Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Архитектура ЭВМ - файл 1.doc


Лекции - Архитектура ЭВМ
скачать (719 kb.)

Доступные файлы (1):

1.doc719kb.15.11.2011 22:02скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7   8
Реклама MarketGid:
Загрузка...
^

3Сети ЭВМ.


В рамках данного курса сети ЭВМ рассматриваются на ознакомительном уровне, поскольку в дальнейшем будет изучаться курс «Информационные сети», посвященный исключительно сетям ЭВМ.
^

3.1Общие понятия. Классификация.


Сеть – это совокупность объектов, образуемых устройствами передачи и обработки данных. Международная организация по стандартизации определила вычислительную сеть как последовательную бит-ориентированную передачу информации между связанными друг с другом независимыми устройствами.

По территориальному признаку разделяются на:

  • локальные вычислительные сети (ЛВС) или Local Area Network (LAN), расположенные в одном или нескольких близко расположенных зданиях. ЛВС обычно размещаются в рамках какой-либо организации (корпорации, учреждения), поэтому их называют корпоративными;

  • распределенные компьютерные сети, глобальные или Wide Area Network (WAN), расположенные в разных зданиях, городах и странах. В зависимости от этого глобальные сети бывают четырех основных видов: городские, региональные, национальные и транснациональные. В качестве примеров распределенных сетей очень большого масштаба можно назвать: Internet, EUNET, Relcom, FIDO;
^

3.2ЛВС и компоненты ЛВС

3.2.1Локальная вычислительная сеть


ЛВС (локальная вычислительная сеть) – это совокупность компьютеров, каналов связи, сетевых адаптеров, работающих под управлением сетевой операционной системы и сетевого программного обеспечения. Основной особенностью ЛВС является низкая территориальная распределенность ЭВМ (в пределах знания, предприятия и т.д.). Чаще всего ЛВС являются элементами более крупномасштабных образований.

В ЛВС каждый ПК называется рабочей станцией, за исключением одного или нескольких компьютеров, которые предназначены для выполнения функций сервера. Каждая рабочая станция и сервер оснащены сетевыми картами (адаптерами), которые посредством физических каналов соединяются между собой. В дополнение к локальной ОС на каждой рабочей станции активизируется сетевое ПО (сетевые службы), позволяющее организовывать ее взаимодействие с другими станциями и сервером. Аналогичным образом, на сервере активизируется сетевое ПО, позволяющее ему взаимодействовать с рабочими станциями и другими серверами.
^

3.2.2Основные компоненты вычислительной сети


В компьютерной сети можно выделить три основных аппаратных компонента и два программных. Для корректной и согласованной работы устройств в сети они должны быть правильно инсталлированы и настроены. Основными аппаратными компонентами сети являются:

  1. абонентские системы: компьютеры (рабочие станции или клиенты и серверы); принтеры; сканеры и др.

  2. сетевое оборудование: сетевые адаптеры; концентраторы (хабы); мосты; маршрутизаторы и др.

  3. коммуникационные каналы: кабели; разъемы; устройства передачи и приема данных в беспроводных технологиях.

Основными программными компонентами сети являются:

  1. сетевые ОС, например, Microsoft Windows NT; Novell NetWare; Unix; Linux и т.д.

  2. сетевое ПО (Сетевые службы): клиент сети; протокол; служба удаленного доступа, драйвер сетевого адаптера и др.
^

Рабочая станция


Рабочая станция (workstation) – это абонентская система, специализированная для решения определенных задач пользователя и использующая сетевые ресурсы. К сетевому программному обеспечению рабочей станции относятся следующие службы: клиент для сетей; служба доступа к файлам и принтерам; сетевые протоколы для данного типа сетей; драйвер сетевого адаптера; контроллер удаленного доступа.

В отличие от автономного ПК рабочая станция:

  • оснащается сетевым адаптером и каналом связи;

  • перед началом работы на рабочей станции необходимо выполнить процедуру входа в сеть;

  • после подключения рабочей станции к ЛВС появляются дополнительные сетевые дисковые накопители и появляется возможность использования удаленного оборудования.

Сервер


Сервер – это компьютер, предоставляющий свои ресурсы (диски, принтеры, каталоги, файлы и т.п.) другим пользователям сети. Кроме своей первичной функции (предоставление ресурсов), сервер может выполнять ряд дополнительных функций: функции маршрутизации, аутентификации и контроля доступа пользователей и т.д.

По мере усложнения возлагаемых на серверы функций и увеличения числа обслуживаемых ими клиентов происходит все большая специализация серверов. Существует множество типов серверов:

  • первичный контроллер домена, сервер, на котором хранится база бюджетов пользователей и поддерживается политика защиты;

  • вторичный контроллер домена, сервер, на котором хранится резервная копия базы бюджетов пользователей и политики защиты;

  • универсальный сервер, предназначенный для выполнения несложного набора различных задач обработки данных в локальной сети;

  • сервер базы данных, выполняющий обработку запросов, направляемых базе данных;

  • proxy-сервер, необходимый для организации доступа пользователей ЛВС в Internet;

  • web-сервер, предназначенный для предоставления гипертекстовой информации;

  • почтовый сервер, предоставляющий сервис электронной почты и т.д.
^

Сетевое оборудование


Для подключения рабочей станции к информационной сети требуется устройство сопряжения, которое называют сетевым адаптером (модулем или картой). Сетевой адаптер устанавливается в PCI- или ISA-разъем материнской платы. Современный материнские могут оснащаться встроенным сетевым адаптером.

Сетевые адаптеры вместе с сетевым программным обеспечением способны распознавать и обрабатывать ошибки, которые могут возникнуть из-за электрических помех, коллизий или плохой работы оборудования.

Различные типы сетевых адаптеров отличаются не только методами доступа к каналу связи и протоколами, но еще и следующими параметрами (на все эти параметры следует обращать внимание при выборе адаптеров):

  • скорость передачи;

  • объем буфера для пакета;

  • тип шины;

  • быстродействие шины;

  • совместимость с различными микропроцессорами;

  • использованием прямого доступа к памяти (DMA);

  • адресация портов ввода/вывода и запросов прерывания;

  • конструкция разъема.

Если для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы и повторители, то для связей между сегментами ЛВС используются концентраторы, мосты, коммутаторы, маршрутизаторы и шлюзы, а для подключения ЛВС к глобальным сетям могут используются:

  • специальные выходы (WAN–порты) мостов и маршрутизаторов;

  • аппаратура передачи данных по длинным линиям – модемы;

  • устройства подключения к цифровым каналам (TA – терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).

На рис. 5.1 приведен фрагмент вычислительной сети.
^

Сетевая операционная система


Сетевая операционная система (Network Operating System – NOS) – это операционная система со встроенными или надстроенными сетевыми функциями, обеспечивающая доступ рабочей станции в информационную сеть.

Сетевая операционная система необходима для управления потоками сообщений между рабочими станциями и серверами. Она является прикладной платформой, предоставляет разнообразные виды сетевых служб и поддерживает работу прикладных процессов, реализуемых в сетях.

Сетевая ОС определяет группу протоколов, обеспечивающих основные функции сети. К ним относятся:

  • адресация объектов сети;

  • функционирование сетевых служб;

  • обеспечение безопасности данных;

  • управление сетью.
^

Сетевое программное обеспечение


Клиент для сетей обеспечивает связь с другими компьютерами выбранного вида сети, а также доступ к файлам и принтерам.

^ Драйвер сетевой карты является программной, организующей связь ОС с сетевым адаптером.

Протоколы используются для установления правил обмена информацией в сетях.

Служба удаленного доступа позволяет делать файлы и принтеры доступными для компьютеров в сети.

Рис. 4.1 Фрагмент сети
^

3.3Глобальная вычислительная сеть Internet

3.3.1Интернет – сеть виртуальных сетей


Интернет является сетью виртуальных сетей. У нас первые ЭВМ, подключенные в Internet появились в 1991 году. Начиная с 1994 года Internet в Россия стал активно развиваться. Это произошло прежде всего потому, что созрели условия - в различных учреждениях (сначала научных, а затем коммерческих и государственных) и у частных лиц оказались сотни тысяч персональных ЭВМ. К этому же времени в мире стала формироваться сеть депозитариев, доступных через анонимный доступ (FTP), а несколько позднее и WWW-серверов.

Современный Интернет объединяют в единое целое многие десятки (а может быть уже и сотни) тысяч локальных сетей по всему миру, построенных на базе самых разных физических и логических протоколов (Ethernet, Token Ring, ISDN, X.25, Frame Relay, Arcnet и т.д.). Эти сети объединяются друг с другом с помощью последовательных каналов (протоколы SLIP, PPP), сетей типа FDDI (часто используется и в локальных сетях), ATM, SDH(Sonet) и многих других. В самих сетях используются протоколы TCP/IP (Интернет), IPX/SPX (Novell), Appletalk, Decnet, Netbios и бесконечное множество других, признанных международными, являющихся фирменными и т.д. Картина будет неполной, если не отметить многообразие сетевых программных продуктов (Windows NT, MS Windows-97, Netware, Multinet, Lantastic и пр.). На следующем уровне представлены разнообразные внутренние (RIP, IGRP, OSPF) и внешние (BGP, IS-IS и т.д.) протоколы маршрутизации и маршрутной политики, конфигурация сети и задание огромного числа параметров, проблемы диагностики и сетевой безопасности. Немалую трудность может вызвать и выбор прикладных программных средств (Netscape, MS Internet Explorer и пр.). В последнее время сети внедряются в управление (CAN), сферу развлечений, торговлю, происходит соединение сетей Интернет и кабельного телевидения.

Что явилось причиной стремительного роста сети Интернет? Создатели базовых протоколов (TCP/IP) заложили в них несколько простых и эффективных принципов: инкапсуляцию пакетов, фрагментацию/дефрагментацию сообщений и динамическую маршрутизацию путей доставки. Именно эти идеи позволили объединить сети, базирующиеся на самых разных операционных системах (Windows, Unix, Sunos и пр.), использующих различное оборудование (Ethernet, Token Ring, FDDI, ISDN, ATM, SDH и т.д.) и сделать сеть нечувствительной к локальным отказам аппаратуры. Огромный размер современной сети порождает ряд серьезных проблем. Любое усовершенствование протоколов должно проводиться так, чтобы это не приводило к замене оборудования или программ во всей или даже части сети. Достигается это за счет того, что при установлении связи стороны автоматически выясняют сначала, какие протоколы они поддерживают, и связь реализуется на общем для обеих сторон наиболее современном протоколе (примером может служить использование расширения протокола smtp - MIME). В кабельном сегменте современной локальной сети можно обнаружить пакеты TCP/IP, IPX/SPX (Novell), Appletalk, которые успешно сосуществуют.

Проектировщикам и создателям сетей приходится учитывать многие десятки факторов при выборе того или иного типа сети, сетевого оборудования, операционной системы (UNIX, MS-DOS, IRIS, Windows-NT, SOLARIS или что-то еще), программного обеспечения, внешние каналов связи (выделенный канал, коммутируемая телефонная сеть, цифровая сеть, радио или спутниковый канал) и в конце концов сервис-провайдера. За всем этим стоят как технологические проблемы, так и финансовые трудности, тяжелый выбор между дешевой и хорошей сетью.

На рис. 4.2 показана общая схема построения Internet (буквами R отмечены маршрутизаторы-порты локальных сетей).




Рис. 4.2. Схема построения сети Интернет


Каждая из сетей, составляющих Интернет, может быть реализована на разных принципах, это может быть Ethernet (наиболее популярное оборудование), Token Ring (вторая по популярности сеть), ISDN, X.25, FDDI или Arcnet. Все внешние связи локальной сети осуществляются через порты-маршрутизаторы (R). Если в локальной сети использованы сети с разными протоколами на физическом уровне, они объединяются через специальные шлюзы (например, Ethernet-Fast_Ethernet, Ethernet-Arcnet, Ethernet-FDDI и т.д.). Выбор топологии связей определяется многими факторами, не последнюю роль играет надежность. Использование современных динамических внешних протоколов маршрутизации, например BGP-4, позволяет автоматически переключаться на один из альтернативных маршрутов, если основной внешний канал отказал. Поэтому для обеспечения надежности желательно иметь не менее двух внешних связей. Сеть LAN-6 (см. рис. 4.2) при выходе из строя канала R2-R6 окажется изолированной, а узел LAN-7 останется в сети Интернет даже после отказа трех внешних каналов.

Широкому распространению Интернет способствует возможность интегрировать самые разные сети, при построении которых использованы разные аппаратные и программные принципы. Достигается это за счет того, что для подключения к Интернет не требуется какого-либо специального оборудования (маршрутизаторы это ЭВМ). Некоторые протоколы из набора TCP/IP (ARP, SNMP) стали универсальными и используются в сетях, построенных по совершенно иным принципам.
^

3.3.2Каналы связи


Наибольшей популярностью пользуются каналы связи, использующие городскую коммутируемую телефонную сеть, для этого нужны модемы - по одному на каждой из сторон канала (рис. 4.3. А). Традиционные модемы могут обеспечить при хорошем качестве коммутируемой аналоговой телефонной сети пропускную способность до 56 Кбит/с (кабельные широкополосные модемы при длине соединения порядка 2км могут обеспечить 2 Мбит/с). Привлекательность такого решения заключается в возможности подключения к любому узлу, имеющему модемный вход. Наиболее широко указанный метод связи используется для подключения к узлам Интернет домашних ЭВМ. Недостатком такого решения является низкая надежность канала (особенно в России), малая пропускная способность и необходимость большого числа входных телефонных каналов и модемов.

Использование выделенной 2- или 4-проводной линии (рис. 4.3. Б) обеспечивает большую надежность и пропускную способность (до 256 кбит/с при длинах канала < 10 км). Но и здесь на каждый вход требуется отдельный модем, да и скоростные модемы, работающие на выделенную линию, относительно дороги. Выделенные линии чаще служат для межсетевого соединения (рис. 4.3. В). Функциональным аналогом выделенных линий являются оптоволоконные, спутниковые и радио-релейные каналы. Этот вариант позволяет строить сети с пропускной способностью в несколько 1-100 Мбит/с и более.

Привлекательные возможности предлагают цифровые сети ISDN. Здесь можно использовать групповые телефонные номера, когда пара модемов обслуживает 10 и более пользователей (ведь они работают, как правило, не все одновременно). Кроме того, ISDN предлагает пользователям каналы с пропускной способностью не ниже 64кбит/c, а при необходимости возможно формирование и более широкополосных каналов. ISDN позволяет делить один и тот же канал между многими пользователями для передачи данных, факсов и телефонных переговоров. К недостаткам системы следует отнести ограниченность ширины окна (число переданных пакетов без получения подтверждения приема), что делает неэффективным использование широкополосных и особенно спутниковых каналов. В области межсетевых связей свою нишу занимает Frame Relay. Этот протокол имеет контроль перегрузок, работающий на аппаратном уровне



Рис. 4.3. Схемы каналов, использующих городскую телефонную сеть

На рис. 4.3. показана схема построения сети с использованием исключительно соединений типа точка-точка. Это наиболее часто встречающийся, но не единственный вариант. При построении крупных общенациональных и интернациональных сетей применяются сверхширокополосные каналы и схемы типа опорной сети (backbone). Узлы такой сети могут располагаться в каких-то крупных организациях или быть самостоятельными (принадлежать государственным PTT). Такие сети обычно базируются на протоколах SDH (Sonet). Информация в этих сетях передается в виде больших блоков (виртуальных контейнеров). Использование опорной сети обычно оправдано при организации интернациональных связей, но бывают и исключения. Контейнер может содержать сообщения, адресованные разным получателям, что несколько противоречит идеологии протоколов TCP/IP. IP-пакеты могут вкладываться в эти контейнеры и транспортироваться до заданного узла опорной сети. Классическим примером опорной сети является E-bone (Европейская опорная сеть). Эта сеть объединяет 27 стран (России в этом списке нет) и более 60 сервис-провайдеров, пропускная способность для различных участков лежит в пределах 2-34Мбит/с. Опорная сеть подобна международной автомагистрали, по ней добираются до ближайшего к точке назначения узла, а далее по 'проселочным' каналам до конечного адресата.

Резкое увеличение передаваемых объемов информации в локальных и региональных сетях привело к исчерпанию имеющихся ресурсов, а реальные прогнозы потребностей указывают на продолжение роста потоков в десятки и сотни раз. Единственной технологией, которая способна удовлетворить эти потребности, являются оптоволоконные сети (Sonet, SDH, ATM, FDDI, Fiber Channel). Каналы этих сетей уже сегодня способны обеспечить пропускную способность 155-622 Мбит/с, ведутся разработки и испытания каналов с пропускной способностью в 2-20 раз больше, например, гигабитного ethernet. Осваивается техника мультиплексирования частот в оптоволокне (WDM), что позволяет поднять его широкополосность в 32 раза и в перспективе довести быстродействие каналов до 80 Гбит/с и более. По мере роста пропускной способности возрастают проблемы управления, синхронизации и надежности. Практически все сети строятся сегодня с использованием последовательных каналов. Это связано прежде всего со стоимостью кабелей, хотя и здесь существуют исключения (например, HIPPI). Разные сетевые услуги предъявляют разные требования к широкополосности канала. На рис. 4.4 представлены частотные диапазоны для основных видов телекоммуникационных услуг. В Интернет практически все перечисленные услуги доступны уже сегодня (кроме ТВ высокого разрешения).



Рис. 4.3. Требования к пропускной способности канала для различных видов сервиса.

Протоколы Интернет (TCP/IP) существуют уже около 30 лет. Требования к телекоммуникационным каналам и услугам выросли, и этот набор протоколов не удовлетворяет современным требованиям. Появляются новые протоколы Delta-t (для управления соединением), NetBLT (для передачи больших объемов данных), VMTP (для транзакций; RFC-1045) и XTP для повышения эффективности передачи данных (замена TCP), блоки протоколов для работы с мультимедиа (RTP, RSVP, PIM, ST-II и пр.), но, безусловно, наиболее революционные преобразования вызовет внедрение IPv6.

4Литература


  1. Ларионов А.М., Майоров С.А., Новиков Г.И. Вычислительные комплексы, системы и сети: Учебник для втузов. Л.: Энергоиздат. Ленингр. отд-ие, 1987. 288 с.: ил.

  2. Гук М. Аппаратные средства IBM PC. Энциклопедия. – СПб: Питер, 2001. – 816 с.

  3. Микропроцессоры. В 3-х кн. Кн. 1. Архитектура и проектирование микро-ЭВМ. Организация вычислительных процессов: Учеб. для втузов / Под. редакцией Л.Н. Преснухина. М.: Высш. шк., 1986. – 495 с.: ил.

  4. Фигурнов В.Э. IBM PC для пользователя. Изд. 5-е исправл. и доп. – М.: Финансы и статистика, НПО «Информатика и компьютеры», 1994. – 386 с.

  5. Олифер В.Г., Олифер Н.А. Сетевые операционные системы http://www.citforum.ru/operating_systems/sos/contents.shtml

  6. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. – СПб.: Санкт-Петербург, 2000. - 672с.

  7. Шнитман В.З., Кузнецов С.Д. Аппаратно-программные платформы корпоративных информационных систем http://citforum.ints.net/hardware/app_kis/contents.shtml

  8. Шнитман В.З. Современные высокопроизводительные компьютеры http://www.citforum.ru/hardware/svk/contents.shtml

  9. Пятибратов А.П. и др. Вычислительные машины, системы и сети. М.: Финансы и статистика, 1991

  10. Горбунов В.Л. и др. Справочное пособие по микропроцессорам и микроЭВМ / Под. ред. Преснухина Л.Н.– М: Высш. шк., 1988. – 272 с.
1   2   3   4   5   6   7   8



Скачать файл (719 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru