующий момент времени остановится следующий слой жидкости, потом третий и т.д. Так постепенно увеличенное давление у задвижки распространится по всему

трубопроводу в направлении против течения жидкости Тогда величина представ-

ляет собой скорость распространения упругой (ударной) волны. По истечении времени

вся жидкость в трубопроводе станет находиться в сжатом состоянии. Но теперь возник перепад давления между жидкостью в резервуаре и жидкостью в трубе, в результате чего начнётся движение упругой жидкости из трубопровода обратно в резервуар. По истечении

такого же временного интервала , давление жидкости у задвижки понизится на величи­ну , т.е достигнет первоначального значения. При этом процесс движения жидкости в резервуар будет продолжаться, пока пониженное давление не распространится до конца трубопровода (до резервуара). Таким образом, давление у задвижки буде сохраняться на

постоянном уровне в течение времени , а продолжительность всего цикла гидравличе­ского удара будет равна . За это время давление у задвижки в течение половины этого

времени будет максимальным , в течение другой половины времени - минималь-

ным

^ 9.3. Скорость распространения упругих волн в трубопроводе

Рассмотрим общую задачу о распространении упругой волны в трубопроводе с упру­гими стенками (т.е. с учётом сжимаемости материала труб). Выделим элемент трубопро­вода протяжённостью , в котором жидкость остановилась в течение времени , а давление возросло на величину:

В остальной части трубы жидкость продолжает двигаться и за время А/ в выделен­ный остановившийся элемент жидкости за счёт её сжатия и сжатия стенки трубы поступит дополнительный объём жидкости:

где: и - начальная площадь трубы и скорость движения жидкости до

момента удара.

Разделим этот дополнительный объём на два составляющих объёма (за счёт сжатия жидкости и за счёт сжатия трубы

или:

где: - увеличение площади сечения трубы за счёт упругости её материала.


или:

Отсюда скорость распространения упругой волны в жидкости:

Относительное удлинение размера трубы (её радиуса):

Принимая во внимание, что: - (Е- модуль Юнга материала трубы).

где: - нормальное напряжение,

- толщина стенки трубы.

f j.

тогда:

Величину называют приведённым модулем упругости. С учётом

принятых обозначений:

^ 9.4. Методы предотвращения негативных явлений гидравлического удара и его использование

Резкое увеличение давления, сопровождающее гидравлический удар - явление край­не негативное, т.к. гидравлический удар может разрушить трубопровод или какие-либо элементы гидравлических машин, испытывающие эффекты гидравлического удара. По этой причине разрабатываются методы предотвращения гидравлических ударов или уменьшить его негативное влияние. Поскольку мощность гидравлического удара напря­мую зависит от массы движущийся жидкости, то для предотвращения гидравлического удара следует максимально уменьшить массу жидкости, которая будет участвовать в гид­равлическом ударе. Для этого необходимо запорную арматуру монтировать в непосредст­венной близости к резервуару. В качестве меры уменьшения негативных последствий гидравлического удара используют замену прямого гидравлического удара на непрямой. Для этого достаточно запорную арматуру на напорных трубопроводах сделать медленно закрывающейся, что позволит уменьшить силу удара. Другой мерой борьбы с явлением гидравлического удара является установка на напорных линиях, работающих в условиях

циклической нагрузки специальных компенсаторов с воздушной подушкой, которая при­нимает на себя удар

Однако в ряде случаев явление гидравлического удара успешно используется. К та­ким случаям использования гидравлического удара относятся производственные процес­сы по разрушению материалов и др. Известна специальная конструкция водоподъёмника, базирующаяся на использовании гидравлического удара.

^ 10. Движкние газа по трубам 10.1. Основные положения и задачи

Основной отличительной особенностью движения газа по трубам от движения ка­пельных жидкостей заключается в том, что капельные жидкости характеризуются весьма малой сжимаемостью, а их вязкость практически не зависит от давления. По этой причине для решения большинства практических задач капельные жидкости можно считать не сжимаемыми, что позволяет значительно упростить уравнения движения такой жидкости. При движении газа таких допущений делать нельзя. Поскольку изучение общих решений уравнений газодинамики не является предметом настоящего курса, рассмотрим лишь ча­стные задачи, встречающиеся в практике работы специалистов горных отраслей промыш­ленности. К числу таких первоочередных задач относится изучение движения газов, включая воздух по газопроводам (воздуховодам).

Газ двигается по газопроводу при переменном давлении, т.к. давление изменяется вдоль длины газопровода из-за неизбежных потерь напора по длине трубопровода. По этой причине плотность газа и его вязкость являются величинами переменными и неоди­наковы в различных сечениях газопровода. Рассмотрим наиболее простой случай газопро­вода (воздуховода) собранного из труб одинакового диаметра (простой газопровод S = const) при установившемся движении газа. Тогда в соответствии с уравнением нераз­рывности потока газа массовый расход газа вдоль газопровода является величиной посто­янной = const. При этом объёмный расход газа будет меняться от одного сечения га­зопровода к другому, т.к. плотность газа зависит от давления, которое по длине газопро­вода меняется.

Тогда скорость движения газа также будет меняться вдоль длины газопровода:

При этом должна изменяться и температура газа по длине газопровода, и, как след­ствие, также и вязкость газа. Однако для решения практических задач движение газа по трубопроводу можно считать изотермическим (небольшие скорости движения, теплоизо­ляция газопровода, небольшие перепады давления). Это допущение не приведет к серьёз­ным погрешностям в расчётах, но оно позволяет пренебречь изменением вязкости газа при незначительных колебаниях температуры газа в газопроводе. Т.е. полагаем, что в га­зопроводе соблюдается условие: Т = const и = const. При таких условиях будет посто-

янным для всего потока и число Рейнольдса, и как следствие будут одинаковым коэффи­циенты трения и гидравлических сопротивлений по длине потока.

Отметим, что в последнем выражении все величины, входящие в правую часть ра­венства являются величинами постоянными, отсюда: Re = const и /I = const. По этой причине для определения величины потерь напора и расхода газа можно воспользоваться обычным уравнением Бернулли.

i %

^ 10.2. Основные уравнения газодинамики для установившегося движения газа в простом газопроводе

Запишем уравнение Бернулли в дифференциальной форме:


Последний член уравнения весь мал и его величиной можно пренебречь, тогда для горизонтального газопровода (z = const) можно записать:

Подставив в последнее уравнение значение средней скорости движения газа, выра­зив её через массовый расход, получим:

По принятым выше условиям процесс движения газа по газопроводу является изо­термическим, тогда подставив в последнее уравнение значение из уравнения Бойля-Мариотта:

, получим:

Решая последнее уравнение, получим основные расчётные формулу для определения потерь давления в газопроводе и формулу для определения массового расхода газа в газо­проводе.

>



Величина коэффициента трения Л определяется по формулам для жидкости в зави­симости от режима её движения или же можно воспользоваться эмпирической формулой ВННИИГаза:

* ^

*

где d- диаметр газопровода в сантиметрах.

^ 11. Безнапорное движение жидкости

При безнапорном движении жидкости часть периметра живого сечения потока жид­кости ограничивается газовой средой, давление в которой равно атмосферному давлению. Типов безнапорных потоков достаточно много, это и безнапорное движение жидкости в трубах, и потоки жидкости в открытых руслах, и т.д. Тем не менее, несмотря на разнооб­разие таких потоков, с точки зрения гидравлики их можно разделить на установившиеся потоки с равномерным движением жидкости и неустановившиеся потоки, часто называе­мые быстротоками. Наибольший интерес для нас играют потоки первой группы, с кото­рыми чаще всего приходится встречаться специалистам горной промышленности. Быст­ротоки, как правило, являются предметом изучения для специальных дисциплин гидро­технического профиля. Поскольку установившиеся потоки жидкости, независимо от их вида совершенно одинаковы, то расчёты параметров таких потоков общие и могут быть продемонстрированы на простом примере.

^ 11.1. Классификация безнапорных потоков

Прежде всего, следует отметить, что сколь-нибудь совершенной и законченной клас­сификации безнапорных потоков отвечающей их многообразию не существует, попыта­емся выделить некоторые типы потоков по их основным признакам.

На начальной стадии разделим все потоки по их происхождению на две группы: ес­тественные (природные) и искусственные (созданные человеком). К потокам первой груп­пы будут относиться все реки и другие природные русла, отличающиеся от рек чаще всего лишь по названию, а не по своей сути.

Аналогичные две группы потоков можно выделить и по роли и назначению потоков: потоки жидкости, используемые как средство транспорта (естественные русла - реки и искусственные русла - каналы) и потоки жидкости как средство транспорта самой же жидкости (водоводы и др. гидротехнические сооружения).

Безнапорные потоки также можно разделить на заглублённые и наземные. К катего­рии заглублённых относятся все виды безнапорных трубопроводов. Среди безнапорных трубопроводов можно выделить трубопроводы из стальных, бетонных, асбоцементных и другого типа труб; по сечению безнапорные трубопроводы можно разделить на круглые,

некруглые и трубопроводы специального сечения.

Среди наземных безна­порных потоков можно вы­ делить гидротехнические системы, сооружаемые из

готовых элементов, когда водовод монтируется на трассе и обсаживаемые. При сооруже­нии последних, как правило, предварительно сооружается земляное русло бедующего во­довода (траншея, канава и др.), после чего такое русло обсаживается водоизоляционным материалом во избежание потерь при инфильтрации жидкости в почву. Наиболее часто встечающимися формами сечения таких водоводов являются водоводы трапециевидного (1), треугольного (2) и, реже всего, прямоугольного форм сечения (3).

Подавляющее число наземных потоков являются открытыми, т.е. сообщаются с ат­мосферой, однако, в тех случаях, когда необходимо предотвратить потери транспорти­руемой жидкости от испарения (в странах с жарким климатом), водоводы перекрывают. В ряде случаев водоводы монтируются над поверхностью земли на специальных опорах и мостовых переходах, создавая тем самым акведуки.

И, наконец, можно разделить безнапорные потоки на постоянно действующие и ра­ботающие в сезонном режиме.

^ 11.2. Основные методы гидравлического расчёта безнапорных потоков Равномерное движение жидкости в безнапорном потоке поддерживается за счёт раз­ницы в уровне свободной поверхности между начальным и конечным живыми сечениями потока. Чтобы движение жидкости в потоке было равномерным, должны быть выполнены следующие необходимые условия:

живые сечения потока вдоль всего русла должны быть одинаковыми как по размеру, так и по форме,

уровень свободной поверхности жидкости должен быть параллелен профилю дна русла,

шероховатость стенок русла должна быть одинакова по всей длине русла. При выполнении этих условий гидравлический расчёт сводится в основном к опре­делению расхода в потоке жидкости, а также некоторых параметров потока.

Выделим в потоке жидкости двумя живыми сечениями (1-1 и 2 - 2) от­сек потока длиной /. Центры тяжести сечений будут находиться соответст­венно на уровнях и от произ­вольно выбранной плоскости сравне­ ния О -О и на глубинах соответствен­но и под уровнем свободной по­верхности жидкости. Тогда запишем уравнение Бернулли для этих двух сечений по­тока.

Поскольку по условиям равномерности потока и , то уравнение

Бернулли примет вид:

t

?

где:

- потери напора по длине отсека потока /. Согласно известному уравнению Шези средняя скорость в живом сечении потока:


Величина скоростного коэффициента Шези ^ С определяется по экспериментальной формуле Маннинга:

где: п - величина шероховатости стенок русла. Или по формуле Павловского:

где: при

при

^ 11.3. Движение жидкости в безнапорных (самотёчных) трубопроводах

Безнапорные самотёчные трубопроводы прокладываются, как правило, в заглублён­ном исполнении. Для строительства таких трубопроводов помимо труб круглого сечения (1) часто используются трубы овоидального (2) и лоткового (3) сечений.

При гидравлическом расчёте безнапорных трубопроводов независимо от вида их сечения при­ ходится решать задачи трёх основных типов:

определение расхода жидкости, про­пускаемого данным трубопроводом,

определение уклона дна, необходимого для пропуска заданного расхода жид­кости при заданном заполнении сечения,

определение степени наполнения трубопровода для пропуска заданного рас­хода жидкости при известном уклоне дна.

Решение всех этих задач сводится к решению уравнения Шези при различных вари­антах задания исходных данных Анализируя результаты решения таких задач нетрудно обнаружить, что для каждого сечения трубопровода существует так называемая эффек­тивная степень заполнения русла, при которой достигается максимальный расход при ус­ловии минимальо возможных потерях напора Это объясняется тем, что при увеличении площади живого сечения потока увеличивается также и длина смоченного периметра На­чиная с некоторой величины (соответствующей эффективной степени заполнения русла), увеличение длины смоченного периметра начинает «обгонять» рост площади живого се­чения. При этом дальнейшее увеличение расхода жидкости в трубопроводе будет сопря­жено со значительными потерями напора.

^ 12. Движение неньютоновских жидкостей 12.1. Некоторые характеристики и реограммы неньютоновских жидкостей.

Изучение процесса движения неньютоновских жидкостей является весьма трудоём­кой задачеё как с точки зрения полноты понимания всех физико-химических процессов сопровождающих такое движение сложного физического тела, так и с точки зрения мате­матического описания этого явления. Как известно, все неньютоновские жидкости отли­чаются от классической ньютоновской жидкости видом зависимости градиента давления

от величины касательного напряжения. Графики таких зависимостей носят на-

звание кривых течения неньютоновских жидкостей или реограмм. На рисунке представ­лены реограммы различных типов неньютоновских жидкостей (1 - дилатантная жидкость, 3 - псевдопластическая жидкость, 4 - вязкопластическая жидкость) по сравнению с ана­логичной характеристикой классической ньютоновской жидкостью (линейная зависи­мость - 2).

Первые два вида неньютоновских жидкостей: дилатантные и псевдопла­стические описываются одинаковыми уравнениями реограмм с различными характеристиками коэффициентов k -меры консистенции жидкости и п - ме­ры степени отличия поведения ненью­тоновской жидкости от классической ньютоновской жидкости.

Для характеристики названных выше типов неньютоновских жидкостей часто используется ещё одна дополнительная ме­ра - эффективная кажущаяся вязкость жидкости. Суть этой меры состоит в том, что для любой конкретной величины касательного напряжения в неньютоновской жидкости мож­но поставить в соответствии величину вязкости ньютоновской жидкости с одинаковой ве­личиной касательных напряжений, т.е. реограмма реальной неньютоновской жидкости заменяется линейной зависимостью:

Естественно, что величина эффективной кажущейся вязкости жидкости будет зави­сеть от интервала значений касательного напряжения, на котором эта величина вычисля­ется.

Вязкопластические (бингамовские) жидкости обладают как свойствами твёрдого те­ла (при напряжениях меньших величины статического напряжения сдвига ), так и

свойствами жидкости (при касательных напряжениях в жидкости ). Когда вязкопла-

стическая жидкость проявляет свойства твёрдого пластичного тела, то роль кристалличе­ской решётки в вязкопластической жидкости осуществляет образующаяся в ней жёсткая

пространственная структура, приводящая к полной неподвижности жидкости. Поэтому реограмму вязкопластических жидкостей (в) принято рассматривать как некоторую сумму реограмм твёрдого пластичного тела (а) и классической ньютоновской жидкости (б). Уравнение такой реограммы можно представить в следующем виде:

Вид реограмм неньютоновских жидкостей, в том числе и вязкопластичных жидко­стей, осложняется проявлением тиксотропных свойств таких жидкостей. Принято считать, что величина статического напряжения сдвига вязкопластичных жидкостей зависит от продолжитнльности нахождения такой жидкости в состоянии покоя, другими словами, прочность образующейся структурной решётки в вязкопластичной жидкости увеличива­ется со временем. Повторное приведение жидкости в состояние движения происходит при значительно более низком статическом напряжении сдвига. Поэтому принято различать величину начального статического напряжения сдвига (после длительной остановки жид­кости) и динамическую величину (после кратковременных перерывов в работе). Тиксо-тропные свойства жидкостей обратимы, т.е. при восстановлении существовавшего ранее режима течения жидкости их действие прекращается.

Следует также отметить тот факт, что на величину статического напряжения сдвига в значительной степени влияет вибрация, разрушающая образующуюся в жидкости про­странственную структуру. При этом величина т0 может быть снижена практически до 0, и

поведение такой жидкости не будет отличаться от классической ньютоновской жидкости. Особенности строения вязкопластических жидкостей приводят к некоторым пара­доксам. Так, к примеру, в сообщающихся сосудах с вязкопластической жидкостью уровни в коленах сосудов устанаыливаются на разных высотах, зависящих от свойств жидкости и

у

размеров сосудов. ! *

^ 12.2. Движение вязкопластических жидкостей в трубах.

Для того, чтобы вязкопластичная жидкость начала перемещаться необходимо соз­дать между начальным и конечным сечениями участка трубы длиной / некотурую раз­ность напоров, при которой будет преодолена величина начального статического напря­жения сдвига . При этом жидкость отрывается от стенок трубы и первоначально дви­жется на подвижном ламинарном слое, сохраняя свою прежнюю пространственную структуру, т.е. с одинаковыми скоростями по всему отсеку потока. Разрушение этой структуры происходит позже и при некотором превышении напора.

Поскольку в начальный момент времени силы трения будут возникать только у сте­нок трубы, то уравнения равновесия можно запмсать в следующем виде:

Необходимая разность напоров между началом и концом участка трубы определится следующим образом:

Таким образом, при превышении разности напоров расчётную величину жидкость начнёт двигаться по трубе, причём характер (режим) её движения будет зависеть от вели­чины . При движении вязкопластичной жидкости возможны три режима течения её: структурный, ламинарный и тутбулентный.

Условие является необходимым для начала движения жидкости

в структурном режиме, при этом под величиной статического напряжения сдвига следует понимать величину соответствующую длительному покою жидкости, т.е. с учётом прояв­ления тиксотропных свойств жидкости.

^ Структурный режим течения жидкости предполагает наличие вдоль стенок трубы сплошного ламинарного слоя жидкости; в центральной части трубы наблюдается ядро те-

чения, где жидкость движется, сохраняя прежнюю свою структуру, т.е. как твёрдое тело. Размеры центрального ядра течения (радиус ) может быть определён исходя из следую­щего соотношения:

При увеличении А/г размеры ламинарной зоны будут постепенно увеличиваться за счёт уменьшения размеров ядра течения пока структурный режим не перейдёт в полно­стью ламинарный режим движения жидкости. В дальнейшем ламинарный режим посте­пенно сменится турбулентным режимом движения жидкости.

Для определения закона распределе­ния скоростей по сечению потока при структурном режиме движения жидкости запишем некоторую функцию для каса­тельных напряжений в соответствии с формулой Бингама:

Тогда распределение скоростей по сечению трубы можно выразить следующим об­разом:

?

где: - касательное напряжение на стенке трубы радиуса ,

- скорость жидкости на расстоянии от центра трубы. После интегрирования этого уравнения получим:

И окончательно:

Для определения скорости в ядре течения примем , где - радиус ядра течения

(структурной части потока жидкости). Тогда величина скорости в этом ядре течения (ско­рости в ядре течения одинаковые равны) : '

Расход жидкости при структурном движении можно определить, используя извест­ные соотношения дл круглой трубы:

Интегрируя уравнение в пределах от до , получим:

5 f

Последнее уравнение, известное как формула Букингама, можно упростить:

где: - разность давлений при начале движения жидкости, когда каса-

тельнве напряжения в ней достигают величины касательного напряже­ния сдвига. Если пренебречь величиной второго члена ввиду его малости, получим:


* где: - обобщённый критерий Рейнольдса.

Комплексный параметр = Sen носит название числа Сен-Венана.

Таким образом, при расчётах движения вязкопластических жидкостей можно поль­зоваться уравнениями для ньютоновских жидкостей, заменяя в уравнениях величину чис­ла Рейнольдса Re на обобщённый критерий Рейнольдса

^ Турбулентный режим течения жидкости. Характер течения вязкопластических жид­костей существенно не отличается от турбулентного потока ньютоновских жидкостей. Отличие состоит в количественных соотношениях между величинами коэффициентов трения и числом Рейнольдса. Так коэффициент трения может быть выражен как функция обобщённого числа Рейнольдса (в общем виде) следующим образом:

где: В и п - некоторые параметры, устанавливаемые по данным экспериментов. Так по данным экспериментов Б.С. Филатова величины коэффициентов В и п принимают­ся следующими:

- для неутяжелённого глинистого раствора В = 0,1 и п = 0,15,

- для утяжелённого глинистого раствора В = 0,0025 и п = -0,2.

Для расчёта трубопроводов при ждижении по ним глинистых и цементных растворов можно пользоваться формулой Б.И. Мительмана:

при: Re* =2500-40000. 12.3. Движение вязкопластичных жидкостей в открытых каналах

В практике работы горных предприятий не редки случаи, когда приходится транс­портировать неньютоновские жидкости в безнапорных потоках (самотёком), в лотках, по желобным системам. Характер течения вязкопластичных жидкостей в открытых каналах при структурном режиме идентичен аналогичному и напорному потокам такой жидкости в круглых трубах. Т.е. при структурном режиме течения жидкости также выделяется цен­тральное ядро течения, где жидкость движется как твёрдое тело, сохраняя свою первонв-чальную структуру. Ядро течения подстилается непрерывным ламинарным слоем жидко­сти. Течению таких жидкостей по открытым каналам прямоугольного профиля посвяще­ны работы Р.И. Шищенко. По данным его исследований расход вязкопластичной жидко­сти при структурном режиме движения может быть определён по приближённой формуле:

где: - скорость течения ядра потока

- площадь живого сечения канала шириной b и глубиной заполнения h,

- гидравлический уклон, соответствующий началу течения жидкости,

/ - уклон дна канала,

- гидравлический радиус живого сечения потока. ^ 12.4. Движение неньютоновских жидкостей, подчиняющихся степенному реологическому закону, по трубам

Для жидкостей, подчиняющихся степенному реологическому закону, функция на­пряжения сдвига будет иметь следующий вид:

Тогда распределение скоростей в сечение потока будет соответствовать следующей зависимости:

Интегрируя это уравнение, найдём:

, или:

Отсюда можно получить выражение для расхода жидкости:

Отсюда определим величину перепада давления, обеспечивающую движение жидко­сти и соответствующую величину потерь напора на трение.

Сопоставляя полученное выражение с формулой Дарси-Вейсбаха, найдём величину коэффициента трения и обобщённый критерий Рейнольдса:

1   2   3   4   5



Скачать файл (1301.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru