Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Алюминиевые руды - файл 1.doc


Руководство - Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых. Алюминиевые руды
скачать (478 kb.)

Доступные файлы (1):

1.doc478kb.17.11.2011 04:06скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...


МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

по применению Классификации запасов

месторождений и прогнозных ресурсов

твердых полезных ископаемых


Алюминиевые руды


Москва, 2007


Разработаны Федеральным государственным учреждением «Госу­дарственная комиссия по запасам полезных ископаемых» (ФГУ ГКЗ) по заказу Министерства природных ресурсов Российской Федерации и за счет средств федерального бюджета.


Утверждены распоряжением МПР России от 05.06.2007 г. № 37-р.


Методические рекомендации по применению Классификации запа­сов месторождений и прогнозных ресурсов твердых полезных иско­паемых. Алюминиевые руды.


Предназначены для работников предприятий и организаций, осу­ществляющих свою деятельность в сфере недропользования, неза­висимо от их ведомственной принадлежности и форм собственно­сти. Применение настоящих Методических рекомендаций обеспе­чит получение геологоразведочной информации, полнота и каче­ство которой достаточны для принятия решений о проведении дальнейших разведочных работ или о вовлечении запасов разведан­ных месторождений в промышленное освоение, а также о проекти­ровании новых или реконструкции существующих предприятий по добыче и переработке полезных ископаемых.


  1. ^

    Общие сведения



1. Настоящие Методические рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых (алюминиевых руд) (далее – Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. № 370 (Собрание законодательства Российской Федерации, 2004, № 31, ст.3260; 2004, № 32, ст. 3347, 2005, № 52 (3ч.), ст. 5759; 2006, № 52 (3ч.), ст. 5597), Положением о Федеральном агентстве по недропользованию, утвержденным постановлением Правительства Российской Федерации от 17 июня 2004 г. № 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669; 2006, №25, ст.2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 11 декабря 2006 г. № 278, и содержат рекомендации по применению Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых в отношении алюминиевых руд.

2. Методические рекомендации направлены на оказание практической помощи недропользователям и организациям, осуществляющим подготовку материалов по подсчету запасов полезных ископаемых и представляющих их на государственную экспертизу.

3. А л ю м и н и й – один из важнейших металлов современной индустрии. По масштабам производства и потребления он занимает второе место после железа и первое среди цветных металлов, что связано с его универсальными свойствами: малой плотностью (2,7 г/см3), высокой электропроводностью, пластичностью, механической прочностью, устойчивостью против коррозии – обусловившими его широкое применение во всех областях техники. Широко применяется в авиационной и автомобильной промышленности, в строительстве и машиностроении, электропромышленности, производстве тары. Наиболее перспективными отраслями-потребителями являются автомобилестроение, строительство и упаковка (фольга, банки). В структуре потребления неуклонно растет вес производства упаковочных материалов и потребительских товаров длительного пользования. Возросло применение алюминия в порошкообразном виде для восстановления металлов и неметаллов из кислородных соединений, чистый алюминий нашел широкое применение в электролитических конденсаторах из фольги, в криоэлектронике и производстве полупроводников.

4. Алюминий – наиболее характерный литофильный породообразующий элемент Земли (кларк его составляет 8,0 %, по А. П. Виноградову). Содержание алюминия в горных породах изменяется от 0,45 % (в ультрабазитах) до 10,45 % (в глинах и сланцах). Главные алюминийсодержащие минералы приведены в табл. 1


Таблица 1

^ Главные алюминийсодержащие минералы

Минерал

Химическая формула

Содержание глинозема, %














































































































1

2

3

Гиббсит

А12О3 · ЗН2О

65,40

Бёмит

А12О3 · Н2О

84,97

Диаспор

А12О3 · Н2О

84,97

Каолинит

Al2O3 · 2SiO2 · 2H2O

39,5

Корунд

А12О3

100

Нефелин

(Nax, Ky)2O · Al2O3 · 2SiO2

32,0–35,0

Алунит

(Nax, Ky)2 · Al2(SO4)3 · 4Al(OH)3

37,0

Лейцит

K2O · A12O3 · 4SiO2

22,0–24,0

Кианит

Al2O3 · SiO2

63,0

Андалузит

Al2O3 · SiO2

63,0

Силлиманит

Al2O3 · SiO2

63,0


5. Главным сырьем для алюминиевой промышленности являются бокситы; однако ограниченность запасов высококачественных бокситов в отдельных странах привела к необходимости использования для получения алюминия также других видов сырья (апатит-нефелиновых, нефелиновых, алунитовых руд).

Боксит – руда, состоящая в основном из гидроксидов алюминия (гиббсит, бёмит, диаспор), а также оксидов и гидроксидов железа и глинистых минералов, в которой отношение содержания оксида алюминия к содержанию оксида кремния (кремниевый модуль) не менее 2. Сопутствующие бокситам породы с кремниевым модулем менее 0,85 называют сиаллитами, а с модулем 0,85–2,0 – аллитами.

В зависимости от минерального состава выделяют два основных типа боксита – моногидратный (бёмитовый и диаспоровый) и тригидратный (гиббситовый).

Оксид кремния является основной вредной примесью, присутствует в бокситах как в форме свободного кварца, так и в составе минералов глин – каолинита, галлуазита, накрита, диккита, хлорита (преимущественно шамозита), гидрослюд.

Из минералов железа в бокситах присутствуют гематит, гётит, гидрогематит, гидрогётит, лепидокрокит, маггемит, магнетит. Они неравномерно пропитывают основную массу боксита и в смеси с высокодисперсными минералами свободного глинозема слагают участки колломорфной структуры. В составе бокситов часто встречается сидерит. В качестве второстепенных примесей отмечены фосфаты, цеолиты, алуниты; из акцессорных минералов – рутил, циркон, сфен, эпидот, турмалин, ильменит, роговая обманка, гранат и др. Кроме основных химических элементов в бокситах присутствуют в рассеянном состоянии – галлий, ванадий, скандий, уран и др.

Минеральная форма основного компонента влияет на выбор режима технологической переработки боксита, ибо минералы глинозема обладают различной вскрываемостью, т. е. реакционной способностью по отношению к растворам щелочи. При выделении типов руд на отдельных месторождениях необходимо учитывать не только минералогическую, но и литологическую характеристику бокситов. Подразделение бокситов на литологические разновидности (каменистые, рыхлые, глинистые и др.) имеет существенное значение, так как во многих случаях в прямой связи с ними находятся технологические и физико-механические свойства. Как правило, каменистые бокситы имеют более высокий кремниевый модуль по сравнению с глинистыми разностями.

6. Бокситы следует рассматривать как комплексное сырье, в котором наряду с алюминием практический интерес в настоящий момент представляют ванадий и галлий. При переработке бокситов по методу Байера эти металлы в значительной мере переходят в алюминатные растворы. Схемы извлечения ванадия и галлия из растворов освоены в промышленном масштабе. Использование других полезных компонентов этих руд – железа, титана, скандия, хрома – промышленностью не освоено, и пока практического интереса они не представляют.

7. Основные промышленные типы месторождений алюминия приведены в табл. 2.

Таблица 2

^ Промышленные типы месторождений алюминия и основные типы руд

Промышленный тип месторождений

Рудоносная формация

Минеральный тип руд

Среднее

содержание

Al2O3, (SiO2), %

Попутные компоненты
Промышленный

(технологический)

тип руд

Примеры месторождений



1

2

3

4

5

6

7

Бокситовый латеритный

Линейных и площадных латеритных кор выветривания по магматическим, метаморфическим и осадочным породам

Гётитшамозит-бёмитовый

49 (8)

Ga

Металлургический алюминиевый (пиро- и гидрометаллургический)

Висловское, Мелихово-Щебекинское, Верхне-Щугорское (Россия)

Площадных латеритных кор выветривания (покровов) по магматическим, метаморфическим и осадочным породам

Гиббситовый

46–54

(1–5)



То же

Боке, Фриа (Гвинея), Тромбетас (Бразилия), Джарела (Индия)

Бокситовый полигенный

Элювиальных и перемещенных покровов и линзовидных залежей в терригенных и карбонатных породах

Гётит-шамозит-бёмитовый

46–51

(5–9)

Ga, V


«

Вежаю-Ворыквинское (Россия)

Элювиальных и перемещенных покровов по терригенным породам

Гиббситовый

53–59

(3–10)




«

Уэйпа и др. (Австралия)

Бокситовый осадочный терригенных толщ

Бокситоносная терригенная (линзовидные и пластообразные залежи, выполняющие крупные котловины в терригенных породах)

Каолинит-гиббсит-бёмитовый

45–53

(15–18)

Ga, V

Металлургический алюминиевый (магнитно-флотационно-пиро- и гидрометаллургический)

Иксинское, Плесецкое, (Россия)

Бокситоносная терригенная (линзовидные залежи, выполняющие мелкие и средние котловины в карбонатных и терригенных породах)

Каолинит-гиббситовый

40–43

(4–8)

Ga, V

То же

Татарское, Верхотуровское, Центральное (Россия)

Бокситовый осадочный карбонатных толщ

Бокситоносная терригенно-карбонатная (линзовидные и пластообразные залежи, выполняющие карстовые депрессии в карбонатных породах)

Бёмит-диаспоровый, гиббситовый

50–54

(2–11)

Ga

Металлургический алюминиевый (пиро- и гидрометаллургический)

Кальинское, Черемуховское (Россия), Манчестер, Сент-Элизабет (Ямайка), Халимба (Венгрия)

Нефелиновый

Щелочных габброидов (штоковые и дайковые тела)

Нефелиновый

22,5



Металлургический алюминиеый (магнитно-флотационно-пиро- и гидрометаллургический)

Кия-Шалтырское

(Россия)

Центральных интрузий агпаитовых нефелиновых сиенитов (пластообразные тела)

Апатит-нефелиновый

13,6

Апатит,

cфен,

Ga, Rb,

Cs

То же

Расвумчорское, Кукисвумчорское, Юкспорское (Россия)

Щелочных габброидов (штоковые и дайковые тела)

Нефелиновый

18–24



«

Горячегорское (Россия)

Алунитовый

Пластообразный, жильный

в туфах и вторичных кварцитах

Алунитовый

20–25

V, H2SO4,

квасцы

Металлургический алюминиевый (пиро- и гидрометаллургический)

Фан-Шань, Тайху (Китай),

Загликское (Азербайджан),

Босагеинское (Казахстан)

Латеритные месторождения заключают подавляющую часть мировых запасов бокситов. Их образование связано с глубоким химическим выветриванием алюмосиликатных пород разного состава и возраста в условиях влажного или переменно-влажного тропического климата. Большая часть месторождений располагается на древних платформах в пределах щитов и антеклиз – на территории Африки, Индии, Южной Америки. Бокситовые залежи плащеобразные, как правило, не дислоцированы, обладают крупными запасами, характеризуются высоким качеством бокситов и благоприятными условиями разработки. Бокситы месторождений образуют покровы мощностью 5–10 м на вершинах плоских платообразных возвышенностей (бовалей).

На территории России к этому типу отнесено Висловское месторождение раннекаменноугольного возраста, главным рудообразующим минералом на котором является бёмит.

Полигенные месторождения характеризуются генетически разнородными залежами и являются переходными между латеритными и осадочными месторождениями терригенных толщ. Для них характерны крупные и средние по размерам линзообразные рудные залежи, образованные латеритными (структурными), а также осадочными (переотложенными) бокситами. Выполняют они обычно присклоновые депрессии различного генезиса, размера и морфологии. Наиболее крупными из них являются покровные залежи. Типичными объектами этого типа являются неогеновые покровы гиббситовых бокситов северо-восточной Австралии. В бокситовой толще выделяют два или три горизонта, сложенные пизолитовыми (бобовыми), трубчатыми (табулярными), кавернозными и желваковыми бокситами, сцементированными более рыхлой массой такого же химического и минерального состава. Качество руд весьма высокое, но в целом несколько ниже, чем у бовальных латеритов.

На территории России к месторождениям этого типа отнесено Вежаю-Ворыквинское месторождение позднедевонского возраста, главным рудообразующим минералом на котором является бёмит.

Осадочные месторождения терригенных толщ располагаются главным образом на Русской, Китайской и Северо-Американской платформах. Бокситовые месторождения часто связаны с угленосными толщами, однако бокситообразование и угленакопление несколько разобщены во времени и пространстве.

Типичными представителями долинного (овражно-балочного) типа являются месторождения Тихвинского бокситоносного района с характерными узкими линейно вытянутыми линзообразными залежами небольших размеров. Бокситовые залежи пластообразного типа имеют пластообразную форму с неправильными извилистыми контурами в плане, часто невыдержанную мощность, обычно бёмитовый, гиббситовый или бёмит-гиббситовый состав бокситов. Особенность месторождений карстового типа – наличие большого числа мелких залежей, располагающихся в карстовых полостях. Размещение залежей определяется особенностями геологического строения карбонатных пород дорудного фундамента; их форма и размеры зависят от особенностей вмещающих депрессий. Рудные тела часто имеют большие мощности (до 150 м), но незначительные размеры, небольшие запасы и сравнительно низкое качество бокситов. Бокситоносные толщи помимо бокситов обычно содержат значительные объемы высокосортных огнеупорных глин. Внутреннее строение их сложное, обязанное переслаиванию глинистых пород и кондиционных бокситов. Химический и литологический состав бокситов не выдержан, среди мезокайнозойских объектов преобладают гиббситовые разности, палеозойские чаще имеют бёмитовый состав.

На территории России к этому типу отнесены Иксинское и Тимшерско-Пузлинское месторождения раннекаменноугольного возраста, главным рудообразующим минералом на которых является бёмит, и Центральное, Верхотуровское, Суховское, Еденисское месторождения мел-палеогенового возраста, главным рудообразующим минералом на которых является гиббсит.

Осадочные месторождения карбонатных толщ характерны для герцинских и альпийских складчатых областей. Формирование дорудной закарстованной поверхности и накопление бокситов происходило обычно на рифогенных мелководных известняках. К карсто-пластообразному типу отнесены месторождения с пласто- и линзообразной формой залежей. Кровля залежей обычно ровная или слабо волнистая, подошва неровная. Характерны очень крупные и средние по размерам залежи протяженностью от сотен метров до первых километров, мощностью от 5–7 до 10–12 м. Качество бокситов высокое и достаточно выдержанное, преобладают моногидратные диаспоровые, диаспор-бёмитовые и бёмитовые разности. Формирование месторождений карсто-покровного типа характерно для карстовых областей с преобладающим развитием обширных и сложных по форме карстовых котловин, определяющих форму и размеры бокситовых залежей. Качество бокситов весьма выдержанное как в плане, так и в разрезе. Типичными карсто-покровными являются месторождения о. Ямайка. Месторождения карсто-линзообразного типа отличаются от карсто-пластообразных меньшими размерами. Качество бокситов высокое. Месторождения этого типа имеют большое практическое значение в странах Средиземноморья. Карсто-воронковый тип месторождений отличается большим числом мелких залежей карманообразной, гнездообразной, воронкообразной формы. Геологическая позиция, условия залегания и качество руд описываемых месторождений аналогичны месторожде­ниям карсто-линзообразного типа, между ними нередки взаимопереходы.

На территории России к месторождениям этого типа отнесены Кальинское, Ново-Кальинское, Черемуховское месторождения позднедевонского возраста, главным рудообразующим минералом на которых является диаспор.

Нефелиновые руды после бокситов являются вторым по промышленному значению источником глинозема, но в значительных количествах они используются лишь в России. Промышленная ценность нефелиновых пород определяется содержанием минерала нефелина. Состав нефелина: А12О3 29–35 %; SiO2 43–48 %; R2O 17–20 %; Na2O может на 10–20 % замещаться К2О. В качестве примесей вероятно присутствие CaO, Ga2O5, V2O5, Fe2O3.

Нефелинсодержащие породы образуют разных размеров штоки, дайки, а иногда и лакколиты в составе щелочных комплексов, связанных как с ультраосновной и основной, так и с кислой магмой. Преимущественными областями развития щелочных пород являются платформы и области завершенной складчатости.

Наиболее богаты нефелином уртиты (Кия-Шалтырское месторождение) – породы, состоящие на 75–85 % из нефелина и на 10–15 % из пироксена. Эти руды могут перерабатываться без предварительного обогащения. Щелочные габброидные породы – ийолиты, тералиты (Горячегорское месторождение), содержащие до 50 % темноцветных минералов и 30–50 % нефелина и полевых шпатов, могут быть обогащены с получением нефелинового концентрата. В Мурманской области сосредоточены огромные запасы и ресурсы апатит-нефелиновых руд, хвосты переработки которых являются высококачественным комплексным глиноземным сырьем.

Оценка нефелиновых пород как комплексного сырья должна производиться с учетом главным образом двух показателей – щелочного модуля (молекулярное отношение K2O+N2O/Al2O3) и молекулярного отношения SiO2/Al2O3. Наиболее рентабельной является переработка нефелиновых пород с щелочным модулем, близким к единице, и молекулярным отношением SiO2/Al2O3 не более 3,3-3,4.

Промышленные месторождения алунитовых руд связаны с молодым вулканизмом и расположены в пределах подвижных зон земной коры – тихоокеанское побережье Азии с островными дугами, Австралии, Северной и Южной Америки; зона альпийского тектогенеза Евразии и северной Африки. Алунит, относящийся к группе основных двойных сульфатов алюминия и щелочных металлов, содержит 37 % А12О3, 38,6 % SO3 и 11,4 % щелочей, поэтому алунитовые руды используются как комплексное сырье для получения глинозема, калийных удобрений и серной кислоты.

Алунитовая минерализация проявляется в разнообразных геологических условиях – в вулканогенных областях, в зонах вторичных кварцитов, в угленосных толщах, в зонах окисления сульфидных месторождений.

Образование алунитов связано с воздействием сернистых газов и растворов, обогащенных серной кислотой, на вмещающие породы. В силу этих причин среди крупных месторождений встречаются как жильные скопления, так и пластообразные тела, образовавшиеся метасоматическим путем.

Крупнейшими в мире являются месторождения Фан-Шань и Тайху в Юго-Восточном Китае, а наиболее значительными месторождения в бывшем СССР – Загликское, Гушсайское, Беганьковское, Пекинское.

8. Все возрастающий спрос на алюминий и его сплавы вызывает необходимость вовлечения в сферу глиноземного производства новых видов сырья. К настоящему времени в мировой практике существует ряд примеров использования в экспериментальных условиях для производства алюминия глин с повышенным содержанием глинозема (США), лейцитовых (Италия) и андалузитовых (Швеция) пород, лабрадоритов (Норвегия), алунитов и алюмосланцев (Япония), угольной золы в сочетании с высокоглиноземистыми глинами (ФРГ). Стоимость глинозема во всех этих случаях в 4–5 раз превышает стоимость глинозема из высокосортных бокситов.

В России месторождения каолинов {Al4[(OH)8Si4O10]}, содержащих до 40 % Al2O3, распространены широко. Пока они не используются для переработки на глинозем.

Наряду с каолинами и высокоглиноземистыми глинами потенциальным и более перспективным сырьем на глинозем и соду представляется давсонит [NaAlCO3(OH)2], который образует крупные скопления в ассоциации с эвапоритовыми озерными отложениями.
^

II. Группировка месторождений по сложности геологического строения для целей разведки


9. По размерам и форме рудных тел, изменчивости их мощности, внутреннего строения и качества полезного ископаемого месторождения бокситов (участки крупных месторождений для отработки самостоятельными предприятиями) соответствуют 1-, 2- и 3-й группам «Классификации запасов месторождений и прогнозных ресурсов твердых полезных ископаемых», утвержденной приказом МПР России от 11 декабря 2006 г. № 278.

К 1-й группе относятся бокситовые месторождения (участки) простого геологического строения с рудными телами, представленными крупными (площадью от 0,5 км2 до нескольких десятков квадратных километров) пластообразными залежами с ненарушенным или слабо нарушенным залеганием, с выдержанными мощностью (от 2 до 10–15м) и качеством бокситов (Иксинское месторождение). К этой группе отнесено и Загликское алунитовое месторождение с пластообразной формой залежей простого строения.

Ко 2-й группе относятся бокситовые месторождения (участки) сложного геологического строения с крупными и средними по размерам рудными телами, представленными линзовидно-пластообразными и линзообразными залежами со сложными контурами (площадью от 0,3 до 1,5 км2) и изменчивой мощностью (от 1,5 до 32 м, в среднем – 4–7 м), но относительно выдержанным качеством бокситов (Висловское, Вежаю-Ворыквинское) и крупными (площадью от 0,5 км2 до первых квадратных километров) карсто-пластообразными залежами с выровненной кровлей и неровной подошвой, с изменчивой мощностью (от 1 до 30 м, в среднем – 4–6 м) (Красная Шапочка, Кальинское, Ново-Кальинское, Черемуховское, Сосьвинское) а также со средними по размерам карсто-котловинными залежами сложного строения, изменчивой мощности и невыдержанным качеством бокситов (Краснооктябрьское, Амангельдинская группа).

Ко 2-й группе отнесены нефелиновые Кия-Шалтырское и Горячегорское месторождения с крупными и средними по размерам штокообразными телами изометричной и удлиненной формы, с выдержанными параметрами.

К 3-й группе относятся бокситовые месторождения (участки) очень сложного геологического строения со средними и мелкими рудными телами (площадью от 0,2 до 1 км2), с линзообразными, карманообразными и гнездообразными залежами с резко меняющимися мощностью (от 0,5 до 8–10 м) и качеством бокситов (Барзасское, Мугайское, Чадобецкое, Белинское, Аятское, Татарская группа, Ибджибдек).

10. Принадлежность месторождения (участка) к той или иной группе устанавливается по степени сложности геологического строения основных рудных тел, заключающих не менее 70 % общих запасов месторождения.

11. При отнесении месторождения к той или иной группе в ряде случаев могут использоваться количественные показатели изменчивости основных характеристик оруденения (см. приложение).
^

III. Изучение геологического строения месторождений и
вещественного состава руд


12. По разведанному месторождению необходимо иметь топографическую основу, масштаб которой соответствовал бы его размерам, особенностям геологического строения и рельефу местности. Топографические карты и планы на месторождениях алюминиевых руд обычно составляются в масштабах 1:2000–1:10 000. Все разведочные и эксплуатационные выработки (скважины, шурфы, шахты), профили детальных геофизических наблюдений, а также естественные обнажения рудных залежей должны быть инструментально привязаны. На отрабатываемых месторождениях контуры карьеров и подземные горные выработки наносятся на планы по данным маркшейдерской съемки. Маркшейдерские планы горизонтов горных работ обычно составляются в масштабах 1:200–1:1000, сводные планы – в масштабе не мельче 1:2000. Для скважин должны быть вычислены координаты точек пересечения ими кровли и подошвы рудного тела и построены проложения их стволов на планах и разрезах.

13. Геологическое строение месторождения должно быть изучено детально и отображено на геологической карте масштаба 1:2000–1:10 000 (в зависимости от размеров и сложности месторождения), геологических разрезах, планах, проекциях, а в необходимых случаях – на блок-диаграммах и моделях. Геологические и геофизические материалы по месторождению должны давать представление о размерах и форме рудных тел, условиях их залегания, внутреннем строении и характере выклинивания рудных тел, взаимоотношениях их с литолого-петрографическими комплексами пород, складчатыми структурами и разрывными нарушениями в степени, необходимой и достаточной для обоснования подсчета запасов. На месторождениях бокситов эти материалы должны отражать также размещение и состав продуктов кор выветривания, литологических разновидностей бокситов, особенности строения кровли и подошвы рудных тел, изменение по простиранию и падению мощностей и марочного состава бокситов. Следует также обосновать геологические границы месторождения и поисковые критерии, определяющие местоположение перспективных участков, в пределах которых оценены прогнозные ресурсы категории Р1*.

14. Выходы на поверхность и приповерхностные части рудных тел и продуктов кор выветривания должны быть изучены горными выработками и неглубокими скважинами с применением геофизических методов и опробованы с детальностью, позволяющей установить закономерности распределения природных разновидностей руд, продуктов кор выветривания, особенности строения кровли и подошвы залежей бокситов и провести подсчет запасов раздельно по промышленным (технологическим) типам.

15. Разведка месторождений алюминиевых руд на глубину проводится в основном скважинами с использованием геофизических методов исследований (наземных и в скважинах), а при небольшой глубине залегания рудных залежей – скважинами в сочетании с поверхностными горными выработками. Конструкция колонковых скважин и технологический режим бурения по бокситам должны быть подчинены основной задаче – максимальному получению керна и исключению возможности загрязнения его вмещающими породами или буровыми растворами. При разведке крутопадающих пластообразных и линзообразных залежей нефелиновых и алунитовых руд глубина, угол наклона и расстояние между скважинами должны обеспечить получение перекрытого разреза.

Методика разведки – виды и объемы геофизических исследований, их назначение и соотношение с буровыми и горными работами, плотность разведочной сети, методы и способы опробования – должна обеспечивать возможность подсчета запасов по категориям, соответствующим группе сложности геологического строения месторождения. Она определяется исходя из геологических особенностей рудных тел с учетом возможностей горных, буровых и геофизических средств разведки, а также опыта разведки и разработки месторождений аналогичного типа.

16. По скважинам колонкового бурения должен быть получен максимальный выход керна хорошей сохранности в объеме, обеспечивающем выяснение с необходимой полнотой особенностей залегания рудных тел и вмещающих пород, их мощности, внутреннего строения рудных тел, распределения природных разновидностей руд, их текстуры и структуры, а также представительность материала для опробования. Практикой геологоразведочных работ установлено, что выход керна должен быть не менее 70 % по каждому рейсу бурения. Достоверность определения линейного выхода керна следует систематически контролировать весовым или объемным способом.

При разведке бокситов бурение по рудной зоне следует проводить укороченными рейсами, с применением промывочных жидкостей, исключающих загрязнение керна. При разведке рудных тел, сложенных рыхлыми рудами, необходимо применять специальную технологию бурения, способствующую повышению выхода материала (бурение без промывки, укороченными рейсами, двойными колонковыми снарядами и т. п.).

Величина представительного выхода керна для определения качества руд и мощностей рудных интервалов должна быть подтверждена исследованиями возможности неравномерного истирания рыхлых руд или некондиционных прослоев. Для этого необходимо по основным типам руд сопоставить результаты опробования по интервалам с их различным выходом, а также данные, полученные по керну, с данными опробования контрольных горных выработок и результатами геофизического опробования. При низком выходе керна или его истирании, существенно искажающем результаты опробования, следует применять другие технические средства разведки.

Для повышения достоверности и информативности бурения необходимо использовать методы геофизических исследований в скважинах, рациональный комплекс которых определяется исходя из поставленных задач, конкретных геолого-геофизических условий месторождения и современных возможностей геофизических методов. Комплекс каротажа, эффективный для выделения рудных интервалов и установления их параметров, должен выполняться во всех скважинах, пробуренных на месторождении.

В вертикальных скважинах глубиной более 100 м и во всех наклонных, включая подземные, не более чем через каждые 20 м должны быть определены и подтверждены контрольными замерами азимутальные и зенитные углы их стволов. Результаты этих измерений необходимо учитывать при построении геологических разрезов, погоризонтных планов и расчете мощностей рудных интервалов. При наличии подсечений стволов скважин эксплуатационными горными выработками результаты замеров проверяются данными маркшейдерской привязки. Для скважин необходимо обеспечить пересечение ими рудных тел под углами не менее 30°.

Для пересечения крутопадающих рудных тел под большими углами целесообразно применять искусственное искривление скважин. С целью повышения эффективности разведки следует осуществлять бурение многозабойных скважин. Бурение по руде целесообразно производить одним диаметром.

17. Горные выработки на неглубоко залегающих месторождениях в основном проходятся для контроля данных бурения, геофизических исследований, отбора технологических проб и целиков для определения объемной массы и влажности, а также для изучения условий залегания, морфологии, внутреннего строения, вещественного состава и особенностей распределения типов и сортов руд. Горные выработки следует проходить на участках детализации.

18. Расположение разведочных выработок и расстояния между ними должны быть определены для каждого структурно-морфологического типа рудных тел с учетом их размеров, мощности и особенностей геологического строения.

Приведенные в табл. 3 обобщенные сведения о плотности сетей, применявшихся при разведке месторождений бокситов в странах СНГ, и данные по конкретным месторождениям нефелиновых руд могут учитываться при проектировании геологоразведочных работ, но их нельзя рассматривать как обязательные. Для каждого месторождения на основании изучения участков детализации и тщательного анализа всех имеющихся геологических, геофизических и эксплуатационных материалов по данному или аналогичным месторождениям обосновываются наиболее рациональные геометрия и плотность сети разведочных выработок.

19. Для подтверждения достоверности запасов отдельные участки месторождения должны быть разведаны более детально. Число и размеры участков детализации определяются недропользователем и обосновываются в ТЭО разведочных кондиций. Эти участки следует изучать и опробовать по более плотной разведочной сети, по сравнению с принятой на остальной части месторождения. На месторождениях 1-й группы запасы должны быть разведаны по категориям А+В, 2-й группы – по категории В. На месторождениях 3-й группы сеть разведочных выработок на участках детализации целесообразно сгущать, как правило, не менее чем в 2 раза по сравнению с принятой для категории С1.


Таблица 3

^ Сведения о плотности сетей разведочных скважин,

применявшихся при разведке месторождений бокситов в странах СНГ*

Группа месторождений

Структурно-морфологический

тип рудных тел

Расстояния между пересечениями рудных тел

выработками (в м) для категорий запасов

А

В

С1

по

простиранию

по

падению

по

простиранию

по

падению

по

простиранию

по

падению




1

2

3

4

5

6

7

8

1-я

Крупные простого строения пластообразные залежи с выдержанной мощностью и качеством бокситов:



















изометричной формы

100

100

200

200

400

400

вытянутые по простиранию

100

100–50

200

100

400

200

2-я

Плащеобразные и линзовидно-пластообразные залежи со сложным контурами и изменчивой мощностью, но относительно выдержанным качеством бокситов:



















крупные по размерам, вытянутые по простиранию залежи (типа Висловского месторождения)





150–75**

100–50**

300

100

крупные и средние изометричной формы залежи (типа месторождений Среднего Тимана)





100

50

200

200

Крупные сложного строения карсто-пластообразные залежи с выровненной кровлей и крайне неровной подошвой (типа месторождений СУБРа):



















с изменчивой мощностью и отсутствием безрудных окон





100

100

200

200

с резко меняющейся мощностью и наличием безрудных окон





100***

100***

200***

200***

С центральной скважиной

Средние по размерам карсто-котловинные залежи сложного строения с изменчивой мощностью и невыдержанным качеством бокситов (типа месторождений Казахстана – Восточно-Тургайской группы и Краснооктябрьского)





50–100

50–100

100–200

50–100

3-я

Очень сложного строения линзообразные, карманообразные и гнездообразные залежи с резко меняющимися мощностью и качеством бокситов:



















средние по размерам











100–50

100–50

небольшие и мелкие











25–50

25–50

* Систематизировать данные о плотности разведочной сети для месторождений алунитовых и нефелиновых руд не представляется возможным ввиду ограниченности этих данных. Загликское алунитовое месторождение разведывалось скважинами по сети 100×100 м для категории А, 200×200 м для категории В и 400×400 м для категории С1, так же разведано Горячегорское месторождение нефелиновых руд, а Кия-Шалтырское нефелиновое месторождение разведывалось горными выработками и скважинами по сети 200×200 м для категории А, 200×400 м для категории В и 400×400 м для категории С1.

** На участках сгущения сети.

***При подсчете запасов, разведанных по приведенной сети, применяются поправочные понижающие коэффициенты, установленные на основании сопоставления данных разведки и эксплуатации.

П р и м е ч а н и е. На оцененных месторождениях разведочная сеть для категории С2 по сравнению с сетью для категории С1 разрежается в 2–4 раза в зависимости от сложности геологического строения месторождения.


Участки детализации должны отражать особенности условий залегания и форму рудных тел, вмещающих основные запасы месторождения, а также преобладающее качество руд. По возможности они располагаются в контуре запасов, подлежащих первоочередной отработке. В тех случаях, когда участки, намеченные к первоочередной отработке, не характерны для всего месторождения по особенностям геологического строения, качеству руд и горно-геологическим условиям, должны быть детально изучены также участки, удовлетворяющие этому требованию.

Полученная на участках детализации информация используется для обоснования группы сложности месторождения, подтверждения соответствия принятых геометрии и плотности разведочной сети особенностям его геологического строения, для оценки достоверности результатов опробования и подсчетных параметров, принятых при подсчете запасов на остальной части месторождения, и условий разработки месторождения в целом.

На разрабатываемых месторождениях для этих целей используются результаты эксплуатационной разведки и разработки.

При использовании интерполяционных методов подсчета запасов (геостатистика, метод обратных расстояний и др.) на участках детализации необходимо обеспечить плотность разведочных пересечений, достаточную для обоснования оптимальных интерполяционных формул.

20. Все разведочные выработки и выходы рудных тел и кор выветривания на поверхность должны быть задокументированы. Результаты опробования выносятся на первичную документацию и сверяются с геологическим описанием.

Полнота и качество первичной документации, соответствие ее геологическим особенностям месторождения, правильность определения пространственного положения структурных элементов, составления зарисовок и их описаний должны систематически контролироваться сличением с натурой специально назначенными в установленном порядке комиссиями. Следует также оценивать качество опробования (выдержанность сечения и массы проб, соответствие их положения особенностям геологического строения участка, полноту и непрерывность отбора проб, наличие и результаты контрольного опробования), представительность минералого-технологических и инженерно-гидрогеологических исследований, качество определений объемной массы, обработки проб и аналитических работ.

21. Для изучения качества полезного ископаемого, оконтуривания рудных тел и подсчета запасов все рудные интервалы, вскрытые разведочными выработками или установленные в естественных обнажениях, должны быть опробованы.

22. Выбор методов и способов опробования производится на ранних стадиях оценочных и разведочных работ, исходя из конкретных геологических особенностей месторождения и физических свойств полезного ископаемого и вмещающих пород, а также применяемых технических средств разведки.

При выборе методов (геологических, геофизических) и способов (керновый, бороздовый, задирковый и др.) опробования, определении качества отбора и обработки проб, оценке достоверности результатов опробования следует руководствоваться соответствующими нормативно-методическими документами.

Принятые метод и способ опробования должны обеспечивать наибольшую достоверность результатов при достаточной производительности и экономичности. В случае применения нескольких способов опробования их необходимо сопоставить по точности результатов и достоверности.

23. Опробование разведочных сечений следует производить с соблюдением следующих обязательных условий:

сеть опробования должна быть выдержанной, плотность ее определяется геологическими особенностями изучаемых участков месторождения и обычно устанавливается исходя из опыта разведки месторождений-аналогов, а на новых объектах – экспериментальным путем. Пробы необходимо отбирать в направлении максимальной изменчивости оруденения;

опробование необходимо проводить непрерывно, на полную мощность рудного тела с выходом во вмещающие породы на величину, превышающую мощность пустого или некондиционного прослоя, включаемого в соответствии с требованиями кондиций в промышленный контур: для рудных тел без видимых геологических границ – во всех разведочных сечениях, а для рудных тел с четкими геологическими границами – по разреженной сети выработок. В разведочных выработках кроме коренных выходов руд должны быть опробованы и продукты их выветривания;

опробование должно проводиться секциями, раздельно по разновидностям руд (каменистые, рыхлые, глинистые и другие бокситы, уртиты, тералиты, нефелиновые сиениты); длина каждой секции (рядовой пробы) определяется внутренним строением рудного тела, изменчивостью вещественного состава, физико-механических и других свойств руд, а в скважинах – также длиной рейса; при этом интервалы с разным выходом керна опробуются раздельно; во всех случаях отбираемые пробы бокситов должны предохраняться от загрязнения вмещающими породами и глинистыми буровыми растворами.

24. Качество опробования по основным разновидностям руд необходимо систематически контролировать, оценивая точность и достоверность результатов. Следует проверять положение проб относительно элементов геологического строения, надежность оконтуривания рудных тел по мощности, выдержанность принятых параметров проб и соответствие фактической массы пробы расчетной, исходя из фактического диаметра и выхода керна (отклонения не должны превышать 10 – 20 % с учетом изменчивости плотности руды).

Точность кернового опробования следует контролировать отбором проб из вторых половинок керна.

При геофизическом опробовании в естественном залегании контролируется стабильность работы аппаратуры и воспроизводимость метода при одинаковых условиях рядовых и контрольных измерений*. Достоверность геофизического опробования определяется сопоставлением данных геологического и геофизического опробования по опорным интервалам с высоким выходом керна (более 90 %), для которого доказано отсутствие его избирательного истирания.

В случае выявления недостатков, влияющих на точность опробования, следует производить переопробование (или повторный каротаж) рудного интервала.

Достоверность скважинного опробования и представительность керна при различном его выходе заверяются опробованием сопряженных горных выработок, в том числе пройденных для отбора технологических проб и определения объемной массы в целиках, а для глубокозалегающих рудных тел – данными геофизического опробования.

Для разрабатываемых месторождений заверка достоверности принятых методов опробования осуществляется сопоставлением в пределах одних и тех же горизонтов, блоков, участков месторождения данных, полученных раздельно по горным выработкам и колонковому бурению.

Объем контрольного опробования должен быть достаточным для статистической обработки результатов и обоснованных выводов об отсутствии или наличии систематических ошибок, а в случае необходимости – и для введения поправочных коэффициентов.

25.Обработка проб производится по схемам, разработанным для каждого месторождения или принятым по аналогии с однотипными месторождениями. Основные и контрольные пробы обрабатываются по одной схеме.

Качество обработки должно систематически контролироваться по всем операциям в части обоснованности коэффициента К и соблюдения схемы обработки.

Обработка контрольных крупнообъемных проб производится по специально составленным программам.

26. Химический состав руд должен изучаться с полнотой, обеспечивающей установление всех основных, попутных полезных компонентов и вредных примесей. Содержания их в руде определяются анализами проб химическими, спектральными, физическими или другими методами, установленными государственными стандартами или утвержденными Научным советом по аналитическим методам (НСАМ) и Научным советом по методам минералогических исследований (НСОММИ) Министерства природных ресурсов Российской Федерации.

Изучение в рудах попутных компонентов производится в соответствии с «Рекомендациями по комплексному изучению месторождений и подсчету запасов попутных полезных ископаемых и компонентов», утвержденными МПР России в установленном порядке.

Бокситы анализируются на следующие компоненты: А12О3, SiO2, Fe2O3, TiO2, CaO, MgO, FeO, MnO, S, CO2, Na2O, K2O, С (орг.), P2O5, Ga, V2O5, Sc, Cr2O3, п.п.п. На всех стадиях работ А12О3, SiO2, Fe2O3, п.п.п. определяются по рядовым пробам. Содержания всех остальных элементов устанавливаются по групповым пробам. Бокситы по месторождению и подсчетным блокам должны быть охарактеризованы на А12О3, SiO2, Fe2O3, FeO (для шамозитсодержащих руд), п.п.п., TiO2, CaO, S, CO2, Ga, V2O5, P2O5.

Нефелиновые руды анализируются на следующие компоненты: А12О3, SiO2, Fe2O3, CaO, MgO, MnO, Na2O, K2O, TiO2, P2O5, S, CO2 , п.п.п., Cl, Ga, Rb, Cs, Sc, V2O5. На всех стадиях работ опре­деление А12О3, SiO2, Fe2O3, CaO, MgO, MnO, Na2O, K2O, п.п.п. выполняется по рядовым пробам. Содержание всех остальных компонентов определяется по групповым пробам. Нефелиновые руды по подсчетным блокам, участкам и месторождению в целом должны быть охарактеризованы на все перечисленные выше компоненты.

Алунитовые руды анализируются на А12О3 (общ.), Аl2О3 (неалунитовый), К2О, Na2O, SO3, Fe2O3, п.п.п., SiO2, TiO2, ВаО, Р2О5, V2O5, Ga, FeО. На всех стадиях работ определение А12О3 (общ.), SiO2, А12О3 (неалунитового), К2О, Na2O, SO3, Fe2O3, п.п.п. производится по рядовым пробам.

Попутные ценные компоненты и вредные примеси, если их содержание в рядовых пробах не лимитируется кондициями, как правило, определяются по групповым пробам. Групповые пробы должны характеризовать определенные промышленные типы и сорта руд.

Порядок объединения рядовых проб в групповые, их размещение и общее количество должны обеспечивать равномерное опробование основных разновидностей руд на попутные компоненты и вредные примеси и выяснение закономерностей изменения их содержаний по простиранию и падению рудных тел.

27. Качество анализов проб необходимо систематически проверять, а результаты контроля своевременно обрабатывать в соответствии с методическими указаниями НСАМ и НСОММИ. Геологический контроль анализов проб следует осуществлять независимо от лабораторного контроля в течение всего периода разведки месторождения. Контролю подлежат результаты анализов на все основные и попутные компоненты и вредные примеси.

28. Для определения величин случайных погрешностей необходимо проводить внутренний контроль путем анализа зашифрованных контрольных проб, отобранных из дубликатов аналитических проб в той же лаборатории, которая выполняет основные анализы.

Для выявления и оценки возможных систематических погрешностей должен осуществляться внешний контроль в лаборатории, имеющей статус контрольной. На внешний контроль направляются дубликаты аналитических проб, хранящиеся в основной лаборатории и прошедшие внутренний контроль. При наличии стандартных образцов состава (СОС), аналогичных исследуемым пробам, внешний контроль следует осуществлять, включая их в зашифрованном виде в партию проб, которые сдаются на анализ в основную лабораторию.

Пробы, направленные на внутренний и внешний контроль, должны характеризовать все разновидности руд месторождения и классы содержаний. В обязательном порядке на внутренний контроль направляются все пробы, показавшие аномально высокие содержания анализируемых компонентов.

29. Объем внутреннего и внешнего контроля должен обеспечить представительность выборки по каждому классу содержаний и периоду выполнения анализов (квартал, полугодие, год). При выделении классов следует учитывать параметры кондиций для подсчета запасов – бортовое и минимальное промышленное содержания. В случае большого числа анализируемых проб (2000 и более в год) на контрольные анализы направляется 5 % от их общего количества; при меньшем числе проб по каждому выделенному классу содержаний должно быть выполнено не менее 30 контрольных анализов за контролируемый период.

30. Обработка данных внутреннего и внешнего контроля по каждому классу содержаний производится по периодам (квартал, полугодие, год), раздельно по каждому методу анализа и лаборатории, выполняющей основные анализы. Оценка систематических расхождений по результатам анализа СОС выполняется в соответствии с методическими указаниями НСАМ по статистической обработке аналитических данных.

Относительная среднеквадратическая погрешность, определенная по результатам внутреннего геологического контроля, не должна превышать значений, указанных в табл. 4. В противном случае результаты основных анализов для данного класса содержаний и периода работы лаборатории бракуются и все пробы подлежат повторному анализу с выполнением внутреннего геологического контроля. Одновременно основной лабораторией должны быть выяснены причины брака и приняты меры по его устранению.

Таблица 4

^ Предельно допустимые относительные среднеквадратические

погрешности анализов по классам содержаний

Компонент

Класс содержаний компонентов в руде, % (Ga и Ge, г/т) *

Предельно допустимая относительная среднеквадратическая погрешность, %

Компонент

Класс содержаний компонентов в руде, % (Ga и Ge, г/т) *

Предельно допустимая относительная среднеквадратическая погрешность, %
  1   2   3   4   5



Скачать файл (478 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru