Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции - Процессы открытых горных работ - файл Лекции.doc


Лекции - Процессы открытых горных работ
скачать (163 kb.)

Доступные файлы (1):

Лекции.doc863kb.14.09.2004 10:57скачать

содержание
Загрузка...

Лекции.doc

  1   2   3   4
Реклама MarketGid:
Загрузка...
КУРС ЛЕКЦИЙ


Процессы открытых горных работ





Основные понятия открытых горных работ.

Месторождение полезного ископаемого — естественное скоп­ление полезного ископаемого в земной коре.

Месторождение является промышленным, если его разра­ботка экономически целесообразна. Главными показателями промышленной ценности месторож­дений являются: запасы, качество, горно-геологические усло­вия залегания полезного ископаемого, его географическое по­ложение.

Полезные ископаемые — природные минеральные вещества, которые при современном уровне техники и экономики пригод­ны для промышленного использования. Полезные ископаемые бывают твердые (различные руды, уголь, алмазы и др.); жид­кие (нефть, рассолы, вода) и газообразные (природные газы).

^ Пустая порода — горные породы, окружающие полезное ис­копаемое (вмещающие) или включенные в него, не являющие­ся объектом извлечения полезных компонентов.

^ Горная масса — смесь полезного ископаемого с породой, по­лучаемая в результате разработки месторождения как в сме­шанном виде, так и раздельно. К горной массе относится и по­рода, поступающая из капитальных и подготовительных выра­боток.

В результате ведения горных работ в толще земной коры об­разуются полости, которые называют горными выработками.

Руда — минеральное вещество, из которого целесообразно из­влекать полезные компоненты при современном уровне техни­ки и экономики. Необходимость последующей переработки ру­ды для извлечения содержащихся в ней полезных компонентов отличает руду от других видов полезных ископаемых, которые могут использоваться в природном состоянии без переработки: уголь, торф, каменная соль и др.

Руды разделяют на металлические, в которых полезные компоненты представлены металлами, и неметаллические, в ко­торых полезные компоненты представлены различными минера­лами, не содержащими металлов (апатит, слюда, графит и др.).

Металлические руды делятся на руды черных, цветных, ред­ких и радиоактивных металлов.

^ Рудная масса—смесь руды с породой, которая попадает в руду в процессе выемки.

По морфологическому признаку рудные месторождения можно разделить на пластовые, пластообразные, столбообразные, линзообразпые, жильные, штокообразные и гнездораз­ные. Могут быть рудные тела и других форм.

Пластовые месторождения имеют стабильную мощность и четкие контакты с вмещающими породами. Они обычно оса­дочного происхождения.

Пластообразные месторождения характеризуются неста­бильной формой и мощностью, различными углами падения. Обычно осадочного пли осадочно-метаморфического проис­хождения.

Линзообразные месторождения имеют форму линзы, раз­личные размеры и углы падения.

Жильные месторождения могут быть простыми и сложными (с невыдержанными элементами залегания и нечеткими кон­тактами с вмещающими породами) или состоящими из ряда тонких жил и множества прожилков.

Штокообразные месторождения представляют собой рудное тело неправильной формы и большого размера.

^ Штокверковое месторождение — месторождение непра­вильной формы, представляющее собой густую сеть различно ориентированных рудных прожилков, прорезывающих массу по­роды.

Гнездообразные месторождения состоят из мелких по раз­мерам рудных тел (гнезд) неправильной формы. Промышлен­ное значение имеют месторождения с большим количеством гнезд.

Рудные тела характеризуются обычно мощностью, углом па­дения, длиной по простиранию, глубиной распространения и площадью. По мощности они делятся на пять групп: очень тон­кие, мощностью менее 0,7 м; тонкие 0,7—2,0 м; средней мощ­ности 2—5 м; мощные 5—20 м; очень мощные более 20 м; по углу падения: на пологие—до 25 наклонные—от 25 до 45°; крутые —от 45 до 90°.

Расстояние между нижней и верхней границами месторож­дения по вертикали определяет глубину распространения руд­ного тела.

В большинстве случаев месторождение представлено не од­ним, а несколькими рудными телами, нередко нарушенными сбросами, сдвигами.

Важным фактором является характер контакта рудного те­ла с вмещающими породами. Контакт в одних случаях бывает выражен резко, и рудное тело имеет четкую границу с вмещаю­щими породами. В других случаях переход от руды к пустой породе происходит постепенно, а границы промышленного оруденения можно установить только путем опробования руды на содержание полезного ископаемого.

^ ОСНОВНЫЕ ФИЗИКО-МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

РУД И ВМЕЩАЮЩИХ ПОРОД

Из физико-механических свойств наибольшее значение имеют крепость и устойчивость руды и вмещающих пород.

Крепость — величина, характеризующая сопротивляемость полезного ископаемого (породы), разрушаемого при добы­вании.

Под крепостью руд понимают совокупность таких физико-механических свойств, как твердость, вязкость, трещиноватость, слоистость. Крепость существенно влияет на выбор системы раз­работки, применяемых машин и механизмов и себестоимость добычи.

-Во всем мире широко применяется классификация горных по­род по шкале крепости проф. М. М. Протодьяконова , созданная в нашем институту в 1914 году. Согласно этой классификации, все породы характеризуются коэффициентом крепости



где сж - сопротивление пород одноосному сжатию, МПа.

В высшей степени крепкие (плотные кварциты и базальты) имеют наибольшее значение коэффициента крепости - 20. Плывуны, болотистый грунт, разжиженный лёсс - наименьшее (0,3).

Довольно мягкие породы хорошо разрушаются резанием и могут размываться струей воды под большим давлением.

Породы средней крепости режутся с трудом, для их отделе­ния от массива требуется применение буровзрывных работ. В крепких породах отбойку ведут буровзрывным способом.

Большое влияние на устойчивость рудного массива и вме­щающих пород оказывают трещиноватость и вязкость. От строения и крепости руды зависят крупность и количе­ственное соотношение отбитых кусков (кусковатость).

Характеристика отбитой руды по процентному содержанию в ней кусков различных размеров выражается гранулометрическим составом: 0—100 мм —рудная мелочь; 100—300 мм —ру­да средней крупности; 300—600 мм —крупнокусковая; свыше 600 мм —весьма крупная.

Кондиционным куском руды принято называть кусок с мак­симально допустимым по параметрам применяемого оборудо­вания размером от 300 до 700 мм. Куски руды, превышающие кондиционные размеры, называют негабаритами.

Руды, содержащие один полезный компонент, называют про­стыми, несколько компонентов—полиметаллическими. Простые руды: железные, марганцевые, медные, золо­тые и др. Полиметаллические: свинцово-цинковые, вольфрамо-молибденовые и др.

По ценности руды делят на богатые (высокосортные), сред­ней ценности (рядовые) и бедные (низкосортные).

Минимальное содержание полезных компонентов, которое принимают за основу при установлении промышленного кон­тура залежей, называется бортовым содержанием.

Анализ мировой минерально-сырьевой базы показывает, что основная часть разведанных запасов (до 70 %) почти по всем металлам представлена в настоящее время рудами средней ценности и бедными. Как правило, месторожде­ния бедных руд являются более крупными по запасам, особенно в сравнении с богатыми. При разделении руд по ценности ру­ководствуются существующими промышленными кондициями и сложностью технологии их обогащения.

Таким образом, ценность руд определяется содержанием в них полезных компонентов, наличием вредных примесей, обогатимостью и др.

Различают валовую и извлекаемую (промышленную) цен­ности руды. Валовая ценность определяется стоимостью полезных ком­понентов, содержащихся в 1 т руды.

Извлекаемая ценность определяется стоимостью полезных компонентов, извлеченных из 1 т руды в результате добычи и переработки.

^ Ценность руды — понятие относительное, оно меняется со временем. Например, изменение технологического процесса обо­гащения, приводящее к увеличению извлечения, может значи­тельно повысить ценность руды. Ценность руды меняется так­же в зависимости от изменения цен на рынках минерального сырья.

Геологические запасы разделяют на балансовые н забалансовые.

^ Балансовые запасы—это запасы, которые удовлетворяют промышленным кондициям. Забалансовые запасы вследствие низкого содержания по­лезного компонента непригодны для использования в настоя­щее время.

В балансовые запасы включают промышленные запасы, под­лежащие извлечению. В процессе разработки часть промыш­ленных запасов теряется, эти потери называют эксплуатаци­онными.

Кроме руды, при разработке полезных ископаемых извлека­ют пустые породы. Часть их выдается на поверхность отдель­но, а часть, смешиваясь с рудой в процессе выемки,—совме­стно.

По степени изученности месторождения и его частей геоло­гические запасы в нашей стране подразделяют на пять категорий: А1, А2 , В1, С1, С2. Наи­более изученными по составу и технологическим свойствам, полностью оконтуренными горными выработками являются за­пасы категорий А1 и А2 .

Запасы категории В1 оконтурены горными выработками и скважинами и изучены менее детально. Запасы категории С1 примыкают к запасам категорий А и В, которые установлены на основе редкой сети скважин или отдельных горных выработок и в технологическом отношении изучены только предварительно.

Запасы категории С2 подсчитываются на основании отдель­ных скважин, общего геологического прогноза и геофизических данных.

Разработка проектов горных предприятий и финансирова­ние их строительства могут производиться только на основе подсчета балансовых запасов категорий А+В+С, в ряде слу­чаев для сложных месторождений—на основе категорий В+С.

В процессе разработки месторождения часть его запасов теря­ется—остается в недрах неизвлеченной или поступает на по­верхность в отвалы вместе с породой. Потери 2—3% разведан­ных запасов неизбежны при любом способе разработки. Обыч­но потери полезного ископаемого в процессе разработки состав­ляют до 10%.

Кроме потерь при добыче происходит снижение качества добытого полезного ископаемого вследствие примешивания к нему вмещающих пород — разубоживание.

Потери ведут к росту затрат на разведку, подготовку и очи­стную выемку, а также к недополучению прибыли от потерян­ной части полезного ископаемого и к сокращению срока суще­ствования рудника .

Разубоживание вызывает рост непроизводительных за­трат на добычу, транспортирование и переработку пустой по­роды, увеличение потерь полезного компонента при переработ­ке разубоженной руды.

На горных предприятиях применяют два основных метода определения величины потерь: косвенный метод, основанный на определении потерь расчетным путем,—по разности между величиной погашенных (отработанных) балансовых запасов и количеством извлеченного полезного ископаемого; прямой ме­тод, основанный на непосредственных измерениях величины потерь по видам их образования (в процессе добычи, перера­ботки) .

Косвенный метод по сравнению с прямым имеет низкую достоверность—возможные относительные ошибки в определе­нии величины потерь могут достигать 50 %. Он позволяет оп­ределять только суммарные потери за сравнительно большие промежутки времени.

Для подсчета потерь и разубоживания необходимо иметь расчетные показатели по подлежащим выемке балансовым за­пасам руды, количеству фактически добытой руды и примешан­ной к ней породы; содержанию полезных компонентов в пога­шенных балансовых запасах н добытой руде.

К основным показателям, характеризующим полноту использования запасов недр, относят показатели изменения ка­чества руды и показатели полноты извлечения полезных ископаемых при добыче.

Одним из факторов, показывающим снижение качества по­лезного ископаемого, является коэффициент разубоживания Р, который принято выражать отношением количества примешан­ной породы В к общему количеству добытой рудной массы Д

.

Величина Д включает добытое из недр полезное ископаемое, примешанные при добыче забалансовые запасы и породу

,

где Бп - количество потерянных балансовых запасов;

В - количество примешанных вмещающих пород.

Определить количество примешанной породы можно не всегда, поэтому величину разубоживания обычно выражают через снижение содержания полезного компонента в добытой руде по сравнению с содержанием в балансовых запасах. Тог­да коэффициент разубоживания определяют по формуле

,

где с и а - содержание полезного компонента соответственно в балансовых запасах месторождения и в добытом полезном ис­копаемом.

Определенные по приведенным формулам значения Р рав­ны, если примешанная порода не содержит полезного компо­нента.

Для полезных ископаемых, ценность которых определяется не содержанием полезных компонентов, а другими показателя­ми качества (например, для строительных материалов), коэф­фициент изменения качества равен отношению валовой ценно­сти 1 т добытого полезного ископаемого, к валовой ценности 1 т балансовых запасов месторождения.

Это отношение удобно также для выражения коэффициента изменения качества многокомпонентных руд и комплексных по­лезных ископаемых, если затруднен перевод содержания раз­личных компонентов в условное содержание основного компо­нента.

Коэффициент потерь руды при добыче принято выражать отношением количества потерянных балансовых запасов Бп количеству погашенных Б

.

Потери металла характеризуются коэффициентом потерь металла

,

где сп - содержание металла в потерянных запасах.


Открытый способ разработки месторождений полезных ископаемых заключается в разработке горных пород и полезного ископаемого, слагающих месторождение, последовательными слоями с земной поверхности.

Совокупность горных выработок, образованных в процессе открытой разработки месторождений полезных ископаемых, носит название карьера (разреза)

Месторождение ( или часть его), разрабатываемого одним карьерным полем, называют карьерным полем.

Горные работы по выемке и удалению пород, покрывающих или вмещающих полезное ископаемое, открывающих к нему доступ, называются вскрышными работами.

Горные работы по извлечению полезного ископаемого называются добычными работами.

Разработка месторождения в границах карьерного поля производится горизонтальными слоями, поэтому профиль карьера имеет ступенчатую форму.

Слой толщи горных пород, разрабатываемый самостоятельными средствами рыхления, выемки и транспорта, называется уступом .

Часть уступа по высоте, разрабатываемая самостоятельными средствами рыхления и погрузки, но обслуживаемая транспортом, общим для всего уступа, называется подуступом.

Основными элементами уступа являются: площадки, о т к о с, бровки, забой.

Часть уступа по ширине, разрабатываемая средствами выемки и транспорта, называется заходкой. Торец или фронтальная часть заходки, являющиеся объектами горных работ, называются забоем. При разработке уступа несколькими выемочио-погрузочными комплексами заходка делится на отдельные блоки.

Совокупность площадок и откосов всех уступов образует борт карьера. Различают рабочий борт, на котором производятся вскрышные и добычные работы, и нерабочий борт, на котором горные работы закончены.

Площадки уступов, на которых располагается выемочпо-погрузочное и транс­портное оборудование, называются рабочими площадками. Для повышения устойчивости нерабочего борта карьера и задержания осыпающейся породы между уступами оставляются площадки - предохранительные бермы . Если на бермах размещаются транспортные коммуникации, то их называют транспортными бермами.

Угол, образованный линией откоса борта карьера и проекцией этой линии на горизонтальную плоскость, называется углом откоса борта карьера.

Вскрытие карьерного поля осуществляется в период строи­тельства карьера с помощью капитальных траншей. Для создания первоначального фронта горных работ на уступе и размещения горного и транспортного оборудования проходят разрезные траншеи.

Открытая разработка месторождений полезных ископаемых имеет следующие преимущества перед подземной: более высокая безопасность труда; производительность труда значительно выше, а себестоимость добычи 1 т полезного ископаемого на­много ниже, чем при подземных разработках; лучшие технико-экономические показатели: сроки строительства карьеров мень­ше сроков строительства подземных рудников равной произво­дительности, более высокие качественные показатели разработ­ки месторождений и более полное извлечение полезного иско­паемого из недр, более благоприятные условия для ведении селективной добычи полезного ископаемого.

Основными недостатками открытых горных работ являются: наносимый ущерб окружающей среде, связанный с необходимо­стью отчуждения значительных земельных площадей: воздушного и водного бассейнов районов разрабатываемых месторождений; зависимость от климатических и метеорологи­ческих условий; необходимость вложения больших капитальных затрат п короткие сроки при строительстве глубоких ( свыше 800 м) карьеров.

Деятельность горнодобывающей промышленности харак­теризуется непрерывным увеличением доли открытых разрабо­ток.

^ ЭТАПЫ И ПРОИЗВОДСТВЕННЫЕ ПРОЦЕССЫ

ОТКРЫТЫХ ГОРНЫХ РАБОТ

Разработка месторождений открытым способом делится на следующие этапы: подготовка поверхности карьерного поля — вырубка леса и корчевка пней, отвод русел рек и ручьев за преде­лы карьера, снос зданий и сооружений, перенос шоссейных и же­лезных дорог, линий электропередачи и т.п. ; горно-капитальные работы в период строительства карьера заключаются в проведении капитальных траншей для обеспечения транспортного доступа к рабочим горизонтам карьера и разрезных траншей для создания первоначального фронта горных работ, удалении не­которого объема вскрышных пород для вскрытия запасов полез­ного ископаемого перед пуском карьера в эксплуатацию; горно-­подготовительные работы в период эксплуатации карьера - в проведении горных выработок для вскрытия очередного рабо­чего горизонта; вскрышные и добычные работы.

Подготовка поверхности и осушение месторождения, горно-капитальные и горно-подготовительные работы выполняются последовательно в период строительства карьера. В период экс­плуатации горно-подготовительные и вскрышные работы выпол­няются параллельно с добычными, опережая их в пространстве и времени.

Горно-подготовительные, горно-капитальные, вскрышные и добычные работы выполняются по определенной технологической схеме, включающей следующие производственные процессы: подготовка горных пород к выемке; выемочно-погрузочные работы; перемещение горной массы: разгрузка и складирование полезного ископаемого; отвалообразование.

Разнообразие горно-геологических условий месторождении требует различной механизации и технологии открытых горных работ.

Технология открытой разработки—совокупность горных ра­бот и производственных процессов, обеспечивающих безопас­ную и экономичную добычу полезных ископаемых. В зависимости от применяемых средств механизации технология открытой разработки месторождений может быть: непрерывной (поточной), когда все технологические процессы выполняются непрерывно; цикличной, когда технологические процессы выполняются в последовательном повторении рабочих и холостых ходов; комбинированной (циклично-по­точной), если в комплексе машин, выполняющих производст­венные процессы, используются машины цикличного и непре­рывного действия.

Технология с использованием роторных (цепных) экскавато­ров и конвейерного транспорта называется непрерывной; с применением одноковшовых экскаваторов, фронтальных погрузчиков н колесных видов транспорта—цик­личной; при сочетании выемочно-погрузочных средств цик­личного действия, грохотильно-дробильных агрегатов с конвей­ерным транспортом —циклично-поточной.

^ ОСНОВНЫЕ ПАРАМЕТРЫ КАРЬЕРОВ

КОЭФФИЦИЕНТЫ ВСКРЫШИ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ

Добыча полезных ископаемых открытым способом сопровожда­ется удалением из контуров карьера определенного объема вскрышных пород. Количество вынимаемой пустой породы, приходящееся па единицу добываемого полезного иско­паемого, называется коэффициентом вскрыши. В зави­симости от единиц измерения различают коэффициенты вскрыши объемные ( м3 / м3 ) ; весовые ( т / т ); смешанные ( м3 / т ).

В практике проектирования и эксплуатации карьеров наи­более широко используют коэффициенты вскрыши: средний, эксплуатационный, текущий, контурный и граничный.


Средним коэффициентом вскрыши kср называется отноше­ние общего объема пустых пород в конечных контурах карьера Vв к отрабатываемым запасам полезного ископаемого Vи в этих же контурах:

, м3 / м3

Эксплуатационный коэффициент вскрыши выража­ет отношение объемов пустых пород Vвс к запасам полезного ископаемого Vис отрабатываемым за период эксплуатации карьера:

, м3 / м3

Текущий коэффициент вскрыши выражает отношение объема пустых пород Vтв к запасам полезного ископаемого Vти , отрабатываемым в определенный период времени (год, квартал, месяц)

, м3 / м3

Контурный коэффициент вскрыши определяет отноше­ние объемов пустых пород Vв к извлекаемым запасам полез­ного ископаемого Vи , прирезаемым к карьеру при расшире­нии его контуров в плане или при его углублении

, м3 / м3

Граничным коэффициентом вскрыши называется мак­симально допустимый коэффициент вскрыши по условиям эко­номичности открытых горных работ на данном месторождении. Он определяет максимально допустимый объем вскрыши, кото­рый может быть удален из карьера для добычи единицы полез­ного ископаемого. Величина граничного коэффициента вскрыши определяется па основании сравнения допустимой себестоимости полезного ископаемого Сд и полной себестоимости полез­ного ископаемого при открытом способе разработки месторож­дения Сп.

Себестоимость полезного ископаемого, добытого открытым способом, руб. / м3

,

где Зд — затраты на добычу полезного ископаемого (без учета затрат на вскрышные работы), руб. / м3 ; Зв — затраты на выемку пустых пород, руб. / м3;

kв — коэффициент вскрыши, м3 / м3 .

Экономичность открытого способа разработки месторожде­ния обеспечивается, если Сп Сд . При Сп = Сд kв = kг . В этом случае граничный коэффициент вскрыши

,

При определении граничного коэффициента вскрыши в качестве допустимой себестоимости может приниматься прогнозируемая цена полезного ископаемого на рынках минерального сырья или полная себестоимость подземной разработки данного месторождения.

^ СПОСОБЫ ПОДГОТОВКИ ГОРНЫХ ПОРОД К ВЫЕМКЕ

ОБЩИЕ СВЕДЕНИЯ

Подготовка горных пород к выемке производится в целях обеспечения безопасности горных работ, необходимого качества добываемого сырья, технической возможности и наилучших ус­ловий применения средств механизации последующих процес­сов. Подготовка включает: обеспечение устойчивости откосов уступов; осушение горных пород, подлежащих извлечению в данный период разработки; разупрочнение и изменение их агрегатного состояния; разрушение (разрыхление) породного массива и другие виды воздействия на горные породы для об­легчения их выемки.

Подготовка к выемке может осуществляться механическими способами (исполнительными органами горных машин), гидрав­лическими способами (нагнетанием, насыщением водой, рас­творением) , физическими способами (электромагнитным н термическим воздействием), химическим, комбинированными и взрывным способами. Выбор способа подготовки горных пород к выемке зависит прежде всего от вида, агрегатного состояния и свойств пород в массиве, мощности предприятия, наличных технических средств, предъявляемых требований к качеству добываемого сырья, а также от природных условий ведения работ. Затраты на подготовку к выемке составляют от 5 до 40 % общих затрат на горные работы.

Выемка мягких, песчаных н естественно мелкоразрушенных пород успешно производится всеми видами выемочно-погрузоч­ного оборудования. При этом подготовка совмещена с выемкой и производится одними и теми же средствами механизации.

Выемка плотных пород также может осуществляться непо­средственно из массива выемочными машинами с повышенными усилиями копания. Если усилия, развиваемые выемочными ма­шинами, недостаточны, производится подготовка таких пород к выемке, которая заключается в их предварительном механи­ческом рыхлении или взрывании на сотрясение. В мерзлом со­стоянии эти породы только при небольших отрицательных тем­пературах могут разрабатываться непосредственно выемочными машинами с повышенными усилиями копания. Как правило, в этих условиях требуется подготовка к выемке механическим или взрывным способом или предварительное оттаивание. Используются также методы предохранения пород от промерзания.

Подготовка горных пород к выемке в зимних условиях включает комплекс мероприятий по предотвращению промерзания пород, рыхле­нию мерзлых пород и приведению их в талое со­стояние (оттаивание). Для предохранения пород от промерзания используют вспашку, глубокое рыхление и боронование поверхности разра­батываемого зимой слоя, создают над ним снеговой или искус­ственный льдовоздушный покров, а также утепляют поверхность теплоизоляционными материалами или устраивают специаль­ные навесы и тепляки, производят химическую обработку по­род. Выбор способа предохранения определяется в первую оче­редь глубиной промерзания пород, которая зависит от темпе­ратуры воздуха, длительности промерзания, направления и скорости ветра, а также от свойств и состояния горных пород.

Вспашка, рыхление и боронование поверхности позволяют уменьшить теплопроводность породы благодаря образованию в ней рыхлого слоя. Вспашку и рыхление производят специаль­ными плугами или рыхлителями па глубину 0,3 - 0,4 м, а боро­нование—на глубину до 0,2 м. Применяют также глубокое (на 1—1,8 м и более) рыхление пород экскаваторами, что умень­шает глубину их промерзания в 2—3 раза. Часто производят снегозадержание посредством снежных ва­лов или снегозадерживающих щитов, ряды которых распола­гают перпендикулярно к господствующему направлению ветра на расстоянии друг от друга не более 15-кратной высоты вала. За зимний период щиты переставляют 2 — 5 раз. Для снегоза­держания на площади 1 га требуется 60—100 щитов. Тепло­изоляционные свойства снега иногда улучшают путем периоди­ческого дождевания его поверхности. Создаваемый ледяной по­кров препятствует конвекции.

Для предохранения от промерзания россыпей площадь, об­валованную бульдозерами (высота вала до 1,5 м), осенью за­ливают слоем воды 0,8—1,5 м для создания ледяного покрова. При глубине промерзания более 0,6—0,8 м необходимо утеп­лять породу дополнительно теплоизоляционными материалами: мхом, опилками, шлаком, углем, минеральной ватой, минераль­ным войлоком и др.

В связи с постепенным увеличением в зимний период глу­бины промерзания пород при определении толщины слоя утеп­лителя должно учитываться время разработки блока уступа. Применение искусственных утеплителей позволяет свести до минимума, а иногда и совсем предотвратить промерзание гор­ных пород. Предварительное рыхление пород экскаваторами на глубину до 1,2 м, боронование па глубину 0,15 м и утепление площадок и откосов уступов слоем некондиционного угля тол­щиной 0,15—0,2 м позволяет на карьерах уменьшить промерзание пород в 3,5—4 раза и обеспечить работу многоковшовых экскаваторов на вскрышных уступах в зимний период. Известны случаи утепления уступов в песчано-гравийных породах и глинах, промерзающих на глу­бину 2,5—3 м, слоем пенопласта толщиной 0,2—0,25 м, а также вскрышными породами.

Для предохранения от промерзания как мягких, так и раз­рушенных пород в настоящее время применяются пенолед и за­мороженная пена. Для получения пены могут быть использованы алкидсульфат, вода и сжатый воздух. Слой замороженной при температуре ниже -15°С пены толщиной 0,15—0,2 см, рав­номерно наносимый с помощью пеногенераторной установки на поверхность любой конфигурации, затем дополнительно еще 3—5 раз покрывают пеной для образования защитной пенистой корки льда толщиной 3—4 мм.

Химическая обработка песчано-глинистых пород хлористыми солями натрия или калия заключается в рассыпании в сухом виде этих солей в измельченном состоянии (менее 30—40 мм) после предварительной планировки поверхности, вспашки на глубину 20—30 см при наличии уклона (для предотвращения смыва раствора). Покрытие поверхности производится парал­лельными полосами, расстояние между которыми не превышает 0,7 м.

^ ОТТАИВАНИЕ МЕРЗЛЫХ ПОРОД

Оттаивание может осуществляться путем электрообогрева, поверхностного пожога, с помощью горячих газов, пара, воды, при сжигании термохимических патронов и т. п.

Электрообогрев может быть глубинным или поверхностным, низко- или высокочастотным.

При глубинном электрообогреве переменным то­ком промышленной частоты напряжением 12—380 В электроды размещают в шнурах, пробуренных па глубину промерзания породы по квадратной или шахматной сетке на расстоянии 0,5—0,7 м один от другого. Электрическая цепь замыкается по талой породе под мерзлым слоем. В результате нагрева талой породы н передачи тепла вышележащим слоям происходит их постепенное оттаивание снизу вверх.

При поверхностном электрообогреве полосовые электроды в виде сеток из тонкой медной проволоки, длина ко­торых равна наклонной высоте уступа, укладывают на его от­кос. Питание осуществляется от генератора высокочастотных колебаний.

Поверхностный пожог (сжигание слоя угля толщиной 0,2— 0,35 м на поверхности слоя мерзлых пород) иногда использу­ется па карьерах по добыче глин: промерзшая до глубины 2 м глина полностью оттаивает в течение 6—10 дней.

Для поверхностного оттаивания пород газообразным топли­вом используются горючие газы, поступающие в карьер по га­зопроводу или доставляемые в баллонах. Оттаивание паром производится с помощью паровых игл (стальных труб внутренним диаметром 19—22 мм и длиной 1,7—-3 м), вставляемых в шпуры или забиваемых в породы по мере их оттаивания на расстоянии 2—2,5 м друг от друга. Ис­пользуется насыщенный пар с температурой 102—110°С под давлением 0,2—0,5 МПа, Продолжительность оттаивания тя­желых глин 4--6 ч, расход пара на 1 м3 мерзлоты составляет приблизительно 20—30 кг. Достоинство способа—относитель­ная экономичность, недостаток—увлажнение пород, способст­вующее их повторному замерзанию.

Подобным же образом осу­ществляется оттаивание горячей водой. Оттаивание речной водой производят посредством нагнета­ния ее по погружаемым в мерзлые породы трубчатым иглам, проведения дренажных канав или дождевания. Оно может про­изводиться также при естественном просачивании ее из распо­ложенной на возвышенной части массива оросительной канавы в расположенную ниже на расстоянии 70—150 м дренажную канаву глубиной до 2—3 м. От оросительной могут проводиться поперечные канавы глубиной до 0,7 м, оканчивающиеся в 30— 50 м от дренажной.

При водооттаивании дождеванием распыленная стационар­ной или передвижной дождевальной установкой вода просачи­вается через верхний талый слой пород под уклон и, отдавая тепло нижележащему слою мерзлоты, постепенно понижает ее уровень.

Гидрооттаивание и парооттаивание широко применяют на разработках россыпей в районах многолетней мерзлоты. Оттаи­вание определяют с помощью щупов и замеров температуры или электросопротивления в контрольных иглах и скважинах. При разработке многолетней мерзлоты интенсифицируют естественное оттаивание.

^ МЕХАНИЧЕСКОЕ РЫХЛЕНИЕ

Механическое рыхление пород осуществляется прицеп­ными или навесными рыхлителями, в которых масса тягача используется для заглубления рабочего органа рыхли­теля. Глубина рыхления прицепными рыхлителями достигает обычно 0,4—0,5 м, а навесными— 1,5—2 м. На открытых раз­работках наиболее успешно применяются навесные рыхлители тяжелого типа на тракторах мощностью более 250 кВт. Рыхлители могут иметь до пяти зубьев с цельными или со­ставными наконечниками. Для подготовки полускальных пород применяют однозубые рыхлители, а в плотных породах целесо­образнее использовать многозубые рыхлители для увеличения их производительности. Навесные рыхлители имеют гидравли­ческую систему изменения глубины рыхления. Рыхление мало и среднетрещиноватых полускальных пород производят зубь­ями с прямыми стойками. Для рыхления хрупких и сильнотре-щиноватых пород используют зубья сложной формы.

К параметрам рабочего органа рыхлителя относятся : угол резания , угол заострения , задний угол  толщина и длина зуба, расстояние между зубьями.

Сила резания рыхлителя зависит от угла рыхления. Опти­мальный угол рыхления при полускальных и мерзлых породах составляет 30—45". Увеличение его от 40 до 60° удваивает ло­бовое сопротивление зубу.

Угол заострения наконечников - 20—30°. Он принима­ется таким, чтобы при любом заглублении зубьев задний угол был больше 10° при рыхлении мерзлых и 5—7° при рыхлении скальных и полускальных пород. Уменьшение угла  ведет к смятию породы задней гранью наконечника, увеличению его износа и сопротивления породы рыхлению.

При движении рыхлителя порода разрушается в границах трапециевидной прорези.

В монолитных породах в нижней ча­сти прорези образуется щель , ширина основания которой близка к толщине наконечника зуба, а высота (0,15— 0,2) величины заглубления зуба рыхлителя. Угол наклона боковых стенок прорези к изменяется от 40 до 60° в зависимости от трудности разрушения пород и параметров наконечника. Рыхлимость пород определяется возможным заглуб­лением зуба рыхлителя и зависит от мощности, развиваемой рыхлителем, прочности пород и трещиноватости массива. Рыхление монолитных пород происходит в основном за счет преодоления сопротивления их растяжению, а трещино­ватых пород—сцепления по контактам структурных блоков. В результате их отрыва породы интенсивно разрушаются в пре­делах заглубления зуба. При естественной трещиноватости или развитой слоистости пород, а также при увели­чении мощности рыхлителя эффективность механического рых­ления возрастает.

Под воздействием рабочего органа рыхлителя в горных по­родах возникает сложное напряженное состояние, представ­ляющее собой комбинацию сил сжатия и растяжения. Как в мо­нолитных, так и в трещиноватых массивах при рыхлении на­рушается связность горных пород, характеризующаяся величи­ной сцепления .

Величина напряжений, создаваемых на рабочем органе, за­висит от значения усилия на крюке базовой машины, глубины рыхления и конструктивных размеров зуба рыхлителя. В свою очередь, усилие на крюке связано со скоростью рыхления, тя­говой характеристикой базовой машины. Учитывая это, основные параметры—скорость и глубина рыхления—не могут приниматься произвольно, а должны рас­считываться по тяговой характеристике базовой машины.

Рыхление породного массива производится при параллель­ных смежных проходах рыхлителя на горизонтальной или наклонной площадке. В результате создается слой разрушенной породы. При рыхлении наклонными слоями (до 20°) максималь­ное использование тяговых усилий достигается при рабочем движении его под уклон и холостом перегоне машины вверх. Рыхление горизонтальными слоями производится при рабочих проходах рыхлителя по челноковой схеме.

Расстояние между смежными проходами устанавливается из условия обеспечения требуемой кусковатости и достаточной глубины рыхления массива. Между смежными прорезями в нижней части сечения образуются «целики»—золы неразрыхленной породы, затрудняющие выемку горной массы. Глубина эффективного рыхления меньше заглуб­ления зуба и составляет (0,5— 0,7) этого заглубления. В связи с этим целе­сообразны дополнительные перекрестные проходы рыхлителя перпендикулярно или диагонально первоначальным проходам для разрушения целиков и обеспечения лучшей кусковатости горной массы.

Рыхлимость породы зависит от взаимного направления рых­ления и системы трещин. Наиболее эффективно рыхление по­перек направления основной трещиноватости. При рыхлении слоистых полускальных пород наиболее сложным является пер­воначальное заглубление зуба. Для облегчения заглубления многократным проходом рыхлителя или взрывным способом создают «передовой врез» на необходимую глубину поперек намечаемых параллельных проходов рыхлителя.

При полном использовании возможной глубины рыхления оптимальное расстояние между смежными проходами рыхли­теля определяется из условия достижения максималь­ного объема подготовки горной массы за один проход.

Производительность рыхлителей в плотных породах дости­гает 1000—1500 м3 / ч; она существенно зависит от длины па­раллельных резов, которую целесообразно принимать в преде­лах 100—300 м.

Механическое рыхление позволяет облегчить раздельную выемку маломощных горизонтальных и наклонных (до 20°) пластов, эффективно регулировать кусковатость горной массы, уменьшить потерн и разубоживание полезного ископаемого бла­годаря отсутствию развала и перемешиванию пород, мини­мально переизмельчать и разупрочнять горные породы (что особенно важно при добывании строительных горных пород), повысить безопасность работ. Вместе с тем при механическом рыхлении мощность разрыхленного слоя невелика, что затруд­няет непосредственную экскаваторную выемку.

Рыхлители могут успешно применяться при разработке угля, фосфоритных и апатитовых руд, сланцев, песчаников, полускальных известняков, а также маломощных слоев скальных сильно- и чрезвычайно трещиноватых руд и пород. Механиче­ское рыхление эффективно при гидравлической разработке тя­желых глинистых пород, разработке мерзлых пород и при вспо­могательных работах (проведение дренажных канав, выкорчевывание пней и др.). Хорошее качество подготовки и небольшая мощность разрыхленного слоя позво­ляют вести выемку горной массы скреперами, бульдозерами и погрузчиками.

^ ПОДГОТОВКА СКАЛЬНЫХ ПОРОД ВЗРЫВОМ

Взрывание широко применяется в карьерах для разрушения полускальных и скальных пород. Практически оно является единственным способом подготовки скальных пород к выемке. От организации и качества взрывных работ в значительной сте­пени зависят производительность всего карьерного оборудова­ния и затраты на горные работы. Взрывные работы должны обеспечивать: требуемую степень дробления горных пород для последую­щих технологических процессов добычи и переработки; требуемые качество и сортность взорванного полезного ис­копаемого, достижение в необходимых случаях избирательного дробления пород различной трудности разрушения; минимальное отклонение отметок и размеров площадок и уступов, их формы от проектных значений; заданные форму и угол откоса уступа, возможность безопас­ного бурения и заряжания последующих скважин; проектные размеры и форму развала взорванных пород, удобные для выемочно-погрузочных работ, необходимую даль­ность и направление перемещения пород, особенно при сбросе в выработанное пространство; допустимое по нормам сейсмическое воздействие взрыва и максимальную сохранность окружающих сооружений и пород­ного массива за конечными контурами карьера и соблюдение заданного угла погашения его борта; достаточный объем взорванных пород для бесперебойной и высокопроизводительной выемки и погрузки; высокую безопасность, экономичность и производительность горных работ.

Выполнение перечисленных технических требований к взры­вам обеспечивается правильным выбором метода, параметров, порядка взрывания и организации взрывных работ, т. е. рацио­нальной технологией взрывных работ, которая должна быть тесно увязана со всеми работами в карьере. Для этого необхо­димы составление проектов ведения буровых и взрывных ра­бот, правильное заряжание скважин, применение требуемых ус­ловиями ВВ и др. Предпосылкой улучшения качества дробления является равномерное распределение ВВ в мас­сиве. Обычно взрывные работы в карьере ведут в две стадии. На первой стадии при отделении породы от массива осуществля­ется первичное дробление, на второй —дополни­тельное (вторичное) дробление негабаритных кус­ков, выравнивание подошвы уступа, обрушение нависей, заколов и т.д.

Ведение работ в две стадии не следует считать нормальным: необходимость в этом возникает вследствие недостаточно эффективного проведения первичного взрывания.

Метод взрывания характеризуется размещением зарядов ВВ по отношению к объекту дробления, формой и размерами за­рядов . Он определяет результаты и эффективность взрывов и общую организацию работ по подготовке пород к вы­емке.

^ ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ БУРОВЫХ РАБОТ

Цель бурения—создание в породном массиве скважин и шпуров. Бурение скважин — трудоемкий и дорогостоящий процесс, особенно в скальных весьма трудно- и породах.

Эффективность бурения взрывных скважин определяется скоростью бурения.

Бурение скважин и шнуров на карьерах производится спе­циальными породоразрушающими (буровыми) машинами, раз­деляемыми на две группы: механического воздействия на забой скважины (ударное, вращательное н ударно-вращательное бурение); физических методов воздействия на забой скважины (терми­ческое, гидравлическое, взрывное бурение и др.).

Ударное бурение осуществляется станками ударно-канат­ного и шарошечного бурения. Станки ударно-канатного бурения широко применяли на карьерах для бурения взрывных скважин диаметром 200— 300 мм до начала 60-х годов. В настоящее время они полно­стью заменены более производительными станками шарошечного и пневмоударного бурения и применяются только для бурения водопонизительных и других технологических скважин диамет­ром 300—600 мм и глубиной 60 м и более, а также для специ­ального бурения при добывании блоков камня.

Пневматические бурильные молотки (ручные и колонковые) применяются для бурения шпуров диаметром 32— 40 и 50—75 мм в скальных породах. Ручные иногда, а колон­ковые всегда используются в сочетании с пневмоподдержками, колонками, самоходными каретками. Станки шарошечного бурения в последние два­дцать лет получили наибольшее распространение при бурении скважин диаметром 160—320 мм и глубиной до 35 м породах с коэффициентом крепости по Протодьяконову f = 8-14. Основные их достоинства—высокая производительность (20—150 м/смену) непрерывность процесса бурения, возможность его автоматизации; недостатки—большая масса станков и ма­лая стойкость долот в труднобуримых породах.

Вращательное бурение скважин осуществляется станками шнекового и алмазного бурения. Бурение шпуров, в основном в негабаритных кусках, мо­жет производиться электросверлами.

Станки шнекового бурения широко применяют для бурения вертикальных н на­клонных скважин диаметром 125—160 мм н глубиной до 25 м в породах с f = 4-6, главным образом на угольных разрезах (уголь, аргиллиты, мягкие известняки) и при разработке непрочных строительных пород (мергель, мягкий известняк и др.). Производительность их 15—120 м/смену. Станки характеризуются простотой эксплуатации, при их работе обеспечиваются благоприятные санитарные и экологические условия. Ударно-вращательное бурение станками с погружными пневмоударниками применяется для бурения скважин диаметром 100—200 мм и глубиной до 30 м при раз­работке строительных горных пород с f = 8-20 , в гидротехни­ческом строительстве, на рудных карьерах производственной мощностью до 4 млн. м3/год, а также при вспомогательных ра­ботах на крупных рудных карьерах (заоткостка бортов, вырав­нивание подошвы уступов и др.) Эти станки целесообразно применять и при бурении высокоабразивных весьма и исклю­чительно труднобуримых пород с f = 20. Производительность их составляет 10—35 м/смену. Затраты на обуривание 1 м3 породы в 1,5—2,5 раза выше, чем при шарошечном буре­нии пород при f <14. Буровые станки конструктивно просты; возможно многошпиндельное бурение. Основные их недостатки; малая стойкость буровых коронок, низкая производительность и большое пылеобразование.

Термическое (огневое) бурение вследствие его избиратель­ности получило распространение при бурении скважин диамет­ром 250—360 мм и глубиной до 17—22 м главным образом в весьма и исключительно труднобуримых кварцсодержащих породах (f >10). Оно может успешно приме­няться в породах с f = 10-16. Хрупкое разрушение пород про­исходит в результате нагрева забоя скважины сверхзвуковыми раскаленными струями и появления термических напряжении, превышающих предел прочности минерального образования.

Возможность термического расширения диаметра заряжае­мой части скважин (до 400—500 мм) позволяет сократить объем бурения в сильнотрещиноватых породах за счет увели­чения расстояния между скважинами. Производительность в хо­рошо термобуримых породах достигает 12—15 м/ч. В трудно термобуримых породах этим способом эффективно расширение скважин, пробуренных шарошечными станками. Технология бурения обусловливает последовательность вы­полнения операций для образования скважин. При обуривании блока породного массива в общем случае выполняются следую­щие операции: установка станка на заданной отметке, непо­средственно бурение, наращивание бурового става по мере углубления скважины, разборка бурового става, замена изно­шенного инструмента, переезд станка к отметке следующей скважины. Бурение скважины является прерывным процессом и включает ряд повторяющихся операций.

Техническая скорость зависит от буримости горной породы, конструкции и типа бурового инструмента, нагрузки на буро­вой инструмент, частоты вращения его, способа и условий уда­ления буровой мелочи. Режим бурения характеризуется величиной развиваемых усилий, частотой ударов и вращения рабочего инструмента и удалением буровой мелочи. Каждый вид бурения характеризу­ется своими возможными параметрами режима бурения.

Технология ударно-канатного бурения скважин состоит в следующем. Буровой снаряд массой 0,8—3 т периодически поднимается и почти свободно падает на забой скважины. После каждого удара снаряд (и лезвие долота) посредством канатного замка поворачивается на некоторый угол, что обес­печивает равномерное разрушение породы но всей площади за­боя скважины. Продукты разрушения смешиваются с водой, периодически или постоянно подливаемой в скважину, и обра­зуют буровой шлам. Последний периодически удаляется из скважины желонкой.

Скорость ударно-канатного бурения определяется прежде всего массой бурового снаряда, величина которой составляет 2700—2900 кг. Очистка скважин от шлама производится через 0,6—1 м бурения; при этом в весьма труднобуримых породах интервал минимален.

Ударное бурение шпуров в карьерах осуществляется руч­ными и колонковыми бурильными молотками, масса которых соответственно равна 10—30 и 40—70 кг, давление сжатого воздуха 0,5 МПа, диаметр шпура 36—46 и 46—75 мм, глубина бурения 3—4 и 8—15 м.

Бурильные молотки снабжаются сжатым воздухом, как пра­вило, от передвижных компрессоров , максимальное давление сжатого воздуха составляет 0,6—0,7 МПа, масса 1—6 т. Приводом компрессорных станций являются двигатели внутреннего сгорания или электродвига­тели. Технология шнекового бурения состоит в образовании взрыв­ных скважин коронками режущего типа (резцами) под воздей­ствием усилия подачи и вращения бурового става. Передача резцу крутящего момента и усилия подачи, а также удаление буровой мелочи из забоя обеспечиваются шнековыми штангами с ребордами винтовой формы.

Основными технологическими операциями шнекового буре­ния скважины являются: собственно бурение, наращивание и разборка бурового става, состоящего из отдельных штанг. Усилие подучи на резец и подача последнего на забой сква­жины осуществляются как под действием массы вращателя и бурового става (станок СБР-125), так и принудительно (СБР-160). Ход станка СБР-125—шагающий, а СБР-160 и СБР-200 — гусеничный.

Резцы имеют лезвия, армированные вставками твердого сплава . Форму режущих лезвий вы­бирают в зависимости от буримости пород и диаметра скважин. В плотных пластичных породах применяют резцы типа «рыбий хвост» (рис. а). При f=4 эффек­тивнее резцы со сменными зубьями (рис. б); режущие эле­менты легко заменяются, а стойкость резца достигает 1000 м и более. В породах с f=3-5 успешно применяют резцы с прерывистым лезвием в виде впаянных (рис. в) или сменных (рис. г) элементов твердого сплава. Для бурения хрупких и трещиноватых пород применяют резцы с криволи­нейными режущими лезвиями (рис.д) и иногда кольцевые резцы с двумя режущими элементами (рис. е). Использова­ние резцов торцового резания с передним отрицательным углом (рис.ж), требующих больших усилий и частоты вращения, позволяет расширить область шнекового бурения и применять его в породах с f до 7.

Для лучшей очистки скважин от буровой мелочи рекоменду­ется к спиралям шнека по центральной трубе подавать сжатый воздух (шнеко-пневматическая очистка). Режим шнекового бурения характеризуется усилиями по­дачи, частотой вращения бурового инструмента и эффективно­стью удаления продуктов разрушения.

Шарошечное бурение осуществляется долотами, имеющими в качестве разрушающего органа конусообразные шарошки с фрезерованными зубьями (зубчатые долота) или штырями, армированными твердыми сплавами (штыревые до­лота). При вращении долота шарошки наносят зубьями (шты­рями) удары по забою скважины. Отколовшиеся частицы по­роды удаляются из забоя скважины сжатым воздухом или воз­душно-водяной смесью. По массе и развиваемому усилию подачи станки шарошеч­ного бурения подразделяются на легкие (масса до 40 т, усилие подачи до 200 кН, диаметр скважины 150—220 мм, ра­циональная область применения—породы с f=6-10), сред­ние (масса до 65 т, усилие подачи до 350 кН, диаметр сква­жины 220—270 мм, f=10—14) и тяжелые (масса до 120 т усилие подачи до 700 кН, диаметр скважины 320—400 мм, f>14). К станкам легкого типа относятся СБШ-160, к стан­кам среднего типа—2СБШ-200Н, ЗСБШ-200, СБШ-250МН; к станкам тяжелого типа — СБШ-320, СБШ-400. Станок СБШК-400 предназначен для бурения пород с f<10.

Последовательность и продолжительность операций буре­ния скважин зависят от кинематической схемы вращательно-подающего механизма бурового станка.

Зубчатые долота типа С, СТ и Т имеют фрезерованные зубья клиновидной формы с боковыми гранями, армирован­ные твердым сплавом. В диапазоне типов С—Т постепенно увеличиваются общее число и угол заострения зубьев (от 30— 35 до 50—60°) с одновременным уменьшением их шага и вы­соты. Вооружение долот типов ТЗ, ТКЗ, К и ОК выполнено в виде запрессованных в тело шарошек твердосплавных зубьев (штырей) клиновидной формы (ТЗ), полусферической формы (К, ОК) или с чередованием на каждом венце штырей указан­ных форм (ТКЗ). У долот этой группы с переходом от типа ТЗ к типу ОК также увеличивается число штырей, а высота и шаг уменьшаются. Долота типа ТК имеют комбинированное вооружение — с чередованием фрезерованных и твердосплавных зубьев на каждом венце или по отдельным венцам. Стойкость долот ОК составляет 100—150 м в породах с f=14-16.

Доводить долото до полного затупления нецелесообразно, так как при этом средняя скорость бурения снижается на 7— 10 %. Рациональную стойкость долота можно определить по условию минимума затрат на бурение 1 м скважины с учетом вспомогательных операций.

В настоящее время на карьерах для бурения скважин диа­метром от 105 до 160 мм применяют различные станки с погружными пневмоударниками (СБУ-125, СБУ-100Г, СБУ-100П, и др.). Рабочим органом станка является погружной пневмоударник. С помощью клапанного устройства сжатый воз­дух, поступающий по буровой штанге, приводит в поступа­тельно-возвратное движение ударник, наносящий удары по хвостовику буровой коронки. Частота ударов составляет 28—41 в секунду. Одновременно вместе со штангой вращается пневмоударник; вращатель расположен вне скважины. Буровая ме­лочь удаляется из скважин воздушно-водяной смесью или сжатым воздухом.

Основным показателем работы пневмоударников является эффективная удельная энергия удара (на 1 см диаметра до­лота) для достижения постоянной скорости бурения при раз­личном диаметре скважины.

При пневмоударном бурении доля затрат па буровой ин­струмент составляет 30—35%. Буровые коронки имеют диаметр 85—105, 155—160 и 160—200 мм. По числу разру­шающих лезвий различают коронки однодолотчатые (зубиль­ного типа), трехперые, крестовые, Х-образные и штыревые, а по расположению лезвий—одно-, двухступенчатые (с опе­режающим лезвием) и многоступенчатые. Коронки армируются призматическими и цилиндрическими вставками твердого сплава и имеют центральную, боковую или периферийную про­дувку.

Наибольшее усилие подачи на породу обеспечивают одно­ступенчатые долотчатые коронки благодаря минимальной длине лезвия. Но эти коронки интенсивно изнашиваются по высоте и диаметру. При бурении малотрещиноватых пород применяют трехперые коронки (рис. а) диаметром 85—105 мм, а трещиноватых пород—крестовые коронки диамет­ром 155 мм (рис. б); эти коронки имеют опережающие лезвия.

Чтобы предотвратить заклинивание бурового става вслед­ствие обвалов стенок скважины или вывалов отдельных по­родных кусков, применяют конический разбурник с зубьями с наплавленным слоем релита толщиной 3—4 мм. Разбурник устанавливают между пневмоударником и штангой широким концом конуса вниз, разбуривание можно вести во время подъема става.

Термическое бурение скважин осуществляется самоходными огнеструйными буровыми станками, имеющими вращающийся термобур с горелкой; вращением термобура достигается пе­риодическое нагревание всей площади забоя скважины диаметром 220—250 мм .

Основными технологическими операциями термического бу­рения являются: зажигание горелки; собственно бурение, за­ключающееся в подаче вращающегося термобура на забой; расширение при бурении нижней части скважины (при созда­нии котловой полости) или по всей длине заряжаемой ее ча­сти и очистка скважины.

В огнеструйной горелке смешиваются горючее и окисли­тель и образуются высокотемпературные газовые струи, кото­рые, проходя через сопловой аппарат со сверхзвуковой ско­ростью, направляются на забой скважины. Охлаждение го­релки и пылеподавление осуществляются водой и сжатым воздухом. При использовании в качестве окислителя сжатого воздуха рациональны односопловые горелки , позволяющие повысить концентрацию газового потока. Двух- и трехсопловые горелки применяют при окислителе—газообраз­ном кислороде. Стойкость горелок обычно составляет 800— 1000 м.

При термическом бурении хорошо разрушается ограничен­ное количество в основном кварцсодержащих пород. Поэтому его самостоятельное применение оказалось неэффективным. При термическом расширении зарядной части скважины, ра­нее пробуренной шарошечным или другим механическим спо­собом, скорость терморазрушения породы возрастает в 5—10 раз и более, увеличивается число терморазрушаемых пород.

^ ВСПОМОГАТЕЛЬНЫЕ РАБОТЫ ПРИ БУРЕНИИ

Процесс бурения связан с рядом вспомогательных работ: подготовка рабочих мест буровых станков (площадок уступов), а также самих станков и вспомогательного оборудования к бу­рению скважин; бесперебойное обеспечение станков электро­энергией, материалами, буровым инструментом; учет и обес­печение сохранности пробуренных скважин; перегоны станков; их ремонт; наращивание и перестройка линий электропередач; перемещение силового кабеля.

Подготовка площадок уступов к бурению заключается в освобождении их от оборудования (перенос транспортных коммуникаций, линий электропередач, трансформаторных под­станций и др.), планировке и очистке от снега, выравнивании навалов породы, засыпке углублений, ликвидации возвышений, расширении площадок, устройстве дорог для перемещения станков. Эти работы выполняют с помощью бульдозеров и вспомогательного бурового оборудования (бурильных молот­ков, пневмоударных станков). Далее производят маркшейдерскую съемку подготовленных площадок, вынос проектных отметок расположения скважин на местность, подвод энергии (сжатого воздуха, воды), пере­мещение станков на обуриваемый блок уступа, подключение их к трансформаторным подстанциям и подготовку к работе (подъем мачт, подключение воздушных магистралей, замена бурового инструмента и т. д.). Буровой инструмент, материалы и запасные части достав­ляют на железнодорожных платформах или автомашинах, обо­рудованных кранами.

При концентрации на небольшой площади нескольких бу­ровых станков целесообразно оборудовать в карьере простей­шие передвижные мастерские, служащие также для хранения инструмента, смазочных материалов и мелких запчастей, обо­грева и отдыха рабочих. При вынесении проекта обуривания блока на местность у точек расположения скважин простав­ляются их номера и проектная глубина. Фактическую глубину скважин определяет машинист станка и выборочно—горный ма­стер. Дополнительный контроль выполняют взрывники перед зарядкой скважин. Допустимые отклонения параметров сетки и глубины скважин составляют ±0,3 м.

Длительность сохранности скважин ограничена. Со време­нем уменьшается фактическая их глубина из-за обрушения стенок скважин, снежных заносов, наездов автомашин и буль­дозеров, сотрясения и т. д. Время повторного разбуривания скважин достигает 5—6 % календарного времени работы бу­ровых станков. Особенно интенсивное обрушение наблюдается у стенок наклонных скважин.

Особенно опасно оплывание скважин в вечномерзлых глини­стых породах в летний период. Для его предотвращения необ­ходимо максимально сокращать переходящий остаток невзор­ванных скважин. В зимний период в устьях скважин могут возникать ледя­ные и снежные пробки глубиной до 2—3 м; при снежных за­носах затрудняется отыскание скважин, особенно при наруше­ниях сетки бурения. В связи с этим необходимо плотно за­крывать устья скважин.

При ручном управлении машинист вынужден постоянно ре­гулировать либо усилие подачи, либо частоту вращения, вы­держивая их постоянными при определенной глубине сква­жины. Автоматизация процесса шарошечного бурения сво­дится к регулированию частоты вращения и усилия подачи на основе анализа в процессе бурения механических и электрических характеристик станка. Частоту вращения буро­вого инструмента можно регулировать в зависимости от уси­лия его подачи на забой, а последнее—в зависимости от ве­личины нагрузки (крутящего момента) двигателя станка. По­дача должна быть плавной и непрерывной, причем усилие подачи долота на забой должно превышать сопротивляемость горных пород разрушению (буримость) и обеспечивать наибо­лее эффективную скорость разрушения. Известны также системы автоматического регулирования усилия подачи (поддержания оптимальной его величины) по заранее заданной технической скорости бурения при постоян­ной частоте вращения бурового става.

Более прогрессивным является регулирование режима бу­рения по допустимому уровню вибрации станка. Усилие по­дачи на долото задается максимальным, а частота вращения регулируется по уровню вибрации, при превышении установ­ленного предела которого датчик вибрации дает команду о снижении частоты вращения става. При таком способе авто­матического регулирования технические возможности буровых станков используются максимально.

Последующая стадия автоматизации процесса бурения свя­зана с переходом к программному управлению буровым стан­ком в соответствии с предусмотренной последовательностью работ исполнительных механизмов станка как в процессе бу­рения, так и при выполнении вспомогательных операций.

^ ОРГАНИЗАЦИЯ БУРОВЫХ РАБОТ

Организация работы буровых станков должна обеспечить максимальную их эффективность и взаимосвязь бурения с другими процессами на карьере.

Подготовка рабочих мест буровых станков осуществляется по буровым блокам соответственно блоковому взрыванию горных пород. После обуривания (желательно непрерывного) од­ного блока станки перемещают на новый блок соответственно плану горных работ. Подготовительные работы выполняются дорожной бригадой, бульдозеристами, службой высоковольт­ных сетей, маркшейдерской службой, персоналом самого буро­вого цеха, ряда других цехов и участков. Для максимального совмещения работ во времени составляют график их проведе­ния , увязанный с планом работы соответствующих служб. Цель составления графика состоит в том, чтобы, зная состав и длительность всех работ, а также намеченный срок их окончания, определить последовательность их выполнения и необходимые моменты начала каждой работы.

После установления моментов начала всех подготовитель­ных работ определяют возможность перераспределения ресур­сов для сокращения общего времени подготовки. Окончательно установленные сроки выполнения работ передаются соответст­вующим службам, включающим их в свои планы. Контроль за выполнением графиков осуществляют начальник бурового участка и производственный отдел карьера. При ограниченном фронте работ допускается начало обуривания блока при его неполной подготовке. Порядок обуривания блока характеризуется последователь­ностью бурения отдельных скважин, т. е. схемой перемещения станков. При бурении скважин первого ряда станок должен располагаться перпендикулярно к бровке уступа, так, чтобы горизонтирующие домкраты и гусеницы находились вне призмы возможного обрушения откоса уступа.

Порядная схема перемещения станков (рис. а) применяется чаще всего при отставании буровых работ и взрывании одного ряда скважин. При расстоянии между сква­жинами в ряду а общее расстояние передвижки станка между скважинами L= (1,85 а), а удельное время передвижки на одну скважину составляет 10—12 мин при а = 7-10 м.

Поперечно-диагональная схема перемещения станков (рис.б) целесообразна при числе рядов скважин не более трех и их шахматном расположении. При бурении каждых трех скважин станок проходит расстояние L = (5 а), и выполняет два разворота примерно на 45°. Удельное время передвижки станка - 5 мин.

Поперечно-возвратная схема (рис. в) при­меняется при квадратной сетке скважин. Здесь на каждую скважину расстояние переезда составляет 1,5 а и приходится примерно 0,7 разворота на угол 25—30°. Поперечные схемы передвижки обеспечивают значительную экономию машинного времени буровых станков, а также луч­шие условия их эксплуатации и более планомерную подготовку блока к взрыву. При использовании на одном обуриваемом блоке двух-трех станков целесообразно их рассредоточить, вы­деляя для каждого станка отдельный фронт работ. Станки обычно подключаются к общему трансформаторному киоску и обслуживаются общим вспомогательным оборудованием; при этом расстояние между ними не превышает 20—30 м, что обеспечивает фронт работы каждого станка на 2—3 смены. При большей автономности станков (отсутствии общих емко­стей для воды, трубопроводов и т. д.) это расстояние следует увеличивать до 50—100 м, т. е. практически вести бурение на разных крыльях блока.

Номера и проектная глубина скважин, а также общий объем работ указываются при выдаче буровым бригадам смен­ного наряда. В конце смены горный мастер фиксирует показатели выполненного объема бурения ; эти данные фиксируются также в диспетчерских сменных рапортах. Наибольшее распространение на откры­тых горных работах получил шарошеч­ный способ бурения. Таким способом вы­полняется до 85 % всех объемов буре­ния, шнековым — около 13 % и удар­ным — до 1 % . Остальной 1 % приходят­ся на термический и ударно-канатный.

На угольных разрезах стран СНГ при дроблении крепких пород применяют преимущественно скважины диаметром 214 мм, в рудной промышленности — 243 мм. Ведутся работы по созданию и со­вершенствованию буровых станков на ди­аметр скважины 270—320 мм и более. В мировой практике бурения взрывных скважин наиболее популярны и эффектив­ны скважины диаметром 200—311 мм.

На открытых разработках широко применяют направленное (наклонное) бурение скважин параллельно откосу ус­тупа, сокращающее удельные расходы на бурение и ВВ и улучшающее равномер­ность дробления горной массы.

В связи с ростом производственной мощности карьеров и ведением вскрыш­ных работ мощной высокопроизводитель­ной горнотранспортной техникой с высо­кими линейными параметрами и развити­ем бестранспортной системы разработки с применением драглайнов значительное распространение получают уступы высотой 25—50 м, для чего требуется бурение на­клонных скважин глубиной до 50—60 м.

Стандарт устанавливает три подгруп­пы станков для открытых горных работ:

1. СБШ— станки вращательного буре­ния шарошечными долотами с очисткой скважины воздухом (шарошечного буре­ния) — пяти типоразмеров с условными диаметрами буримой скважины от 160 до 400 мм при крепости пород f = 6÷18;

2. СБУ— станки ударно-вращательного бурения погружными пневмоударниками с очисткой скважины воздухом (пневмо-ударного бурения) — трех типоразмеров с условными диаметрами скважины — 100, 125 и 160 мм при f = 10÷20;

3. СБР— станки вращательного буре­ния резцовыми коронками с очисткой скважины шнеком (шнекового буре­ния) — двух типоразмеров с условными диаметрами буримой скважины 160 и 200 мм при f = 4÷6.

Типоразмеры станков, определяемые главным параметром, — условным диа­метром пробуриваемой скважины, бази­руются на десятом ряде предпочтитель­ных чисел и предусматриваются для буре­ния скважин диаметрами 100, 125, 160, 200, 250, 320 и 400 мм.


Техническая характеристика шарошечных буровых станков

Показатели

2СБШ-200-32

СБШ-250МНА-32

СБШ-320-36

Диаметр долота, мм

215,9 ; 244,5

244,5 ; 269,9

320

Глубина скважины, м

32

32

36

Направление бурения к вертикали, град.

0 ;15 ; 30

0 ;15 ; 30

0

Длина штанги, м

8

10

17,5

F

5 - 14

более 12

более 18


^ ВЗРЫВАНИЕ СКВАЖИННЫХ ЗАРЯДОВ

Возможность контроля практически каждого параметра скважинных зарядов позволяет управлять взрывом с учетом по­лучения необходимого состава горной массы по крупности, тре­буемых параметров развала и степени разрыхления.

Сущность метода скважинных зарядов заключается в раз­мещении взрывчатого вещества в наклонных или вертикальных скважинах с забойкой верхней части инертными материалами из песка, буровой мелочи или забоечного материала специаль­ного состава. Скважины располагаются в один или несколько рядов параллельно верхней бровке уступа и размещаются друг от друга на расчетном расстоянии по прямоугольной сетке или в шахматном порядке. Расстояние от первого ряда скважин до верхней бровки уступа с должно обеспечивать безопасность размещения станка на уступе и рабочих по заряжанию скважин. Расстояние между сква­жинами выбирается таким образом, чтобы разрушения в массиве от каждой скважины перекрывали друг друга, не образуя «порогов» в основании уступа .

Патрон-боевик в каждой сква­жине располагается, как правило, на уровне подошвы уступа (рис.). Это обеспечивает совпадение на­правления детонации заряда взрыв­чатого вещества и направления раз­рушения массива, а также лучшую проработку подошвы. Заряд в скважине может быть сплошным (рис.) и рассредото­ченным по высоте воздушным про­межутком или инертным материа­лом. Рассредоточение заряда позво­ляет увеличить эффективность ис­пользования взрывчатого вещества для дробления за счет более равно­мерного распределения взрывчато­го вещества в массиве и интерфе­ренции взрывных волн от отдель­ных частей заряда.

Взрывной блок при однорядном расположении скважин взрывается мгновенно или с интервалом через скважину, при многорядном — с интервалом между сериями, кото­рые конструируются в зависимости от выбираемого способа формиро­вания развала (рис.). Объем од­новременно взрываемого блока при­нимается в зависимости от режима взрывных работ на карьере (один раз в смену, сутки, неделю и месяц) и производительности экс­каватора в забое. Основными параметрами взрывных работ при скважинном методе разрушения массива являются: диаметр заряда d; линия сопротивления по подошве W, которая представляет собой расстояние от нижней бровки уступа до оси заряда; расстояние между зарядами в ряду a ; расстояние между рядами b ; расстояние между верхней бровкой уступа и первым рядом скважин c; глубина скважины l; глубина перебура lп ; длина забойки lз ; величина заряда P ; ширина bр и высота развала hр .

Для определения остальных параметров взрывных работ методом скважинных зарядов необходи­мо рассмотреть влияние каждого из них на результаты взрыва. Использование различных конструкций зарядов, способов взрывания в уступе позволяет управлять взрывным разрушением массива. Несмотря на точность расчетов паспорта буровзрывных работ, вследствие недостаточной изученности свойств массива в кон­кретных условиях трудно получить ожидаемый результат. Од­нако, зная влияние каждого параметра зарядов, порядка и спо­соба взрывания на результаты взрыва, можно после нескольких экспериментальных взрывов получить требуемый развал и со­став горной массы по крупности для каждой зоны в карьере. Изменение параметров взрывного дробления массива гор­ных пород с целью достижения необходимых степени дробле­ния горной массы, коэффициента разрыхления и параметров развала называется управлением взрывным разрушением мас­сива.

Все параметры буровзрывных работ делятся на два класса. К первому классу относятся: удельный расход взрывчатого ве­щества q , диаметр заряда d, линия сопротивления по подош­ве W, сетка скважин a x b.

Ко второму классу относятся: вид взрывчатого вещества, конструкция заряда, последовательность взрывания и исполь­зования замедления, число рядов скважин и материал забойки. Изменение параметров первого класса позволяет регулиро­вать степень дробления в широком диапазоне. Параметры второго класса на степень дробления оказыва­ют меньшее влияние. В основном они используются для получе­ния необходимых по технологическим условиям размеров развала горной массы.

В первой группе наибольшее влияние на степень дробления пород оказывает удельный расход взрывчатого вещества.

Энергетической теорией разрушения установлено, что для увеличения степени дробления горных пород требуется увеличение затрат энергии, т. е. увеличение удельного расхода взрывчатого вещества. Однако в конкретных условиях существует предел, после которого без специальных технологи­ческих приемов увеличение удельного расхода не влияет на степень дробления. В реальном массиве регулируемое дробление горных пород происходит только в зоне, непосредственно окружающей заряд, а в остальных зонах разрушение массива определяется естест­венной трещиноватостью. Эмпирическая зависимость между удель­ным расходом и степенью дробления

.

В практике расчетов нормальный удельный расход взрывча­того вещества для рыхления массива принимается по таблицам в зависимости от вида, коэффициента крепости и плотности пород. Обычно эти значения без учета трещиноватости массива принимаются для эталонного взрывчатого вещества — аммонита № 6ЖВ . В случае, если применяются дру­гие типы ВВ, значение удельного расхода умножают на пере­водной коэффициент. Экспериментальными исследованиями и практикой доказано, что увеличение полезного использования энергии взрыва про­порционально времени действия заряда в среде и уменьшению зоны нерегулируемого дробления. С этой целью применяют взрывание зарядов в зажатой среде путем использования «под­порной стенки», мгновенного взрывания многорядного блока без замедления и специальных запирающих зарядов в забойке скважины.

Технология взрывания массива при наличии подпорной стен­ки заключается в оставлении части взорванной горной массы от предыдущего взрыва у откоса взрываемого блока, объем которой создает дополнительную нагрузку на массив и выпол­няет роль своеобразной забойки для трещин, образующихся в массиве от предыдущего взрыва на глубину около 100 dскв (рис.а). Взрывание массива при наличии подпорной стенки уменьшает ширину развала горной массы и может использоваться как средство для формирования развала на рабочей площадке. Эффект от использования оставляемой в массиве уступа части развала привел к идее применения взрывания под оставленным слоем горной массы от вышележащего уступа (рис. б). Эффект от применения многорядного мгновенного взрывания заключается в том, что заряду второго и следующих рядов на­ходятся в зоне массива, не нарушенного трещинами от преды­дущих взрывов, вследствие чего уменьшаются потери энергии взрывчатого вещества. Вместе с этим действие взрыва заряда каждого ряда для соседнего является своеобразным средством зажима из-за противоположной направленности взрывной вол­ны. Все это способствует увеличению действия взрыва на мас­сив и образованию интерференции взрывных волн (рис. в).

Расстояние между рядами при многорядном расположении зарядов в шахматном порядке b = 0,85a и при квадратной сетке b = a.

Сущность применения запирающих зарядов самозаклини­вающейся забойки заключается в помещении специального заряда взрывчатого вещества среди инертной забойки в сква­жине (рис. г). При инициировании этого заряда одновремен­но с основным зарядом в скважине вследствие разнонаправленности взрывов создается дополнительное сопротивление основ­ному заряду. Этим увеличивается действие взрыва основного заряда, повышается использование энергии взрыва в массиве, направленной на дробление породы. Масса запирающего заря­да в забойке принимается приблизительно равной 1 % от массы основного заряда.

Все три описанных способа увеличения действия взрыва в массиве могут применяться одновременно для получения ин­тенсивного дробления. Однако, рассматривая влияние удельного расхода взрывча­того вещества на степень дробления горных пород, необходимо учитывать и экономический аспект. Увеличение удельного рас­хода взрывчатого вещества при росте объема буровых работ влечет за собой повышение затрат на подготовку горных пород к выемке. При минимальном по усло­вию детонации взрывчатого вещества диаметре заряда вслед­ствие увеличения суммарного объема зон регулируемого дроб­ления массива обеспечивается максимальная степень дробления. При увеличении диаметра скважины заряд, по существу, пре­вращается в сосредоточенный с минимальной в процентном отношении зоной регулирования действия взрыва, а следова­тельно, и минимальной степенью дробления. Между ними на­ходится промежуточное значение.

Более равномерное распределение в массиве взрывчатого вещества способствует увеличению степени дробления при по­стоянном удельном расходе ВВ.

Однако в литературе можно встретить утверждения, что степень дробления пород взрывом не зависит от диаметра за­ряда. Это утверждение базируется только на пропорционально­сти энергии взрыва разрушаемому объему без учета физических действий взрыва в массиве горных пород.

С точки зрения затрат на бурение скважин и расходы буре­ния в метрах на единицу объема взрываемого массива приме­нение скважин больших диаметров имеет существенные преиму­щества. Окончательный выбор диаметра скважины подтверждается экономическими расчетами с учетом преимуществ от повы­шения степени дробления при уменьшении диаметра скважины и затрат на бурение, выемку, транспортирование и переработку полезных ископаемых.

Минимальное значение линии сопротивления по подошве определяется из геометрических па­раметров уступа

.

В зависимости от линии сопротивления по подошве рассчи­тывается расстояние между скважинами и рядами и масса за­рядов.

Рассмотрение влияния W на результат дробления массива целесообразно начать с линии наименьшего сопротивления, т. е. наименьшего расстояния между центрами ряда скважин и одной из свободных поверхностей. Физический смысл этой ве­личины заключается в том, что по направлению линии наимень­шего сопротивления радиальные трещины, образующиеся в резу­льтате взрыва заряда, достигают в первую очередь откоса уступа. Следовательно, этот параметр определяет зону действия заряда. Для скважинных вертикальных зарядов на уступе с наклон­ным откосом линия наименьшего сопротивления находится бли­же к верхней части заряда. Она меньше линии сопротивления по подошве. Для разрушения уступа на полную высоту увеличивают расход взрывчатого вещества, принимая в расчетных выражениях линию сопротивления по подошве .

Следовательно, энергия заряда, рассчитанная по линии наи­меньшего сопротивления, недостаточна для разрушения масси­ва, и энергия, рассчитанная по линии сопротивления по подош­ве, не полностью расходуется на дробление.

Уменьшение потерь энергии или полное исключение их возможно: 1) при использовании двухкомпонентного заряда в скважине; 2) при применении комбинированного заряда из котлового в нижней части и колонкового в верхней части скважины; 3) при применении наклонных скважин; 4) путем создания вертикального откоса. Первый способ применяется на карьерах в нашей стране и за рубежом и достаточно полно освещен в специальной лите­ратуре. Он основан на различии в скорости детонации взрыв­чатых веществ. В нижней части заряда помещается взрывчатое вещество с более высокой скоростью детонации типа аммонитов (рис.б), а в верхней части—взрывчатое вещество с мень­шей скоростью детонации типа гранулитов. Это позволяет при одновременном инициировании верхней и нижней частей заряда иметь почти одинаковую продолжительность распространения взрывной волны до обнаженной поверхности, несмотря на раз­ное расстояние до нее верхней и нижней частей заряда—-соот­ветственно меньшее и большее.

Второй способ находит распространение в связи с применением на карьерах буровых станков огневого бурения, с помощью которых можно бурить скважины с раз­личными диаметрами по глубине. Заряд для нижней части ус­тупа рассчитывают как котловой по линии наименьшего сопро­тивления, для верхней—как колонковый дополнительный (рис.а).

Применение наклонных скважин позволяет уменьшать ли­нию сопротивления по подошве до линии наименьшего сопро­тивления, если их бурят параллельно откосу уступа (рис. а).

В реальных условиях карьера применение наклонных сква­жин затруднено, из-за сложности контроля их параллельности в ряду и непараллельности по отношению к откосу уступа. Вследствие сложной конфигурации линии верхней бровки ус­тупа ориентация по контуру бровки в районе бурения одной или нескольких скважин может привести к существенным от­клонениям от расчетного расстояния между скважинами в ниж­ней части, что вызывает ухудшение дробления горной массы и «проработки подошвы».

Ориентацию направления наклонных скважин необходимо проводить по направляющему тросу, который протягивают вдоль ряда буровых скважин, или, более точно, с помощью маркшейдерских инструментов.

Вертикальный откос может быть создан способом предвари­тельного щелеобразования (рис. б).

Он заключается в том, что во взрывном блоке параллельно последнему ряду скважин бурят контурные скважины малого диаметра на расстоянии 0,5—0,9 м друг от друга. Эти скважины заряжают гирляндами из патронов аммонита № 6ЖВ, привязанных к детонирующему шнуру. Пространство между зарядами и стенками скважин за­полняют забойкой на полную глубину. Длину забойки между верхним патроном и устьем скважины принимают равной 2—-4 м. Для уменьшения трещинообразования в глубине массива заряд прижимают к стенке скважины, обращенной в сторону взрываемого блока. Заряд для щелеобразования можно взрывать заблаговременно, до бурения основ­ных скважин для дробления массива, или вместе с основным зарядом, который инициируется с замедлением: в слабых по­родах—со скоростью не менее 100 м/с, а в крепких—со скоростью 75 м/с.

Физическая сущность этого способа заключается в том, что в результате предварительного взрывания зарядов в контурных скважинах образуется микрощель, оконтуривающая взрывае­мый блок. Взрывные волны от основных зарядов дробления массива экранизируются плоскостью этой щели и не позволяют трещинам проникать в глубь массива. Разрушения массива от контурных зарядов практически не происходит вследствие ма­лой массы заряда и демпфирования забойкой по всей глубине скважины.

После выемки взорванной горной массы откос уступа ос­тается практически вертикальным. Вертикальный откос при исключении проникновения трещин в глубь массива позволяет с наибольшей эффективностью использовать энергию взрыва взрывчатого вещества на дробление массива и обеспечивать надежность получения необходимого состава горной массы по крупности взрывом скважинных заря­дов.

Большим недостатком этого способа является увеличение объема буровых работ, однако общие затраты компенсируются за счет уменьшения расхода взрывчатого вещества на дробле­ние массива. Технологически этот способ хорошо отработан. Он применя­ется для заоткоски бортов карьера, широко используется при строительстве котлованов, в транспортном и гидротехническом строительстве.

С линией сопротивления по по­дошве связан параметр буровых работ—-глубина перебура скважины. Перебур осуществляют с целью проработки подошвы. Она основана на действии заряда в массиве, в результате которого образуется воронка взрыва с углом раствора . В данном случае линия наименьшего сопротивления принима­ется как радиус воронки взрыва, а глубина перебура — как глубина заложения заряда. В настоящее время ее определяют по эмпирическим зависи­мостям с учетом линии сопротивления по подошве и удель­ного расхода взрывчатого вещества

.

Предыдущие параметры были рассмот­рены с точки зрения действия одиночного заряда во взрываемой среде с двумя обнаженными поверхностями. На карьерах для подготовки горной массы в большом объеме применяют взрывание серии зарядов, которые во взрываемом массиве необходи­мо рассматривать во взаимодействии.

Согласно теории взрыва при одновременном взрывании двух соседних зарядов, расположенных на расстоянии а < 2 W, возникают большие по величине по сравнению с одиночным взрыванием растягивающие напряжения, что увеличивает действие взрыва на отрыв горной массы по линии скважин. По направ­лению линий, соединяющих заряды, происходит интерференция ударных волн, благодаря чему степень дробления массива в месте их встречи увеличивается. В других областях (вокруг зарядов) имеется зона, где происходит взаимная компенсация напряжений от взрыва соседних зарядов, что ведет к уменьше­нию действия взрыва по сравнению с одиночным зарядом. На расстоянии а > W заметного эффекта от интерференции ударных волн при взрыве соседних зарядов не наблюдается. Аналогичное явление происходит при действии двух зарядов из соседних рядов.

Учитывая это явление и физическую сущность действия за­ряда в массиве, можно сделать заключение, что уменьшение расстояния между скважинами и рядами, т. е. сгущение сетки скважин, ведет к увеличению степени дробления массива и уменьшению «мертвых зон» , улучшению проработки подошвы уступа при расположении зарядов как в шахматном порядке, так и по квадратной сетке.

В практике буровзрывных работ расстояние между заряда­ми рассчитывают на основании эмпирических данных, при ко­торых за критерий действия взрыва принимают качественный показатель (плохое, удовлетворительное или хорошее дробле­ние). Расчетные зависимости для определения расстояния между скважинами и рядами следующие: а = (0,8—1,4) W; b = (0,9—1) W при короткозамедленном взрывании; b = 0,85 W при мгновенном взрывании и шахматном распо­ложении скважин. Цифра перед W есть коэффициент сближения скважин (от­носительное расстояние между зарядами), который обозначается m . Его величина зависит от свойств массива, требуемой степени дробления, последовательности взрывания зарядов и т. п. Меньшие значения m применяются для трудновзрываемых пород.

Взрывчатые вещества.

На карьерах используются следующие виды взрывчатых веществ: порошкообразные (аммониты, аммоналы, детониты); гранулированные (гранулиты, граммониты); водонаполненные (акватолы, акваниты). Некоторые взрывчатые вещества изготовляют на месте их применения, т. е. на самих карьерах. Это дешевые взрывчатые вещества, состоящие из смеси гранулированной аммиачной се­литры с жидким компонентом.

Применение того или иного вида взрывчатого вещества в конкретных горно-геологических условиях определяют, исходя из свойств горных пород по трещиноватости массива, свойств взрывчатого вещества .

Для разрушения прочных и вязких горных пород применяют взрывчатые вещества с высокой бризантностью, т. е, обладаю­щие хорошим дробящим действием.

Для отрыва крупных блоков без дробления применяют низкобризантные взрывчатые вещества, обладающие в то же время большой работоспособностью.

При выборе взрывчатого вещества учитывают экономичность подготовки горных пород к выемке в целом. Чем крепче порода и больше затраты на бурение, тем целесообразнее применение более мощных, хотя и более дорогих взрывчатых веществ.

Многие простейшие взрывчатые вещества хотя и не облада­ют высокими качественными показателями, но дешевые, легко поддаются механизированному заряжанию и поэтому наиболее предпочтительны при массовом производстве взрывных работ.

В случае, если по характеру действия для достижения опре­деленных результатов в конкретных условиях подходят несколь­ко типов взрывчатых веществ, то окончательный выбор произво­дят, исходя из экономической эффективности с учетом стоимо­сти взрывчатого вещества, затрат на доставку его в карьер, бурение и заряжание и расходов на дробление негабаритов.

Для взрывания скважин на карьерах применяют сплошные заряды , рассре­доточенные инертной забойкой— песком, мелким щебнем, пе­нопластом, рассредоточенные воздушными проме­жутками , заряды, состоящие из двух типов взрывчатого вещества , сосредоточенные (котло­вые) , парносближенные , плоские и фигурные. Простым, наименее трудоемким по заряжанию, поддаю­щимся полной механизации, кроме размещения детонирующего шнура и патрона-боевика, является сплошной, однородный по взрывчатому веществу заряд. Для лучшего дробления породы длина заряда должна быть не менее 2/3 длины скважины или 0,6—0,8 линии сопротивле­ния по подошве. При качественном забоечном материале длина забойки может быть от 20 диаметров скважины в трещинова­тых породах до 35 диаметров в крепких породах.

Уменьшение длины забойки до 10 диаметров скважины возможно за счет применения самозаклинивающейся забойки в виде трех запирающих зарядов взрывчатого вещества, распо­ложенных в материале забойки на расстоянии 3 диаметров скважины друг от друга. Для инициирования заряда в зависимости от типа исполь­зуемого взрывчатого вещества применяют электродетонаторы, детонирующий шнур или патрон-боевик, который располагают в верхней или нижней части заряда на уровне подошвы уступа. Массив в зоне забойки при взрыве разрушается в результа­те метательного действия заряда, соударений кусков и дробле­ния их при падении. В нашей стране и за рубежом широко применяют колонко­вые заряды из разных типов взрывчатых веществ. В нижней части заряда помещают более мощное водоустойчивое взрывча­тое вещество типа гранитола и алюмотола для обеспечения ка­чественной проработки подошвы, а в верхней части—более дешевое взрывчатое вещество типа игданита, гранулита или граммонита.

Рассредоточенные инертной забойкой заряды применяют в разнопрочных породах, размещая их в наиболее крепких слоях.

Рассредоточенные заряды с воздушными промежутками бы­ли предложены акад. Н. В. Мельниковым. В них реализуется явление интерференции ударных волн от взрыва частей заря­дов. При одновременном инициировании отдельных частей происходит наложение ударных волн в горизонтальной плоско­сти. Если рассматривать это явление одновременно с действием заряда в соседних скважинах, то возникает сложная картина интерференции взрывных волн во взаимно перпендикулярных плоскостях.

Заряд, рассредоточенный воздушными промежутками, при­меняется при длине зарядной плоскости скважины более 1,2 W. Обычно заряд разделяют на две части. Нижний, основной заряд по массе составляет не менее 60—80% при длине не менее 1,2 W. Длина воздушного промежутка составляет от 0,17 длины всего заряда в скважине в крепких породах до 0,35 длины его — в породах средней крепости.

В некоторых карьерах рассредоточенные заряды делают из пенопласта, изготовляемого непосредственно в момент зарядки. При значительной величине линии сопротивления по подош­ве, когда нельзя достичь необходимого дробления путем умень­шения коэффициента сближения скважин m до 0,6, а применение наклонных, котловых зарядов или увеличение диаметра заряда невозможно, для первого ряда используют парносближенные заряды. Их размещают в массиве на расстоянии 3—10 диа­метров зарядов . Расстояние между парами в ряду принимают несколько большее, чем при одиночных за­рядах: (1,8—2,2) а.

Если развернуть по направлению линии наименьшего сопро­тивления парносближенные скважины, то вторая скважина от откоса уступа, взорванная с микрозамедлением (1—2 мс), бу­дет работать как бы в зажиме, аналогично действию взрыва при подпорной стенке, улучшая дробление и проработку по­дошвы.

Плоские и фигурные заряды по своим дей­ствиям аналогичны парносближенным. Выполнение их возмож­но только в скважинах малого диаметра, пробуренных с расши­рением станками термического бурения. При этом для плоских зарядов расширение производится в продольном направлении уступа до эллиптической формы при подъеме бурового инстру­мента без вращения, для фигурных зарядов образуют сфериче­ские полости на нескольких уровнях по глубине скважины оста­новкой на некоторое время подъема бурового инструмента без включения его вращения. Наиболее эффективно применение плоских зарядов с соотношением большой и малой полуосей эллипса 2:1—3:1. Все рассмотренные конструкции зарядов можно объединить в три группы. Первая группа—вертикальные и наклонные скважинные сплошные и рассредоточенные заряды. Изменение времени воз­действия взрывного импульса может быть достигнуто за счет пространственного расположения самих зарядов или их отдель­ных частей.

Вторая группа—вертикальные скважинные заряды с внутрискважинным замедлением, комбинированные из разных типов взрывчатого материала, и парносближенные заряды. Силовые параметры импульса изменяются в них подбором типа взрыв­чатого вещества или при изменении положения детонатора. Третья группа—фигурные заряды, от плоского до конусооб­разного. Требуемые параметры импульса в них достигаются из­менением формы зарядной полосы.

^ СПОСОБЫ ВЗРЫВАНИЯ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Последовательность и правильно выбранный способ взрывания зарядов должны обеспечивать качественное дробление и фор­мирование развала горной массы определенных размеров и при необходимости селективное разделение полезного ископаемого в рудных забоях.

При однорядном расположении зарядов наиболее часто применяются три схемы взрывания с замедлением: через скважину , волновая и фланговая . Улучшение дробления в этих случаях, исходя из теории дейст­вия заряда в массиве, достигается за счет образования допол­нительных поверхностей обнажения от взрыва первой серии зарядов. Намного сложнее, но эффективнее для дробления и форми­рования развала применение различных схем замедления при многорядном расположении зарядов в массиве.

Разрушение массива при применении короткозамедленного взрывания заключается в том, что при взрыве одной группы зарядов, например первого ряда, часть массива между рядами оказывается сжатой взрывной волной, т. е. как бы пригруженной. Затем волновое сжатие переходит в волновое растяжение. В части массива, оконтуренной первым рядом скважин, проис­ходит отрыв горной массы. Инициирование зарядов второй груп­пы в начальный момент позволяет увеличить степень дробле­ния, но с повышенным расходом взрывчатого вещества. Иници­ирование в следующий момент обеспечивает условие взрыва зарядов второго ряда аналогично первому, т. е. с дополнитель­ной поверхностью обнажения, находящейся на расстоянии, рав­ном линии сопротивления по подошве (b = W).

В практике буровзрывных работ способ замедления во вто­рой фазе взрыва используется достаточно широко. Существует множество схем соединения зарядов с замедлением, позволяю­щих получить одну, две и, если необходимо, три дополнитель­ные плоскости обнажения. Среди схем соединения зарядов клиновые, вол­новые и радиальные позволяют за счет соударения разлетаю­щихся кусков породы несколько увеличить степень дробления горной массы. При врубовых схемах с поперечным или про­дольным расположением скважинных зарядов уменьшаются размеры развала. Скважины врубовых рядов имеют увеличен­ный перебур, уменьшенное на 30—40 % рас­стояние между скважинами и увеличенный на 15—20 % удель­ный расход взрывчатого вещества.

Применение короткозамедленного взрывания благодаря эф­фекту интерференции позволяет уменьшить сейсмическое воз­действие взрыва на здания и сооружения вокруг карьера, что очень важно при массовых взрывах.

Исследование интерференции ударных волн привело к идее инициирования с замедлением и рассредоточением инертной за­бойкой части заряда внутри одной скважины для увеличения времени воздействия энергии взрывчатого вещества на массив и, следовательно, улучшения дробления горной массы. При замедлении взрывания нижнего заряда увеличивается интенсивность дробления горной массы с хорошей проработкой подошвы уступа. В разнопрочных массивах, когда слой более прочных пород находится в верхней части скважины, возможно использование замедления верхнего заряда. Интервал замед­ления в обоих случаях принимают равным 10—15 мс.

Для взрывания скважинных зарядов на карьерах применяют следующие способы: огневой, электрический и детонирующим шнуром (рис.). При огневом способе используется огнепроводный шнур с капсюлями-детонаторами, при электрическом— электродетонаторы. Взрывание детонирующим шнуром заряда взрывчатого ве­щества производится при инициировании его самого капсюлем-детонатором от огнепроводного шнура или электродетонатора.

При инициировании детонирующим шнуром сплошного или рассредоточенного воздушным промежутком заряда возникает практически мгновенно цилиндрическое поле напряжений, ко­торое с одинаковой скоростью распространяется до поверхно­сти обнажения. Такой способ инициирования рекомендуется для зарядов наклонных скважин и зарядов второго и последую­щего рядов скважин, при короткозамедленном взрывании многорядных блоков, в которых расстояние от заряда до поверхности обнажения близко к равномерному по всей высоте уступа. Для зарядов первого ряда скважин с целью лучшей проработки подошвы уступа применяют инициирование от де­тонатора, расположенного в нижней части заряда.

Инициирование гранулированных и водонаполненных взрыв­чатых веществ из-за их низкой чувствительности к возбужде­ниям детонации производится от патронов-боевиков в виде небольшого заряда аммонита или специальных тротиловых, тротилтетриловых или тротилгексогеновых шашек, взрываемых непосредственно детонирующим шнуром.

Электровзрывание применяют для инициирования зарядов при всех методах ведения взрывных работ, но при отсутствии опасности по блуждающим токам и электромагнитной индук­ции. Замедление при электровзрывании осуществляется специ­альными электродетонаторами промежуточного или замедлен­ного действия.

При взрывании детонирующим шнуром осущест­вляется замедление в 10, 20, 35 и 50 мс специальными пиротехническими замедлителями типа КЗДШ. Для одновре­менного зажигания группы огнепроводных шнуров применяют зажигательные патрончики диаметром 18—41 мм, представля­ющие собой бумажную гильзу, на дне которой помещен зажи­гательный состав.

При взрывании массива уступа скважинными зарядами ширина развала Вр (от линии скважин первого ряда) пропорциональна удельному расходу взрывчатого вещества q , линии сопротивления по подошве W и высоте ус­тупа h

.

При коэффициенте разрыхления kр = 1,2—1,4 и однорядном расположении скважин высота развала hp =(0,5—0,6) h.

^ ВТОРИЧНОЕ ДРОБЛЕНИЕ ГОРНОЙ МАССЫ

Из-за недостаточного учета свойств взрываемого массива при расчете параметров взрывных работ или в случае низкого ка­чества выполнения их во взорванной горной массе образуются крупные куски, которые затрудняют работу выемочно-погрузоч­ных машин, часто приводя к поломке рукоятей и стрел экскава­торов.

Негабаритные куски при разработке плохо взорванного мас­сива складываются на рабочей площадке экскаватора и подвер­гаются вторичному дроблению механическим способом— с помощью гидравлического бутобоя, взрывным или электрофизи­ческим способом. Гидравлические бутобои оборудуются на базе гидравличе­ских экскаваторов малых моделей, эффективно применяются для разрушения негабаритов в полускальных осадочных по­родах.

При взрывном способе заряд вещества помещают в шпуре диаметром 32—36 мм с забойкой из песка или воды (рис. а, б) или на поверхности куска (накладной заряд) (рис. в). Накладной заряд выполняется в нескольких вариантах. В простейшем случае взрывчатое вещество с удельным расхо­дом 0,3—0,6 кг/м3 помещают под полиэтиленовый мешок с водой и, наконец, используют специально предназначенный для этих целей кумулятивный заряд (рис. г) с массой от 0,1 до 4 кг.

Благодаря практической несжимаемости жидкости, исполь­зование воды в качестве забойки позволяет резко уменьшить разлет кусков при взрывании. При электрофизическом способе предусматривается нагрев отдельного участка негабарита электрической дугой или токами высокой частоты. Вследствие увеличения объема нагреваемой зоны негабарит разрушается от механических напряжений.

^ ОРГАНИЗАЦИЯ ВЗРЫВНЫХ РАБОТ НА КАРЬЕРЕ

Взрывные работы на рудных карьерах осуществляются на ос­новании типового проекта буровзрывных работ для зоны карье­ра с одинаковыми свойствами. Для конкретного взрываемого блока составляют паспорт буровзрывных работ, который ут­верждается главным инженером карьера.

Основой типового проекта являются утвержденный техни­ческий проект разработки месторождения, результаты экспе­риментальных и промышленных взрывов, новейшие литератур­ные данные, производственный опыт по взрывным работам в аналогичных условиях и Единые правила безопасности при взрывных работах. В паспорте помимо расчета параметров взрывных работ обязательно предусматривается расчет величины опасной зоны по сейсмическому воздействию массового взрыва на здания и сооружения. Если радиус зоны сейсмического воздействия взрыва больше расстояния до сохраняемого объекта, то предусматривается разделение общего заряда на части с интерва­лом замедления взрывов между ним не менее 20 мс.

Для составления рабочего паспорта буровзрывных работ маркшейдерская служба производит съемку блока и указывает категории пород по буримости и взрываемости. С учетом необ­ходимой степени дробления и формы развала производится расчет параметров, входящих в паспорт, по которому маркшейдер делает отметки устьев скважин на поверхности уступа. По результатам бурения со­ставляют профили по скважинам с указанием горно-геологиче­ских условий массива (мощность пачек, отдельных пластов в сложных забоях, углы падений и т. п.).

Повторной съемкой замеряют расстояние между скважинами и рядами, линию сопротивления по подошве. По этим данным уточняют величину зарядов в скважинах, конструкции зарядов и порядок взрывания. После взрыва выполняют горизонтальную съемку, состав­ляют профили взорванной горной массы, определяют параметры развала и величину разрыхления породы в развале.

По правилам безопасности во время производства взрывных работ все другие виды работ на карьере прекращаются, обору­дование отгоняется на безопасное расстояние, а люди выводятся из карьера.

Взрывные работы на карьерах, как правило, проводят в определенные дни и часы. Для контроля основному исполните­лю взрывных работ — выдается график ра­бот. В нем предусмотрено: оформление путевок и получение взрывчатых веществ и средств взрывания; подвоз забоечного материала к скважинам; доставка взрывчатых материалов к месту взрыва; выгрузка и разноска взрывчатых веществ к скважинам; зарядка и забойка скважин; монтаж взрывной сети и оцепление места взрыва; расстановка замедлителей в схеме соединения зарядов; подача боевого сигнала; взрыв; осмотр места взрыва; оформление документов и сдача оставшихся взрывчатых ма­териалов на склад.

Механизация забойки скважин осуществляется с помощью забоечных машин-бункеров, транспортирующих и засыпающих в скважину забоечный материал ( песок, щебень, отходы обогащения). Доставка и зарядка скважин гранулированными и водонаполненными ВВ осуществляется пневмозарядными машинами (например, СУЗН-5).

Определение основных параметров и показателей БВР.


При буровзрывном способе подготовки горной массы к выемке и вертикальных скважинных зарядах, диаметр скважины по методике треста «Союзвзрывпром»

, мм

где h - высота уступа, м; q - удельный расход ВВ; кг/м3 ;  - плотность заряжания, т/м3 .

Удельный расход взрывчатых веществ ( ВВ), q = 0,4  0,8 кг/м3.

Плотность заряжания  = 0,7 0,9 т/м3 .

С учетом величины диаметра скважины и крепости пород выбираем буровой станок. Линия сопротивления по подошве

, м

где d - диаметр скважины для выбранной модели бурового станка, м;  - плотность заряжания, т/м3 ; q - удельный расход ВВ; кг/м3

Проверяем величину линии сопротивления по подошве, по возможно­сти безопасного обуривания уступа:

,



где с = 2 м - безопасное расстояние от гусениц станка до верхней бровки уступа ;  = 700 - угол откоса уступа , ctg700 = 0,364.

Глубина перебура

, м

Длина забойки

, м

Длина заряда ВВ

, м

Глубина скважины

, м

Расстояние между скважинами в ряду

, м

где m = (0,81,1) - коэффициент сближения скважин.

Величина общего заряда ВВ

, кг

Вместимость 1 м скважины

, кг/м

где d - диаметр скважины для выбранной модели бурового станка, дм;

 - плотность заряжания, т/м3 .

Проверяем массу заряда ВВ по условию вместимости в скважину

, кг

Расстояние между рядами скважин при многорядном короткозамедленном взрывании (КЗВ)

, м

Ширина взрывной заходки

, м

где n - число рядов скважин.

Высота развала при многорядном КЗВ при 2-3 рядах скважин

, м;

при числе рядов скважин больше 3

, м

Ширина развала (от линии первого ряда скважин)

, м

Объем взрывного блока из расчета подготовленности для экскаватора запаса взорванной горной массы на двухнедельный срок:

, м3

где Qэс - суточная эксплуатационная производительность экскаватора, м3 / сутки.

Длина взрывного блока

, м

Число скважин во взрывном блоке

, скв.

Суммарная длина скважин

, м

Суммарная масса заряда ВВ

, кг

Радиус зоны, опасной для зданий и сооружений при короткозамедленном взрывании

, м

Выход горной массы с 1 м скважины

, м3 / м

или , м3 / м

Общая длина скважин, которую необходимо пробурить за год

, м

где Агм - годовая производительность карьера по скальной горной массе, м3;

 = (1,05  1,1) - коэффициент потерь скважин.

В случае, если подготовка всей горной массы в карьере осуществляется буро-взрывным способом Агм = Ав + Ар,

где Ар , Ав - годовая производительность карьера по полезному ископаемому и вскрышным породам соответственно, м3;

кт - текущий коэффициент вскрыши, м3 / м3.

Необходимое количество буровых станков в карьере

, станков

где Qб = (60  100) м/смен. - сменная производительность бурового станка; nб - количество смен бурения одним станком в году, смен.

Полученное дробное значение не округляем до целого.

Списочное количество буровых станков

, станков

где nсп = 1,2 - коэффициент резерва.

Полученное списочное количество буровых станков округляем до целого в большую сторону.


Выемочно-погрузочные работы .

Выемка и погрузка горных пород является одним из основных процессов технологии добычи полезных ископаемых открытым способом. От выбора выемочно-погрузочных машин и их соответствия конкретным гидрогеологическим условиям в значительной степени зависят основные технико-экономические показатели работы карьера.

На рудных карьерах для выемки и погрузки горных пород чаще всего применяют машины цикличного действия — одноков­шовые экскаваторы и фронтальные погрузчики. При удалении из карьерного поля мягких вскрышных пород используют также технику непрерывного действия — многочерпаковые цепные и роторные экскаваторы. Землеройно-транспортные машины (бульдозеры, колесные скреперы и т. п.) применяют на вспомо­гательных работах (строительство автодорог, планирование рабочих и отвальных площадок и т. д.).

Выемка горных пород—отделение мягких пород от массива уступа или черпанье разрыхленных скальных пород из развала горной массы рабочим органом машины. Погрузка горных пород — процесс перемещения пород из забоя уступа в транспортные средства или непосредственно в отвал. Выемку и погрузку горных пород выполняют, как правило, одной машиной или комплексом машин.

При выемке мягких пород из массива забои могут быть тор­цовые, продольные, тупиковые. При выемке полускальных и скальных горных пород забои бывают торцовые или продольные. Выбор типа забоя зависит как от свойств разрабатываемых горных пород и условий их залегания, так и от типа применяе­мого выемочно-погрузочного оборудования.

Торцовый забой типичен при выемке пород одноковшовыми и роторными экскаваторами как из массива, так и из развала. Он применим также при разработке россыпных месторождений бульдозерами и колесными скреперами. Разновидностью торце­вого забоя является траншейный (тупиковый) забой.

Продольный (фронтальный) забой используют при примене­нии многочерпаковых цепных экскаваторов на рельсовом ходу, при выемке пород из массива бульдозерами или колесными скреперами. При выемке разрушенных скальных пород из раз­вала продольным забоем используют одноковшовые погрузчики, а также одноковшовые экскаваторы при селективной выемке руды и вмещающих пород.

По взаимному расположению забоя и горизонта установки выемочно-погрузочной машины различают выемку верхним, нижним и смешанным черпанием. Аналогично различают и спо­собы погрузки — верхнюю, нижнюю и смешанную. На рудных карьерах отработку уступов осуществляют поло­сами породного массива вдоль фронта работ. Отработка каж­дой полосы характеризуется новым положением транспортных коммуникаций на уступе. По длине фронта работ на уступе может быть установлено несколько экскаваторов. В этом случае отрабатываемый уступ делят на экскаваторные блоки, Полосы уступа или развала, отработка которых связана с подвиганием выемочно-погрузочных машин, называют заходками.

При всех типах забоев заходки по ширине делят на нор­мальные, узкие и широкие. В нормальных заходках выемку породы производят при по­стоянном положении оси движения экскаватора по длине заход­ки и максимальном использовании их рабочих параметров. Узкие заходки отличаются от нормальных неполным исполь­зованием рабочих параметров выемочно-погрузочных машин при постоянном положении их оси перемещения вдоль заходки. Широкие заходки характеризуются переменным положением оси движения выемочных машин в плане.

По характеру движения транспортных средств под загрузку при выемке пород в пределах экскаваторных блоков выделяют тупиковые и сквозные схемы движения. Тупиковые схемы ха­рактеризуются движением транспортных средств только в пре­делах выработанного пространства.

Сквозные схемы позволяют организовать движение транс­портных средств вдоль всего экскаваторного блока.

^ РАЗРАБОТКА ГОРНЫХ ПОРОД МЕХАНИЧЕСКИМИ ЛОПАТАМИ

Наибольшее распространение на современных рудных карьерах получили одноковшовые экскаваторы типа прямых механи­ческих лопат. Их применяют для выемки и погрузки плот­ных, мягких, сыпучих горных пород, а также для погрузки предварительно разрыхленных полускальных и скальных гор­ных пород.

Прямые механические лопаты—экскаваторы верхнего чер­пания с нижней погрузкой. При установке на экскаваторах удлиненного рабочего обо­рудования они могут быть использованы для верхней погрузки.

Выпускаются прямые механические лопаты строи­тельного (универсального), карьерного и вскрышного типов. Строительные экскаваторы выпускают с ковшами от 0,5 до 2 м3 применяют на больших карьерах строительных мате­риалов. Карьерные механические лопаты выпускают с ковшами вме­стимостью от 2,5 до 20 м3 и применяют для погрузки пород лю­бой крепости. Эти экскаваторы имеют жесткую связь рабочего органа с рабочим оборудованием, позволяющим развивать высокие на­порные усилия, многодвигательный электрический привод и гусеничный ход. Вскрышные механические лопаты выпускают с ковшами вме­стимостью от 6 до 100 м3. Используют в основном для разра­ботки мягких и плотных горных пород с перемещением их в отвалы в отработанном пространстве карьера.

Рабочим местом экскаватора является забой. Геометриче­ские размеры забоя зависят от параметров экскаватора и свойств разрабатываемых горных пород. Форма забоя должна обеспечивать максимальную производительность экскаваторов. Это достигается установлением рациональных размеров забоя и правильным определением места установки экскаватора.

Выемка пород механическими лопатами может производить­ся в торцовом или продольном забое (рис.). Наиболее рациональна выемка горных пород механическими лопатами в торцовых забоях при сквозных заходках.

В этом случае обеспе­чивается максимальная производительность экскаватора, так как средний угол его поворота в сторону погрузки не превыша­ет 90°, наиболее удобна подача транспортных средств под по­грузку, минимальны простои из-за перемещения транспортных коммуникаций. При выемке продольным забоем средний угол поворота экс­каватора в сторону погрузки возрастает до 120—140° и необхо­димы частые его передвижки из-за малой ширины забоя. Это значительно снижает производительность экскаватора.

Применение тупиковых заходок наиболее характерно при проведении траншей с нижней погрузкой. Тупиковые заходки применяют также на уступах в период реконструкции карьера при расширении сокращенных или ранее погашенных рабочих площадок.

При применении тупиковых заходок наблюдается наиболь­шее снижение производительности экскаваторов—до 20—30% от эксплуатационной, так как средний угол поворота в сторону разгрузки возрастает до 180° и увеличивается время на транс­портно-обменные операции. При разработке мягких и плотных горных пород профиль забоя механической лопаты соответствует траектории движения ковша и имеет угол откоса 70—80°. Толщина срезаемых стру­жек составляет 0,2—1,0 м. Максимальная высота забоя (усту­па) механической лопаты hу при нижней погрузке не должна превышать максимальной высоты черпания Hчmax. Минимальная высота забоя должна обеспечивать на­полнение ковша экскаватора за одно черпание. Для экскавато­ров ЭКГ-5 эта высота составляет 2,5 м, а для ЭКГ-8И — 3,5 м.

Ширина забоя при разработке мягких пород зависит от ра­бочих размеров экскаватора и вида применяемого карьерного транспорта. Так, при железнодорожном и конвейерном транс­порте уступы, как правило, отрабатывают торцовыми забоями с продольными заходками. Размеры этих заходок определяются радиусом черпания экскаватора на горизонте его установки, м:

, м

При автомобильном транспорте применяют как сквозные продольные, так и поперечные заходки. В этом случае заходки могут быть нормальными , узкими и широкими .

Ширина торцового забоя с тупиковой заходкой принимается равной Атр=2Rчу. Установленную таким образом ширину за­боя проверяют и уточняют по условиям размещения транспорт­ного оборудования. При ширине забоя, превышающей 2Rчу , экс­каватор перемещается по зигзагообразной траектории или раз­работка осуществляется поперечными заходками. При разработке полускальных и скальных взорванных по­род забоем механической лопаты обычно является весь торец развала или его часть. Профиль забоя изменяется вследствие осыпания породы, стремящейся расположиться под углом есте­ственного откоса. Высота забоя в этих условиях зависит от высоты развала взорванной горной массы, которая, в свою оче­редь, не должна превышать 1,5 Hчmax.

Ширина продольной заходки по целику соответствует шири­не взрываемого блока и определяется параметрами буровзрывных работ. Число экскаваторных заходок по развалу зависит от его ширины, типа экскаватора и вида применяемого транс­порта. При железнодорожном транспорте можно применять тех­нологическую схему, обеспечивающую уменьшение объемов работ по переукладке железнодорожных путей. В этом случае формируют развал с целью уборки взорванной породы за две экскаваторные заходки. После первой заходки пути переукладывают в новое положение для отгрузки породы из второй заходки, а также из первой заходки последующего взорванного блока. При использовании конвейерного транспорта схемы выемки взорванных пород аналогичны. Погрузку мелковзорванных по­род осуществляют мехлопатой на конвейерную ленту с по­мощью самоходных виброгрохотильных установок. При значительной кусковатости пород применя­ют передвижные грохотильно-дробильные агрегаты типа СДА-1000 (2000) и ДПА-2000.

При применении автомобильного транспорта жесткая взаи­мосвязь между элементами забоя и положением транспортных коммуникаций на уступе отсутствует. На рудных карьерах получили распространение сквозные и тупиковые широкие про­дольные заходки (Аш = 40-60 м), а также поперечные заходки нормальной ширины. В результате применения специальных схем развал взорванной породы располагают вдоль фронта горных работ на уступе, что обеспечивает сокращение ширины рабочих площадок. Производительность механических лопат зависит от кусковатости экскавируемых пород, их прочности и плотности, степени связанности пород в развале. При хорошей организации буровзрывных и выемочно-погрузочных работ годовая производи­тельность экскаваторов достигает: ЭКГ-5 2—2,5 млн. м3 , ЭКГ-8И 3,5—4 млн. м3 , ЭКГ-12,5 5,5—6 млн. м3.

При разработке забоев сложного строения, содержащих наря­ду с кондиционными сортами полезного ископаемого неконди­ционные и пустую породу, применяют специальные способы раз­дельной выемки и погрузки горной массы, обеспечивающие по­вышение качества добываемого полезного ископаемого, а также снижение затрат на его переработку. Возможность и целесооб­разность селективной выемки устанавливают на основании тех­нико-экономических расчетов.

Методы селективной экскаваторной выемки подразделяют на простые и сложные. Простая селективная выемка заключается в обо­собленной выемке и погрузке различных сортов руды и породы в плане уступа без дополнительной их сортировки по высоте забоя. Сложная селективная выемка включает весь комплекс спе­циальных приемов разработки и сортировки рудной массы в за­бое по высоте уступа. Простую селективную выемку ведут узкими заходками, нор­мальными заходками, выборочной погрузкой, послойной отра­боткой уступа; сложную селективную выемку — управляемым обрушением, раздельной и комбинированной выемкой.

Управляемое обрушение осуществляют подработкой нижней части забоя в порядке, зависящем от расположения полезного ископаемого в развале. Раздельная выемка достигается регулированием толщины стружки и степени наполнения ковша экскаватора. Отработку забоя начинают, как правило, с верхних слоев.

К комбинированным относят методы послойной сортировки, сортировки по фракциям (крупности кусков), различные соче­тания раздельной выемки с управляемым обрушением.

^ ПРИМЕНЕНИЕ ДРАГЛАЙНОВ И ФРОНТАЛЬНЫХ ПОГРУЗЧИКОВ

При разработке мягких вскрышных пород и полезного ископае­мого на рудных карьерах применяют драглайны. В настоя­щее время в России выпускают восемь базовых моделей драглайнов с ковшами вместимостью от 4 до 125 м3. Их использу­ют для перевалки вскрышных пород в отвалы, проведения траншей, возведения насыпей, разработки обводненных пород и затопленных водой участков.

Забой драглайна обычно торцовый, реже фронтальный. Па­раметры забоя зависят от места расположения драглайна и спо­соба черпания. Забой может отрабатываться нижним, комбинированным и верхним черпанием. При разработке уступа нижним черпанием драглайн располагают па верхней площадке уступа за пределами возможной призмы обрушеипя. В этих условиях высота забоя зависит от глубины черпания и угла его откосов. Драглайн располагают на промежуточном горизонте н отрабатывают два подступа нижним и верхним черпанием.

При верхнем черпании драглайн располагают па нижней площадке уступа, при этом угол откоса забоя не превышает 20—25°. Высота забоя 0,8 Нр, где Нр — высота разгрузки, м. Верхнее черпание эффективно только для мощных драглайнов с ковшами вместимостью 15—20 м3 и более.

Максимальная ширина заходки драглайна в торцовом за­бое, м

,

где R — радиус черпания драглайна, м;  - углы поворо­та экскаватора при черпании, градус.

Драглайны с ковшами вместимостью до 10—15 м3 использу­ют также для погрузки породы в транспортные средства. Наи­более рациональной схемой в этих условиях является схема с применением бункеров-перегружателей, которые используют при погрузке породы драглайнами на конвейеры, в железнодо­рожные вагоны или средства гидравлического транспорта (зем­лесосные установки). Во всех рассмотренных примерах драглайнами отрабатыва­ют сквозные продольные заходки. Для увеличения ширины заходок и уменьшения числа пере­движек транспортных коммуникаций вдоль фронта горных ра­бот на уступах устанавливают передвижные бункера-питатели и конвейерные перегружатели.

Одноковшовые погрузчики применяют на рудных карьерах для выемочно-погрузочных, а в некоторых случаях и транспорт­ных работ (при небольших расстояниях перемещения).

Отечественные погрузчики имеют ковши грузоподъемностью 2; 3,2; 5 т; предусмотрен выпуск более мощных погрузчиков с ковшами на 10; 15; 25 и 40 м. Погрузчики выпускают на гусеничном и пневмоколесном ходу. По степени поворота ковша различают погрузчики непово­ротные (фронтальные), полуповоротные и полноповоротные. На карьерах наибольшее распространение получили фрон­тальные погрузчики на пневмоколесном ходу. По сравнению с одноковшовыми экскаваторами они характеризуются меньшей металлоемкостью; снижением динамических нагрузок на кузов автосамосвала при погрузке скальных пород; мобильностью.

Погрузчиками производят выемку мягких пород непосредст­венно из массива и механически разрушенных или взорванных пород из развала. В комплексе с погрузчиками, как правило, применяют автомобильный транспорт. Схемы работы одноков­шовых погрузчиков в забое зависят от их конструктивных осо­бенностей. Тип забоя—торцовый или продольный со сквозными и тупиковыми заходками. По высоте забои подразделяют на низкие до 1—2 м; нормальные до 5—7 м и высокие—свыше 7 м.

Минимальная ширина заходки одноковшового погрузчи­ка, м

,

где bк - ширина ковша погрузчика, м;

с - минимально допусти­мое расстояние между погрузчиком и нижней

бровкой уступа (развала), м.

Наиболее высокая производительность у мощных погрузчи­ков достигается при ширине заходки 12—15 м, позволяющей применять рациональные схемы поворота погрузчика и автоса­мосвала. Основными недостатками, ограничивающими широкое при­менение погрузчиков на рудных карьерах, являются небольшие параметры рабочего оборудования, ограничивающие высоту раз­рабатываемых уступов, а также относительно небольшие напор­ные усилия, которые в ряде случаев бывают недостаточными для разработки крупнокусковых взорванных пород. В настоя­щее время погрузчики применяют на карьерах по добыче строи­тельных материалов, па карьерах цветных и редких металлов при разработке сложноструктурных забоев.

^ ВЫЕМКА ГОРНЫХ ПОРОД МНОГОЧЕРПАКОВЫМИ ЭКСКАВАТОРАМИ

Область применения многочерпаковых экскаваторов на рудных карьерах существенно ограничена по сравнению с одноковшовы­ми из-за их конструктивных особенностей и способности раз­рабатывать только мягкие горные породы.

Наиболее производительными и прогрессивными выемочно-погрузочными машинами из всех экскаваторов непрерывного действия являются роторные экскаваторы. Они имеют рабочий орган в виде роторного колеса диаметром от 2,5 до 18 м с ков­шами вместимостью от 40 до 4000 л и окружной скоростью вра­щения ротора от 1 до 6 м/с. Выпускают роторные экскаваторы верхнего черпания (при глубине нижнего черпания не более 0,5 диаметра ротора); верхнего и нижнего черпания с нижней погрузкой. По технологическим признакам роторные экскавато­ры различают: по производительности (по разрыхленной поро­де) на малые (до 630 м3/ч) средние (630—2500 м3/ч), мощные (2500—5000 м3/ч) и сверхмощные (более 5000 м3/ч); по вели­чине расчетного удельного усилия копания (резания): с нор­мальным—до 0,7 МПа, с повышенным—до 1,4 МПа, высо­ким — до 2,1 МПа; по способу подачи ротора на забой: с вы­движными и невыдвижными стрелами; по типу ходового обору­дования: на гусеничном, шагающе-рельсовом, рельсово-гусеничном и рельсовом ходу; по типу разгрузочного устройства: с раз­грузочной консолью и с соединительным мостом. Роторные экскаваторы применяют на вскрышных и добычных работах при разработке угольных и марганцевых место­рождений; на карьерах по добыче строительных материалов, на вскрышных работах на железорудных карьерах. Роторными экскаваторами отрабатывают забои торцового и продольного типов со сквозными заходками.

Наиболее распространенными технологическими схемами ра­боты роторных экскаваторов являются: в продоль­ном забое при сквозной заходке с погрузкой горной массы в транспортные средства, расположенные па горизонте установки экскаватора; то же, в торцовом забое нормальной ширины; то же, в широкой панели-заходке с использованием перегрузоч­ных мостов; в торцовом забое при сквозной заходке с верхним и нижним черпанием и нижней погрузкой в транспортные средства. Выемка породы в забоях роторного экскаватора производит­ся вертикальными или горизонтальными стружками .

При разработке устойчивых пород наиболее целесообразна выемка многорядными вертикальными стружками. Горизонтальные стружки и комбинированный способ рацио­нальны в малоустойчивых породах и при селективной выемке.

Максимальная высота уступа определяется максимально до­пустимым углом наклона роторной стрелы . При отработке верхнего подуступа этот угол составляет 26— 27°; нижнего — 16-18°. Высота нижнего подуступа практически одинакова при вер­тикальных и горизонтальных стружках и равна максимальной глубине черпания экскаватора. Угол откоса уступа и угол откоса забоя зависят от фи­зико-механических свойств разрабатываемых пород. В большин­стве случаев угол откоса забоя на 5—10° больше по условиям устойчивости пород, слагающих забой.

Угол поворота роторной стрелы определяется ее типом и по­ложением в забое: при выдвижной стреле - 85—90°, при не­выдвижной стреле - 80°, при выемке нижнего слоя - 45— 90°. Высота одновременно срезаемого слоя зависит от типа по­род и изменяется в пределах (0,4— 0,7) диаметра роторного колеса.

Толщина срезаемой стружки зависит от мощности экскавато­ра и свойств разрабатываемых пород и достигает 0,3—0,5 м. Она регулируется подачей роторной стрелы на забой или отодвиганием экскаватора от забоя.

Многочерпаковые цепные экскаваторы имеют в качестве ра­бочего органа раму и цепь с черпаками. Угол наклона рамы из­меняется с помощью канатной подвески. Экскаваторы выпуска­ют с одной черпаковой рамой только нижнего или верхнего черпания (неповоротные); последовательно нижнего и верхнего черпания (поворотные); с двумя независимыми рамами для од­новременного верхнего и нижнего черпания с нижней раз­грузкой. Многочерпаковые цепные экскаваторы применяются на угольных и марганцевых карьерах, на вскрышных работах же­лезорудных карьеров, предприятиях горно-химического сырья., а также на карьерах стройматериалов.

Основными типами забоев многочерпаковых цепных экска­ваторов являются продольный и торцовый.

Выемку породы в продольном забое производят экскавато­рами на рельсовом ходу. При этом забой располагают либо вдоль всего фронта горных работ на уступе, либо делят на от­дельные блоки, породу в которых вынимают последовательно. При такой схеме отработки уступа цепной экскаватор непрерывно перемещается вдоль его откоса. Толщина стружки для экскаваторов средней мощности составляет в среднем для пес­ков 10—15 см, для глины 5—8 см.

Высота уступов, разрабатываемых многочерпаковыми цеп­ными экскаваторами, зависит от длины черпаковых рам и углов откосов уступов. Как правило, она обычно не превышает 30 м при верхнем и 40 м при нижнем черпании.

Выемку породы в продольном забое цепного экскаватора осуществляют одиночными параллельными струж­ками, многорядными параллельными стружками, треугольными стружками по вееру. Одиночные параллельные стружки отрабатывают неповорот­ными цепными экскаваторами с жесткой черпаковой рамой без планирующих звеньев. Отработка многорядными параллельными стружками наибо­лее рациональна для экскаваторов нижнего черпания при на­личии выдвижной черпаковой рамы. Выемку треугольными стружками по вееру осуществляют за счет постепенного опускания первоначально расположенной горизонтально черпаковой рамы. При отработке уступа продольными забоями передвижка рельсовых путей вслед за подвиганием фронта работ осуще­ствляется: при параллельных стружках непрерывно — путепередвигателями непрерывного действия, а при треугольных струж­ках по вееру периодически — с помощью путепередвигателей цикличного действия.

Торцовые забои отрабатывают миогочерпаковыми цепными экскаваторами на гусеничном ходу с верхними и нижними пла­нирующими звеньями. В этих условиях выемку породы произво­дят при повороте экскаватора вокруг вертикальной оси и среза­нием стружки по вееру при последовательном опускании черпа­ковой рамы. Максимальная ширина заходки торцового забоя составляет: при нижнем черпании Ан= (3-3,5) Ну , при верхнем — Ав= (3,5-4) Ну, где Ну — высота отрабатываемого уступа.

Одноковшовые экскаваторы используют­ся на карьерах как основное добычное, вскрышное и отвальное оборудование. Экскаваторы с ковшом вместимостью более 4 м3 относятся к карьерным. В их ти­паже приняты следующие обозначения:

ЭКГ — экскаватор электрический, на гусеничном ходу. Цифры, стоящие после дефиса, обозначают вместимость основ­ного ковша в кубических метрах . Прямая карьерная лопата используется на мягких, плотных и раз­рыхленных (полускальных и скальных) породах, при погрузке пород в отвал и транспортные сосуды, установленные на уровне стояния экскаватора или на выше­лежащем уступе, а также при проходке траншей и на отвальных работах.

ЭШ — экскаватор шагающий. Цифры, стоящие до точки, — номинальная вме­стимость основного ковша в кубических метрах. Цифры, стоящие после точки, — длина стрелы в метрах. Драглайн применяется на легких, средней крепости или взорванных креп­ких породах, как с нижним, так и с верх­ним черпанием при бестранспортной сис­теме разработки, при работе на отвалах, при переэкскавации горной массы, при погрузке в транспортные сосуды или бун­кер, при строительстве карьеров и проход­ке траншей.

ЭГ — экскаватор карьерный гидравли­ческий, на гусеничном ходу, прямая лопата. Цифры, стоящие после дефиса, обозначают вместимость основного ковша в кубических метрах .

ЭГО — экскаватор карьерный гидрав­лический, на гусеничном ходу, обратная лопата. Цифры, стоящие после дефиса, обозначают вместимость основного ковша в кубических метрах . Обратная лопата применяется на тех же породах, что и прямая лопата, при черпании ниже уровня его стояния и по­грузке в транспортный сосуд, располо­женный на нижележащем уступе или на уровне стояния экскаватора и при проход­ке траншей.

Буквы А, И, М, С, добавленные к на­званию, обозначают модификации экска­ваторов; Ус — экскаватор с удлиненным рабочим оборудованием для погрузки транспорта, расположенного на уровне стояния экскаватора; У — экскаватор с удлиненным рабочим оборудованием для верхней погрузки.

Экскаваторы с ковшами вместимостью менее 4 м3 относятся к строительным. Ин­декс названия экскаватора состоит из бук­венной и цифровой частей. Буквенная: ЭО — экскаватор одноковшовый универ­сальный. Цифровая состоит из четырех цифр: первая — номер размерной группы, вторая — тип-номер ходового устройства, третья — исполнение рабочего оборудова­ния, четвертая — порядковый номер мо­дели. Буквы, добавленные к названию, означают модификацию модели.

Определение параметров и показателей экскавации

Выбор модели экскаватора для ведения добычных и вскрышных работ осуществляется с учетом физико-механических свойств горных пород, заданной высоты уступа и установленной высоты развала.

Величина высоты развала Hp должна отвечать условиям

,

где Ннв - высота расположения напорного вала экскаватора, м;

Нmax - максимальная высота черпания экскаватора, м.

Высота расположения напорного вала экскаватора

.

Техническая характеристика карьерных экскаваторов - механических лопат

Показатели

ЭКГ-8И

ЭКГ-10

ЭКГ-15

ЭКГ-5А

ЭКГ-20А

Емкость ковша, м3

8 ; 10

10; 8; 12,5

15

5,2; 3,2; 7

20; 16; 30

Макс. Радиус черпания на уровне стояния, м

12,2

12,6

15,6

9,0

14,2

Макс. Радиус черпания, м

18,2

18,4

22,6

14,5

23,4

Макс. Радиус разгрузки, м

16,3

16,3

20

12,6

20,9

Макс. Высота черпания, м

12,5

13,5

16,4

10,3

17

Время цикла, с

26

26

28

23

30
  1   2   3   4



Скачать файл (163 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru