Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Дипломная работа - Обучение учащихся 1-5 классов решению задач на движение в условиях преемственности изучения математики - файл n1.doc


Дипломная работа - Обучение учащихся 1-5 классов решению задач на движение в условиях преемственности изучения математики
скачать (256.5 kb.)

Доступные файлы (1):

n1.doc257kb.23.01.2013 19:19скачать

Загрузка...

n1.doc

  1   2   3
Реклама MarketGid:
Загрузка...


Министерство образования, культуры и спорта Калужской области

Государственное образовательное учреждение

Мещовский педагогический колледж

Выпускная квалификационная работа

по учебной дисциплине: Методика преподавания математики в начальных классах

Тема: Обучение учащихся 1-5 классов решению задач на движение в условиях преемственности изучения математики

Пономарёва Ольга Александровна

курс V, группа "А"

специальность: 05070952

Преподавание в начальных классах

Форма обучения: очная

Научный руководитель:

Панина Татьяна Викторовна

г. Мещовск

2008

Оглавление

Введение ……........................................................................................................ 3

Глава 1. Психолого – педагогический анализ основных понятий………...7

    1. Психолого – педагогический анализ понятия «преемственность»……..7

    2. Проблема преемственности с позиции педагогики и методики обучения математике…………………………………………………………….…..10

    3. Психолого – педагогический анализ понятия «задача»………………..18

Глава 2. Методические аспекты обучения решению текстовых задач на движение…………………………………………………………………………23

2.1. Задачи на движение, как один из типов задачи………………………...23

2.2. Методы решения текстовых задач на движение………………………..27

2.3. Общие и специальные умения решение текстовых задач на движение…………………………………………………………………………27

2.4. Реализация работы по формированию умений решения текстовых задач на движение………………………………………………………………………34

Глава 3. Экспериментальное исследования проблемы…………………...41

3.1. Констатирующий эксперимент…………………………………………..42

3.2. Формирующий эксперимент……………………………………………..47

3.3. Контролирующий эксперимент……………………………………….…49

Заключение……………………………………………………………………...54

Список литературы……………………………………………………………56

Приложения

Введение

Социальные преобразования в России кардинально изменили и образовательную ситуацию. В парадигме между обществом и личностью демографическая направленность образования потребовала изменения приоритета сторону личности: общество должно решать свои задачи, прежде всего с учетом личности. В настоящее время меняются и структура и содержание математического образования. Было разработано много альтернативных и вариативных концепций, которые направлены на развитие личности, а процесс становления личности человека рассматривается посредством овладения им основных знаний. Это и определило новый этап в развитии математического образования. Проблема преемственности в обучении математики приобрела особое значение в связи с разносторонним развитием школы, ставшим реальностью, с которой, уже не могут не считаться и непосредственные участники учебного процесса – учителя и организаторы школьного образования, и общество в целом. Острота этой проблемы определена как минимум тремя обстоятельствами: 1 – широким распространением различных типов общеобразовательных учреждений; 2 – профильной дифференциацией обучения на старшей ступени и в основной школе; 3 – наличием большого числа учебников в одной и той же параллели, отражающих многообразные авторские дидактические подходы к обучению математике, часто в значительной степени противоречащие один другому по достаточно существенным параметрам. В связи с распространением идей деятельностного подхода, проблемного и развивающего обучения, все чаще затрагивается тема обучения через задачи. Текстовой задачи, как никакой другой учебный материал, способны осуществлять такое обучение на практике, так как позволяют создавать проблемные ситуации на уроках на протяжении всего курса математики. Изучением роли текстовых задач в обучении математике занимались в разные годы В. А. Латышев, М. И. Моро, Г. Б. Поляк, А. С. Пчелко, В. П. Радченко, Я. А. Шор и другие. Авторы считают текстовые задачи прекрасным дидактическим и развивающим средством, указывая, что они осуществляют связь обучения с жизнью, способствуют усвоению математических понятий и установлению внутрипредметных и межпредметных связей, формированию умения решать математические задачи, развивают мышление, память, воображение, смекалку ребенка. В педагогической литературе традиционно много внимания уделяется обучению решению текстовых задач, а в частности одного из видов – задач на движение тел. Так как данный вид задач является одним из наиболее сложных для усвоения детьми. В ряде исследований предлагается оптимизировать процесс обучения решению текстовых задач за счет использования различных форм организации учебного процесса (О. В. Баринова, Е. С. Казько) и методических приемов (Н. Б. Истомина, П. М. Эрдниев), широкого применения геометрических моделей (Н. Я. Виленкин, Л. Ш. Левенберг, Л. Г. Петерсон), рассмотрения отдельных видов задач (М. А. Бантова, Т. К. Жикалкина, Л. Н. Скаткин). Однако все эти исследования распространяются либо на младшие, либо на средние классы, в них не всегда учитывается преемственность в обучении решению текстовых задач. Возникает необходимость в обучении различным методам решения тестовых задач посредством формирования умений, составляющих эти методы. Исследователи выделяют отдельные действия, адекватные алгебраическому (Л. И. Кузнецова, Я. Я. Менцис) и арифметическому (Л. С. Лунина) методам. Таким образом, противоречие между потребностью в научно – обоснованной методике обучения решению текстовых задач, а именно одного из видов задач на движения тел, основой которой является формирование действий, адекватных различным методам решения и реальным состоянием обучения в школьной практике, потребность в осуществлении преемственности между начальными и средними классами и определяют актуальность исследования. Проблемы исследования заключается в поиске и в обосновании путей более эффективных методических способов непрерывности и преемственности процесса обучения решению текстовых задач на движения на двух ступенях образования (начальной и основной школой). Цель исследования состоит в разработке методике формирования умения решать задачи на движение в условиях преемственности между начальной и средней школы. Объектом исследования выступает процесс обучения решению текстовых задач в четвертом и в пятом классе. Предметом исследования содержание, формы и средства обучения решению текстовых задач на движение. Гипотеза: процесс обучения решению текстовых задач будет эффективным, если разработать методику, основанную на формировании действий, адекватных различным методам решения текстовых задач в условиях преемственности изучения математики. Методологической основой исследования явились: принципы единства и диалектического взаимодействия теории и практики в научном познании; диалектический подход к сущности понятия преемственность. Проблема, цель, гипотеза обусловили следующие задачи: 1.Проанализировать состояние проблемы преемственности в педагогической теории и практике обучения математики.

2.Проанализировать действующие учебники по математике по традиционной и развивающей системе для четвертого и пятого классах. 3.Разработать методику обучения решению текстовых задач на движение различными методами на основе формирования составляющих их умений и их совокупностей в условиях преемственности изучения математики и взаимосвязи методов решения.

4.Эксперементально проверить эффективность применения данной методики. Для решения поставленных задач использовались методы педагогического исследования: анализ психолого – педагогической литературы, программ и учебников по математике для начальной и основной школы; наблюдение и анализ уроков; беседа с учителями и учащимися; контролирующий, обучающий и контрольный эксперименты с учащимися четвертого и пятого классов. Теоретическая значимость исследования заключается в: -систематизации типов текстовых задач на движение; -систематизированных и обоснованных общий умениях решать текстовые задачи, а также действиях, адекватных алгебраическому и арифметическому методам; -уточненной трактовке понятия «преемственность в обучении»; -выявленной возможности формирования умения решать текстовые задачи на движение на основе действующих учебников математики для четвертых и пятых классов в условиях преемственности обучения. Практическая значимость результатов исследования состоит в разработке методического обеспечения формирования у учащихся умения решать текстовые задачи на движение в процессе обучения математике по существующим учебникам. Обоснованность и достоверность результатов и выводов, полученных в ходе проведенного исследования обеспечены опорой на современные положения теории и методики обучения математике с учетом деятельной концепции обучения, применением методов исследования, адекватных его целям и задачам, экспериментальной проверкой выводов.

Глава I. Психолого – педагогический анализ основных понятий

1.1 Психолого – педагогический анализ понятия «преемственность»

Развернутый теоретический анализ преемственности на основе диалектической концепции развития впервые был проведен Гегелем, который, разрабатывая закон отрицания – отрицания, дал глубокую постановку вопроса об объективной необходимости преемственности в процессе развития. Гегель пришел к выводу, что диалектическое понятие отрицания предполагает не только отмену, разрушение, уничтожение старого, но сохранение, удержание и развитие того рационального, что было уже достигнута на предыдущей ступени развития. Однако, Гегель связывал преемственность саморазвитием абсолютной идеи при этом оказывал в развитии природе и отрицал преемственность как атрибут развития материального мира. Преемственность – это связь между различными этапами или ступенями развития, как бытия, так и познания, сущность которой состоит в сохранении тех или иных элементов целого или отдельных сторон его организации при изменении целого как системы, то есть при переходе его из одного состояние в другое. Диалектический материализм рассматривает преемственность, как и понятие развития, применительно к объектам, в котором уже выделено внутреннее строение, структура. Безотносительно структуре объекта можно говорить только о его простом восприятии и уничтожении. Таким образом, преемственность выступает как одна из наиболее существенных сторон закона отрицания – отрицания, проявляющаяся в природе, обществе и мышлении, как объективная необходимая связь между новым и старым в процессе развития. Принципиальное значение имеет выявление специфики преемственности в общественном развитии, ее отличие от преемственности в развитие природы. Если преемственность в природе (Пример: преемственность клеток и их структур в ряду клеточных поколении) осуществляется стихийно (при условии, что в эти процессы не вмешивается человек), то в обществе на процесс развития, в том числе и на такой его фактор как преемственность, всегда накладывают свой отпечаток действия людей, активно помогающих или мешающих поступательному развитию. Это значит, что преемственность в общественной жизни не может быть понята вне сознательной деятельности людей. По мере развития общества происходит непрерывное возрастание роли сознательно формулируемых и осуществляемых целей.

Сущность понятия «Преемственность»

В процессе обучения преемственность понимается по разному. Одни рассматривают ее как связь между отдельными предметами в процессе обучения (физика и математика, математика четвертого класса и математика пятого класса), другие, как простое использование полученных ранее знаний при дальнейшем изучении того же самого предмета, третьи, как постоянство и единообразие требований, предъявляемых учащимся при переходе из класса в класс. Но как бы ни понималась преемственность, разговоры о ней всегда вызывают некоторую настороженность и тревогу. Ведь считается, что если процесс обучения в школе протекает удовлетворительно от первого до последнего класса, если осуществляется плавный переход между отдельными звеньями, то в этой школе нет проблемы преемственности, что в этой школе преемственность решена. Правильное понимание преемственности может принести пользу при организации всего процесса обучения в школе и его отдельных этапов. Более глубокое понимание проблемы преемственности может стать серьезным орудием в методических исследованиях. Оно поможет лучше понять многие вопросы, и в частности такие, как вопрос о повторении в процессе обучения, вопрос о линейном и концентрическом построении курсов.

Преемственность и повторение

К. Д. Ушинский говорил: «Ведите неустанное повторение, предупреждающее забвение»1, но эти слова не должны пониматься прямолинейно. Вероятно, имелось в виду построение курса, при котором повторение, способствующее преемственности при изучении понятия или системы понятий, дает возможность проявиться основным качествам преемственности. В упражнениях на повторение должно появиться новое, отмирать старое, несущественное в соответствии с логикой развития изучаемого понятия, в соответствии с повышением уровня образования учащихся. Таким образом, преемственность требует повторения, которое обеспечивает непрерывное развитие системы понятий. Следовательно, не всякое повторение может обеспечить преемственность в процессе развития понятия или системы понятий. Чтобы преемственность осуществлялась, повторение должно быть органически включено в новую тему и, по мере развития темы, должно соответствующим образом меняться, не сводясь лишь к механическому повторению одних и тех же упражнений.

Преемственность и пропедевтика.

Сначала пропедевтика понималась как подготовительный или начальный курс, представляющий введение в какую – то науку или учебный предмет. Этот подготовительный курс должен был отличаться более элементарной формой изложения. Теперь наряду с пропедевтическими курсами все чаще и чаще начинают рассматривать пропедевтику отдельных наиболее важных для курса математики понятий. Когда обнаруживаются трудности при формировании понятий, тогда возникает вопрос о пропедевтике. Правильно решить вопрос о пропедевтике можно лишь при полном учете всех требований преемственности. Понимание преемственности поможет выделить существенные части темы и расположить их так, чтобы ее прохождении представляло, в полном смысле слова, развитие с надлежащим образом установленными связями между отдельными частями и этапами изучения.

Преемственность и переучивание.

Вопрос о переучивании имеет непосредственное отношение к рассматриваемой теме. «Переучивание» в таком смысле совершенно необходимо и понятно при правильном решении вопроса о преемственности в процессе обучения с первого по пятый класс. Это заставляет сделать важный вывод, что «переучивание» не только не вредно, но и необходимо и полезно для правильного осуществления преемственности. Понимание преемственности как связь между явлениями, способствующей нормальному протеканию процесса развития, дало возможность иначе посмотреть на вопросы повторения, пропедевтики и переучивания.

1.2.Проблема преемственности с позиции педагогики и методики обучения математики

Проблема преемственности рассматривалась и в педагогике. Так, большинство ученых – педагогов связывают преемственность с процессом обучения. Ю.К.Бабанский видел решение проблемы преемственности в принципах обучения. Он отмечал, что « в принципах обучения находят отражение такие важнейшие педагогические закономерности и законы, как закон обучения и развития личности ». Одним из принципов, в котором реализуется преемственность, Бабанский называл «принципом систематичности и последовательности в обучении». Этот принцип требует чтобы знания, умения и навыки формировались в определенном порядке, в системе: каждый элемент учебного материала логически связывается с другими, последующее опираются на предыдущее и готовит к усвоению нового. Г.И.Щукина также рассматривала преемственность в связи с принципами обучения. Одним из важнейших принципов обучения она выделила принцип научности, систематичности и последовательности в обучении. Научность обучения невозможна без систематичности. Каждая наука имеет свойственную ей логику. Она не может и не должна механически переноситься в школу, но наличие системы – одна из черт, приближающих учебный предмет к науке. В школе даются учащимся отстоявшиеся знания, признанные наукой и, конечно, доступные, отвечающие возрастным и психологическим особенностям детей и подростков. Системность обеспечивается последовательным расположением материала. Научность и систематичность в обучении обеспечиваются преемственностью. Ее характеризуют опора на пройденное для последовательного развития знаний, умений, навыков и установление разнообразных связей не только между новыми, но и прежними знаниями, как элементами целостной, единой системы. Подлинная система невозможно без установления преемственных и межпредметных связей. Таким образом, в педагогике проблема преемственности рассматривается в связи с процессом обучения, а реализуется она в принципах этого обучения. В силу определенности и стабильности целей обучения математики такие элементы методики, как содержание, методы, средства и организационные формы обучения, в своем развитии долгие годы оставались неизменными. Эта стабилизация, естественно, определяла развитие каждого из перечисленных элементов и связей между ними.

Преемственность не только инструмент, позволяющий проникнуть в суть методических проблем, исследовать и управлять весьма многогранным процессом обучения и воспитания, но и сама является предметом целенаправленных и разнообразных педагогических исследований. Связывая методические аспекты проблемы преемственности с проблемами развития методики обучения математики, следует остановиться на некоторых, основных условиях – принципах этого развития, понимание которых методистами и учителями позволяет успешнее строить процесс обучения и достигать поставленных целей. В связи с этим нужно подчеркнуть необходимость комплексного, системного подхода к изучению методики обучения математике, ее элементов и их взаимосвязей. Только такой подход создает основу для разработки конкретных методических положений, направленных на повышение качества и эффективности обучения математике. Известные элементы методики вместе с вытекающими из них конкретными методическими рекомендациями составляют определенную методическую систему, учитывающую конкретные цели и условия обучения. Понимание того, что методика, являясь наукой педагогической, обладает инвариантностью, самостоятельностью, очень важно для исследования различных «внешних» и «внутренних» аспектов преемственности. Методическая система подчиняется определенным закономерностям: 1. Закономерности, связанные с внутренним строением методической системы, когда изменение одного или нескольких ее компонентов влечет изменение всей системы в целом. Можно говорить о том, что появление принципиально новых средств обучения, качественно изменяющих возможности передачи информации и расширяющих возможности организации учебного процесса, приводит к пересмотру содержания, форм и средств обучения. 2. Это закономерности внешних связей методической системы. Эти закономерности прежде всего определяются тем, что любая методическая система функционирует на определенном социальном и культурном фоне, оказывающем на нее решающее воздействие. Таким образом, методическая система представляет собой сложное динамическое образование, она реализуется в рамках школы. По этой причине любого рода перестройки методической системы обучения математике должны намечаться и производиться с учетом реальных возможностей их осуществления, с учетом, что они не разрушают единый учебно – воспитательный процесс. Следовательно, они должны приводить к результатам, которые органически входят в деятельность школы, не нарушая смысла и ритма ее работы. Поэтому совершенствование методической системы должно определяться принципом преемственности: совершенствование методической системы обучения математике должно отправляться от сложившейся в школе системы обучения, воспитания и развития учащихся и органически входить в эту систему. Особенно актуальной стала проблема преемственности курса математики на переходе от начальной к основной школе. Эта проблема в начальной школе занимает решающее место: проблема преемственности может не возникнуть только в том случае, когда правильно организованно именно начальное обучение. Другими словами, на начальную школу возлагается высочайшая ответственность за все дальнейшее обучение математике. Основным источником проблемы преемственности четвертого и пятого класса является переход на предметное обучение и новое в процессе обучения. Проблема преемственности обучения математике является составной частью общей проблемы преемственности учебно–воспитательной работы в школе. Для того чтобы обеспечить успешную преемственность в обучении математике между четвертым и пятым классами, учитель должен быть не только знаком с содержанием и методами обучения математике в начальном звене школы, но и четко представлять себе, с каким конкретным «учебным методическим багажом» переходят в пятый класс учащиеся, окончившие четвертый класс.

Знания, умения и навыки, которыми должен овладеть ученик к концу четвертого класса: 1) чтение и запись многозначных чисел, знание принципа десятичной позиционной нумерации и умение его использовать; 2) понимание смысла известных алгоритмов арифметических действий 3) умение использовать основные свойства арифметических действий для рационализации устных и письменных вычислений; 4) умение решать простейшие линейные уравнения и применять метод уравнений при решении несложных текстовых задач; 5) представление о различных долях единицы, умение решать задачи на нахождение доли числа и числа по его доли и др. В работе учителей четвертых и пятых классов необходимо осуществлять взаимосвязь. Эта необходимость вызывается трудностью перехода для учащихся к предметной системе обучения. Следует учитывать также и психологические особенности детей младшего школьного возраста. Все это требует от учителя правильного подхода к детям, изучения их индивидуальных особенностей. Для того, чтобы это изучение было наиболее успешным, необходимо начать как можно раньше. Таким образом, учитель четвертого класса как бы готовит своих учеников к прохождению курса математики в пятом классе. Если при посещении уроков математики в начальной школе учитель видит хорошую подготовку учащихся, а в пятом классе многие вопросы вызывают у них затруднения, тот это в большей мере говорит о том, что между изучением математики в начальной и средней школе имеется разрыв, который должен быть устранен. Учителю математики средней школы необходимо бережно относиться к знаниям и навыкам, получаемым учащимися в начальной школе на уроках математики, укреплять и развивать их, а приступая к изучению нового материала, следует напомнить учащимся, что оно изучали по этому вопросу в начальной школе. При такой постановке работы изучение нового материала для учащихся станет более доступным и интересным, а само обучение будет способствовать их умственному развитию. Реальное решение проблемы преемственности обучения в пятом классе зависит в настоящее время, прежде всего от учителя, от его умения. Как было указано ранее, проблемой преемственности в обучении педагоги занимаются не первое десятилетие. В настоящее время в связи с появлением новых педагогических концепций и образовательных программ, широким распространением различных типов общеобразовательных учреждений и разнообразием школьных учебников она становиться наиболее актуальной. Под преемственностью в нашем исследовании мы будем понимать сложный педагогический феномен, обеспечивающий непрерывное и результативное осуществление учебной деятельности (использование ранее изученного пропедевтика изучаемого в дальнейшем), совершенствование и систематизацию знаний умений и навыков учащихся, а также их психическое развитие (усложнение мыслительных операций, памяти способностей). В нашем исследовании преемственность реализуется в содержании – действиях, составляющих умение решать текстовые задачи на движение, а также в средствах обучения – упражнениях, направленных на формирование этих действий и их совокупности. В результате теоретического анализа можно сформулировать следующие исходные положения: 1.Понятие «преемственность» является необходимым условием развития систем, поведение которых подчинено принципам целостности и структурности. Это значит, что оно зависит не столько от свойств отдельных элементов, сколько от их места и функции целого и от свойств общей структуры. 2.Диалектическая взаимосвязь преемственности и развития носит всеобщий характер и относится в полной мере к научному знанию. 3.Обладая свойством всеобщности, преемственность в каждом конкретном случае сугубо специфична и «конкретных проявлений преемственности бесконечно много…» 4.Для характеристики понятия преемственности обучения в рамках новой парадигмы математического образования как процесса становления личности человека посредством овладения им основами математических знаний и умений математической деятельности, необходим комплексный и системный подход, в котором находят отражение: логика построения основных содержательно – методических линий курса, развитие мышления учащихся и психологические основы формирования учебной деятельности.

Анализ действующих учебников по математике

С целью выяснения, как происходит пропедевтика, формирование и совершенствование выделенных действий, был проверен анализ существующих учебников для четвертого и пятого классов следующих авторов: М.И.Моро, И.И.Аргинской, (четвёртого класса), Н.Я.Виленкина (пятый класс). При анализе учебников мы выявили общее количество задач на движение, решаемых учащимися младшего и среднего классов, а также качество формирования выделенных нами умений. Результаты анализа показали: В учебниках И.И.Аргинской формирование умения решать задачи на движение начинается уже в третьем классе, однако, эти задачи составляют менее 1% от общего числа задач, решаемых в третьем классе. В четвертом классе они составляют 15% от всех задач. В учебниках М.И.Моро формирование умения решать текстовые задачи на движение начинается в четвертом классе, а в третьем классе учащиеся подготавливаются к решению такого типа задач, рассматривая задачи на движение вне связи пропорциональной зависимостью величин. Данный тип задач занимает в данном учебнике 13% от всех задач. Недостатком является то, что в данных учебниках не ведется пропедевтика алгебраического метода решения. В учебниках для пятого класса (Н.Я.Виленкин) количество решаемых задач на движение сокращается. В учебнике Н.Я.Виленкина они составляют 10%, более подробное рассмотрение видов задач, но таких задач очень мало и опора на алгебраический метод решения без связи с четвертым классом. О качестве и количестве упражнений, формирующих выделенные нами умения в действующих учебниках можно судить по таблице, которая представлена в «Приложении». Результаты проведенного анализа позволяют сделать следующие выводы: между методиками обучения решению текстовых задач младших и средних классов существует разрыв, который заключается в следующем: в начальной школе основным является арифметический метод решения и в учебниках (особенно нетрадиционных) предусмотрены специальные упражнения, формирующие отдельные его элементы (выделение условия и вопрос задачи, известных и неизвестных величин, переводить зависимости между величинами на математический язык). К тому же есть все предпосылки для пропедевтики на арифметических задачах специальных умений, составляющих алгебраический метод (например, в учебниках И.И.Аргинской, Н.Я.Виленкина). В средних классах начинает доминировать алгебраический метод, преподносимый учащимся в готовом виде (в виде алгоритма). Методическая работа, проводимая в младших классах, здесь не находит своего продолжения, так как практически нет подготовительных упражнений для формирования специальных действий. Несогласованность между методиками усугубляется сокращением количества текстовых задач в средних классах. Учебники М.И.Моро практически не готовят детей к решению задач на движение алгебраическим методом. Такой вывод нам позволило сделать то обстоятельство, что в четвертом классе алгебраически разбирается лишь одна задача на движение, а в пятом классе идет акцент на рассмотрение задач на движение по реке, это указывает на то, что утрачивается связь между приобретенными навыками. Лучше всего подготавливают детей к решению задач на движение в старших классах учебник Н.Я.Виленкина. В нём данный тип задач занимает не только значительную часть от всех текстовых задач, решаемых в четвертом классе, но также более подробно (по сравнению с другими учебниками) изучаются отдельные виды задач на движение, и идет пропедевтика алгебраического способа решения, однако этих заданий недостаточно. Эти выводы определили направление наших методических разработок: в начальном курсе математики у учащихся следует отрабатывать общие умения и вести пропедевтику специальных, а в средних классах – совершенствовать общие и формировать специальные. Осуществляться это должно с помощью упражнений, органически связанных с содержанием действующих учебников.

1.3.Психолого-педагогический анализ понятия «задача»

Известные педагоги и методисты, такие как М.И. Моро, A.M. Пышкало, Л.М. Фридман утверждают, что среди многочисленных школьных задач особо выделяются задачи, которые на разных ступенях обучения называются по-разному: арифметические, алгебраические задачи на составление уравне­ний и систем уравнений. Фактически, это один и тот же вид задач, который характеризуется сле­дующими чертами:

1) задачи сформулированы на естественном языке, их называют текстовыми;

2) в них, обычно, описывается количественная сторона каких-то явлений, со­бытий, их называют сюжетными;

3) они представляют собой задачи на разыскание искомого и сводятся к вы­числению неизвестного значения некоторой величины их называют вычисли­тельными. Эти задачи решаются на протяжении всех лет обучения в школе с пер­вого по одиннадцатый класс, и на обучение их решению затрачивается значи­тельная часть времени, отведенного на изучение математики. Объясняется это тем, что решение этих задач является незаменимым средством формиро­вания у учащихся многих первичных математических понятий, например, ре­альный смысл арифметических действий над числами, свойства этих дейст­вий, а главное - формирование умений и навыков моделирования. М. И. Моро предлагала следующее определение понятия «задача»: «Задача - это сформированный словами вопрос, ответ на который может быть получен с помощью арифметических действий. Основная особенность задач состоит в том, что в них не ука­зывается прямо, какое именно действие должно быть выполнено над данными числами для получения искомого. Текст задачи должен содержать какие-то косвенные указания на ту связь, которая существует между данными и ис­комыми числами, и которая определяет выбор нужных арифметических дей­ствий и их последовательности. Условие, по мнению М. И. Моро, призвано раскрыть связь между данными числами и их искомыми, естественно вклю­чающих числовые данные. Основными элементами задачи являются - условие и вопрос. Числовые или буквенные данные представляют собой элементы условия. Искомое все­гда заключается в вопросе. Однако в некоторых случаях задача формируется так, что вопрос может включать в себя часть условия или вся задача может излагаться в форме вопроса. Всё это необходимо учитывать при обучении детей решению задач. Решить задачу - значит объяснить, какие действия нужно выполнить над данными в ней числами, чтобы после вычислений получить число, кото­рое нужно узнать. Записать решение задачи - значит с помощью цифр и знаков действий показать, что нужно сделать, чтобы найти неизвестное число, выполнить вы­числения и дать ответ на вопрос. Решение задач занимает в школьном курсе математики огромное место. Л. М. Фридман выделяет следующие главные функции решения задач: 1. Решение задач используется для сформирования у учащихся нужной моти­вации их учебной деятельности, интереса и склонности к этой деятельности. Л. И. Земцова установила, что организация процесса обучения, в том числе обучения решению задач, представляет собой важный мотивирующий фак­тор учения. 2. Решение задач используется для иллюстрации и конкретизации изучаемого учебного материала. Знакомство учащихся с теоретическим материалом все­гда сопровождается решением задач, в процессе которого учащиеся более на­глядно, зримо и конкретно осознают сущность этого материала. 3. Выработка у учащихся определённых умений и навыков (счёта, вычисле­ний). Эти умения и навыки могут быть сформированы у учащихся лишь в процессе длительных упражнений в решении соответствующих задач. 4. Решение задач используется как наиболее адекватное и удобное средство для контроля и оценки учебной работы учащихся. Решение специально по­добранных задач, характер их решения и ошибки, которые допускают уча­щиеся в решении чётко и правильно показывают уровень усвоения и овладе­ния учащимися изученным учебным материалом. 5. Решение задач часто используются для приобретения учащимися новых знаний. Вместо того, чтобы излагать ту или иную тему, можно предложить учащимся самостоятельно решить соответствующую задачу на доказательст­во, на установление некоторой закономерности.

Обобщив разнообразные функции, можно выделить обучающие, разви­вающие, воспитывающие и контролирующие (Ю. М. Колягин). Так как обу­чающие функции задач чаще всего являются по мнению Ю. М. Колягин ве­дущими, учебные цели работы над задачей связаны с обучающими функция­ми. Задачи на движение, как и вообще математические задачи, играют в обуче­нии двоякую роль. С одной стороны они являются целью обучения, с другой - средством обучения (Ю. М. Колягин, Е. И. Лященко, М.И. Моро , К. И. Нешков, А.М. Пышкало, И.К. Рузин и другие). По этой причине при выявле­нии функции тестовых задач следует учитывать обе стороны. Для более глубокого анализа исследование функций задач, отражаю­щих каждую из указанных сторон, целесообразно проводить отдельно, хотя в реальном процессе обучения они тесно связаны. Для использования задач как средства обучения нужно, чтобы учащиеся умели их решать. В тоже время обучение решению задач невозможно без наличия у учащихся определённых математических знаний. Таким образом, решение задач способст­вует развитию мышления учащихся, более глубокому усвоению идей функ­циональной зависимости, повышает вычислительную культуру. В процессе решения задач у учащихся формируется умения и навыки модели­рования реальных объектов и явлений. Методисты (А. М. Пышкало, М. И. Моро и другие) выделили следую­щие основные цели решения тестовых задач: 1) формирования у учащихся общего подхода, общих умений и способностей решения любых задач; 2) познание и более глубокое овладение изучаемыми математическими поня­тиями и некоторыми общенаучными и общежитейскими понятиями (ско­рость, время, расстояние и т.д.) 3) овладение понятиями модели и моделирования, и особенно математиче­ским моделированием. Включая задачу в урок, можем определить весьма разнообразные цели. Они либо являются конкретизацией общей обучающей цели - форми­рование умения решать задачи; либо, вытекают из общих целей, как форми­рование какого-либо математического понятия и умения. И в зависимости от той или иной конкретной цели выбираются приемы работы с задачей. Выделяют четыре основных этапа каждой математической задачи:

1) понимание условия и требования задачи, ясное усвоение и осмысливание отдельных элементов условия;

2) поиск решения задачи и составление плана решения;

3) практическая реализация плана во всех его деталях;

4) окончательное рассмотрение задачи и ее решения с целью усвоения тех моментов, которые могут стать полезными для дальнейшего решения задачи.

  1   2   3



Скачать файл (256.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru