Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лукин О.А. Эконометрика: Учебное пособие - файл n1.doc


Лукин О.А. Эконометрика: Учебное пособие
скачать (504 kb.)

Доступные файлы (1):

n1.doc504kb.23.01.2013 15:58скачать

Загрузка...

n1.doc

Реклама MarketGid:
Загрузка...


Лукин О.А.

ЭКОНОМЕТРИКА: Учебное пособие
РГОТУПС 2003 г.
Российский государственный открытый технический университет путей сообщения, г. Москва

Содержание


Введение 2

Линейная модель множественной регрессии 3

Решение 5

Нелинейные модели регрессии и их линеаризация 8

Показатели качества регрессии 9

Предпосылки метода наименьших квадратов 11

Обобщенный метод наименьших квадратов 17

Фиктивные переменные во множественной регрессии 19

Модели временных рядов 20

Системы эконометрических уравнений 23

Введение



Эконометрика – это наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов. Эта наука возникла в результате взаимодействия и объединения трех компонент: экономической теории, статистических и экономических методов. Становление и развитие эконометрики происходили на основе так называемой высшей статистики, когда в уравнение регрессии начали включаться переменные не только в первой, но и во второй степени. В ряде случаев это необходимо для отражения свойства оптимальности экономических переменных, т.е. наличия значений, при которых достигается минимальное или максимальное воздействие на зависимую переменную. Таково, например, влияние внесения в почву удобрений на урожайность: до определенного уровня насыщение почвы удобрениями способствует росту урожайности, а по достижении оптимального уровня насыщения удобрениями его дальнейшее наращивание не приводит к росту урожайности и даже может вызвать ее снижение.

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая регрессия представляет собой регрессию между двумя переменными – y и x, т.е. модель вида

,

где y – зависимая переменная (результативный признак);

x – независимая переменная (признак-фактор).

Множественная регрессия соответственно представляет собой регрессию результативного признака с двумя и большим числом факторов, т.е. модель вида

.

Простая регрессия может дать хороший результат при моделировании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Однако когда уверенности в правомерности такого допущения нет, необходимо использовать модель с большим числом факторов. Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства и целого ряда других вопросов эконометрики. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Суть этой проблемы включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии. Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции.

Линейная модель множественной регрессии




В линейной множественной регрессии

(1)

параметры при x называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего параметра на единицу при неизменном значении других факторов, закрепленных на среднем уровне.

Пример. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

,

где y – расходы семьи за месяц на продукты питания, тыс. руб.;

x1 – месячный доход на одного члена семьи, тыс. руб.;

x2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК).

Этот метод позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака (y) от расчетных (теоретических) минимальна:

. (2)

Чтобы найти минимум функции (2), надо вычислить производные по каждому из параметров и приравнять их к нулю, т.к. равенство нулю производной – необходимое условие экстремума. В результате получается система уравнений, решение которой и позволяет получить оценки параметров регрессии.

Так, для уравнения (1) система нормальных уравнений имеет вид:

(3)

Решение системы (3) может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.

Пример. По четырем предприятиям региона (см. табл.) изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%). Требуется написать уравнение множественной регрессии.

Номер предприятия

1

2

3

4

, (%)

1

2

3

5

, (%)

0

1

3

4

, (тыс. руб.)

6

11

19

28



Решение


Предположим, что зависимость выработки продукции на одного работника характеризуется следующим уравнением:

.

На основании исходных данных составляем систему уравнений для определения коэффициентов и .

;

; ;

;

;

; ;

.



Решим эту систему по методу Крамера. Вычисляем определитель системы:



Аналогично вычисляем частные определители, заменяя соответствующий столбец столбцом свободных членов:

; ; .

Коэффициенты уравнения определяются по формулам:



Таким образом, уравнение имеет вид:

.

Возможен и иной подход к определению параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

, (4)

где - стандартизованные переменные: , для которых среднее значение равно нулю, а среднее квадратическое значение равно единице;

- стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида для определения стандартизованных коэффициентов регрессии.
. (5)

Следует отметить, что величины и называются парными коэффициентами корреляции и определяются по формулам

, . (6)

Решая систему (5) определяем стандартизованные коэффициенты регрессии. Сравнивая их друг с другом, можно ранжировать факторы по силе воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Получим для предыдущего примера уравнение регрессии в стандартизованном масштабе.

, , ,

















;

;

.

Согласно (5) получаем систему нормальных уравнений в виде:



Окончательно получаем уравнение регрессии в стандартизованном масштабе в виде:



Используя формулы можно вернуться к уравнению «чистой» регрессии:





Сравнивая полученное уравнение с полученным ранее мы видим хорошее соответствие полученных разными способами результатов.

Нелинейные модели регрессии и их линеаризация




При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются по МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию

,

мы преобразовываем ее в линейный вид:

,

где переменные выражены в логарифмах.

Далее обработка МНК та же: строится система нормальных уравнений и определяются неизвестные параметры. Потенцируя значение , находим параметр a и соответственно общий вид уравнения степенной функции.

Вообще говоря, нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Эта оценка определяется, как и в линейной регрессии, МНК. Так, в двухфакторном уравнении нелинейной регрессии



может быть проведена линеаризация, введением в него новых переменных . В результате получается четырехфактороное уравнение линейной регрессии

.

Показатели качества регрессии




Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции.

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как

, (7)

где - общая дисперсия результативного признака;

- остаточная дисперсия для уравнения .

Границы изменения величины - от 0 до 1. Чем ближе значение к единице, тем теснее связь результативного признака со всем набором исследуемых факторов. Величина индекса множественной корреляции должна быть больше или равна максимальному парному индексу корреляции:

.

При правильном включении факторов в регрессионный анализ величина индекса множественной корреляции будет существенно отличаться от индекса корреляции парной зависимости. Если же дополнительно включенные в уравнение факторы малозначимы, то индекс множественной корреляции может практически совпадать с индексом парной корреляции.

Для вычисления индекса множественной корреляции можно пользоваться следующей формулой

.

Для линейного уравнения регрессии в стандартизованном масштабе формула индекса множественной корреляции может быть представлена в виде

. (8)

Пример. Для уравнения корреляции, полученного в предыдущем примере, вычислить индекс множественной корреляции и сравнить его с парными индексами корреляции.

Ранее были получены следующие значения:

; ; .

Тогда по формуле (8) получаем

.

Сравниваем индекс множественной корреляции с парными индексами корреляции:

.

Следовательно, включение обоих факторов в уравнение множественной регрессии является обоснованным.
Значимость уравнения множественной регрессии в целом оценивается с помощью с помощью F-критерия Фишера:

, (9)

где - индекс множественной корреляции (тоже, что и );

- число наблюдений;

- число факторов.

Полученное по формуле (9) значение F сравнивается с табличным при уровне значимости . Если фактическое значение F-критерия Фишера превышает табличное, то уравнение статистически значимо с вероятностью . При использовании таблицы следует принимать .

Пример. Для уравнения корреляции, полученного в предыдущих примерах, вычислить значение F-критерия Фишера и определить статистическую значимость уравнения.

Ранее был вычислен индекс множественной корреляции . По формуле (9) получаем

.

По таблице определяем для значений :



Мы видим, что , а значит полученное уравнение корреляции является статистически значимым.

Предпосылки метода наименьших квадратов




В результате построения с помощью МНК уравнения регрессии получается не точное значение, а отличающееся от точного на некоторую величину :

.

После того как проведена оценка параметров модели, рассчитывая разности фактических и теоретических значений можно получить оценки случайной составляющей . В задачу регрессионного анализа входит не только построение самой модели, но и исследование остаточных величин.

Необходимость этого объясняется тем, что при использовании МНК предполагалось, что остатки представляют собой независимые случайные величины и их среднее значение равно 0; они имеют одинаковую (постоянную) дисперсию.

Таким образом, исследование остатков предполагают проверку наличия следующих предпосылок МНК

Случайных характер остатков

Для проверки строится график зависимости остатков от теоретических значений результативного признака. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и МНК оправдан, а теоретические значения хорошо аппроксимируют фактические значения y. Пример случайности остатков приведен на рисунке:


Возможны различные случаи зависимости остатков от теоретических значений . Приведем примеры





Нулевая средняя величина остатков, не зависящая от

Эта предпосылка означает, что . Это условие выполнимо для линейных моделей. Для определения независимость величины остатков от , как и в случае определения независимости от , строится график от . Если остатки на графике расположены в виде горизонтальной полосы, то они независимы от значений . Если же зависимость присутствует, то модель является неадекватной.

Гомоскедастичность

Гомоскедастичность остатков означает, что дисперсия каждого отклонения одинакова для всех значений x. Если это условие не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции (смотри рисунок).





Т.к. дисперсия характеризует отклонение то из рисунков видно, что в первом случае дисперсия остатков растет по мере увеличения x, а во втором – дисперсия остатков достигает максимальной величины при средних значениях величины x и уменьшается при минимальных и максимальных значениях x. Наличие гетероскедастичности будет сказываться на уменьшении эффективности оценок параметров уравнения регрессии. Наличие гомоскедастичности или гетероскедастичности можно определять также по графику зависимости остатков от теоретических значений .

Отсутствие автокорреляции остатков

Под автокорреляцией остатков понимают зависимость распределения значений остатков друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Оценить эту зависимость можно вычислив коэффициент корреляции между этими остатками по формуле, аналогичной (6)

. (10)

Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированны.

Пример. Проверить для уравнения регрессии, полученного ранее, выполнение предпосылок МНК.

Вычисляем теоретические значения по уравнению регрессии полученному ранее, а остатки по формуле и записываем в таблицу


Номер предприятия

1

2

3

4

, (%)

1

2

3

5

, (%)

0

1

3

4

, (тыс. руб.)

6

11

19

28

, (тыс. руб.)

5,79

11,31

19,07

27,87

, (тыс. руб.)

0,21

-0,31

-0,07

0,13


Теперь для проверки случайного характера остатков построим график их зависимости от теоретических значений .



Хотя по четырем точкам судить трудно, но в целом можно сделать вывод, что остатки распределены случайно. Из этого же рисунка можно сделать вывод о гомоскедастичности остатков, т. к. дисперсия каждого отклонения одинакова для всех значений x.

Вычислим теперь величину суммарного отклонения:

.

По малости этой величины можно сделать вывод о практически нулевой средней величине остатков.

Коэффициент автокорреляции остатков находим по следующим рядам данных:

, (тыс. руб.)

-0,31

-0,07

0,13

, (тыс. руб.)

0,21

-0,31

-0,07


;

;

;





Отсюда находим



Коэффициент корреляции не так велик, и его можно считать приемлемым. Таким образом мы установили, что у нас были все предпосылки к тому, чтобы применять МНК и линейное уравнение регрессии к исходным данным.

Обобщенный метод наименьших квадратов




При наличии гетероскедастичности в остатках рекомендуется традиционный метод наименьших квадратов (МНК) заменять обобщенным методом наименьших квадратов (ОМНК).

Будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для различных значений фактора, а пропорциональна некоторой величине , т.е.

,

где - дисперсия ошибки на конкретном (i – ом) значении фактора;

- постоянная дисперсия ошибки при соблюдении предпосылки о гомоскедастичности остатков;

- коэффициент пропорциональности, меняющийся с изменением величины фактора, что и обуславливает неоднородность дисперсии.

При этом полагается, что величина неизвестна, а в отношении величины выдвигаются определенные гипотезы, характеризующие структуру гетероскедастичности.

В общем виде уравнение регрессии примет вид

.

Исходные данные для этого уравнения будут иметь вид:

.

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляет собой взвешенную регрессию, в которой переменные x и y взяты с весами .

Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида

.

Фиктивные переменные во множественной регрессии




До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель факторы, которые представляют собой различные атрибутивные признаки. Такими признаками, например, являются профессия, пол, образование, климатические условия и т.п. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные преобразовать в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными.

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для совокупности обследуемых уравнение регрессии имеет вид:

,

где y – количество потребляемого кофе;

x – цена кофе.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола: и женского пола: . Если сила влияния цены на количество потребления кофе одинакова как для мужчин, так и для женщин (), то становится возможным построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Это уравнение может быть записано в виде:

,

где - фиктивные переменные, принимающие значения:

.

Следует отметить, что применение МНК для оценивания параметров и приводит к вырожденной матрице исходных данных, а следовательно, и к невозможности получения их оценок.

Выходом из создавшегося положения может явиться переход к уравнению

,

т.е. уравнению, включающему только одну фиктивную переменную. Предположим, что МНК были получены оценки параметров этого уравнения, тогда теоретические значения размера потребления кофе для мужчин будут получены из уравнения

.

Для женщин соответствующие значения получим из уравнения

.

Модели временных рядов




Обычно эконометрические модели строятся на основе двух типов исходных данных:

 данные, характеризующие совокупность различных объектов в определенный момент (период) времени;

 данные, характеризующие один объект за ряд последовательных моментов (периодов) времени.

Модели, построенные по данным первого типа, называются пространственными моделями. Модели, построенные на основе второго типа данных, называются моделями временных рядов.

Временной ряд – совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

 факторы, формирующие тенденцию ряда (например, инфляция влияет на увеличение размера средней заработной платы);

 факторы, формирующие циклические колебания ряда (например, уровень безработицы в курортных городах в зимний период выше по сравнению с летним);

 случайные факторы.

Очевидно, что реальные данные чаще всего содержат все три компоненты. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда. Если же временной ряд представлен как их произведение, то такая модель называется мультипликативной.

При наличии в временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют уровнями автокорреляцией уровней ряда. Количественно эту зависимость с помощью коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутого на несколько шагов во времени.

Пример. Пусть имеются условные данные о средних расходах на конечное потребление (, денежных единиц) за 8 лет.

t















1

7

-

-

-

-

-

-

2

8

7

-3,39

-3

9,87

10,8241

9

3

8

8

-3,29

-2

6,58

10,8241

4

4

10

8

-1,29

-2

2,58

1,6641

4

5

11

10

-0,29

0

0,00

0,0841

0

6

12

11

0,71

1

0,71

0,5041

1

7

14

12

2,71

2

5,42

7,3441

4

8

16

14

4,71

4

18,84

22,1841

16



86

70

-0,03

0

44,0

53,4287

38


По формулам



вычисляем

,

.

Далее, заполняем таблицу и используя формулу для вычисления линейного коэффициента корреляции, получаем

.

Полученное значение свидетельствует об очень тесной зависимостью между расходами на конечное потребление текущего непосредственно предшествующего годов и, следовательно, о наличии во временном ряде расходов на конечное потребление сильной линейной тенденции.

Нами был посчитан коэффициент автокорреляции для смещения на один год. Такой коэффициент называется коэффициентом первого порядка. При смещении на два года получим коэффициент второго порядка и так далее. Число периодов (в данном случае лет), по которым рассчитывается коэффициент автокорреляции, называется лагом.

Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени. Поскольку зависимость может принимать различные формы, то ее формализации можно использовать различные виды функций: линейную, гиперболическую, параболическую, степенную и т.п. Параметры каждой из перечисленных моделей могут быть найдены по МНК.

Системы эконометрических уравнений




Объектом статистического изучения в социальных науках являются сложные системы. Измерение тесноты связей между переменными, построение изолированных уравнений регрессии недостаточно для описания таких систем и объяснения механизмов их функционирования. При использовании отдельных уравнений регрессии, например для экономических расчетов, в большинстве случаев предполагается, что аргументы (факторы) можно изменять независимо друг от друга. Однако это предположение является очень грубым: практически изменение одной переменной повлечет за собой изменения во всей системе взаимосвязанных признаков. Этим объясняется необходимость использования не отдельных уравнений, а их систем.

Система уравнений в эконометрических исследованиях может быть построена по-разному.

Возможна система независимых уравнений, когда каждая зависимая переменная рассматривается как функция одного и того же набора факторов:



Примером такой модели может служить модель экономической эффективности сельскохозяйственного производства, где в качестве зависимых переменных выступают показатели эффективности производства (производительность, себестоимость продукции и т.д.), а в качестве факторов – характеристики самого хозяйства (количество голов скота, площадь пашни и т.д.).

Для системы независимых уравнений каждое уравнение может рассматриваться самостоятельно, и его параметры определяются обычным образом по методу наименьших квадратов.

Наибольшее распространение в эконометрических исследованиях получила система взаимосвязанных уравнений. В ней одни и те же зависимые переменные в одних уравнениях входят в левую часть системы, а в других – в правую часть:



Система взаимосвязанных уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. Каждое уравнение такой системы не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются его модификации: косвенный, двухшаговый и трехшаговый метод наименьших квадратов.

Примером системы одновременных уравнений может служить модель динамики цены и заработной платы вида



где - темп изменения месячной заработной платы;

- темп изменения цен;

- процент безработных;

- темп изменения постоянного капитала;

- темп изменения цен на импорт сырья.





Скачать файл (504 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru