Logo GenDocs.ru


Поиск по сайту:  


Лекции - Представление знаний в информационных системах - файл 1.doc


Лекции - Представление знаний в информационных системах
скачать (2142.5 kb.)

Доступные файлы (1):

1.doc2143kb.17.11.2011 10:56скачать

содержание

1.doc

  1   2   3
Реклама MarketGid:
ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ – АНОО ВПО


Факультет информационных технологий


Кафедра информационных систем и технологий


Н.В. Акамсина


ЛЕКЦИИ


по дисциплине «Представление знаний в информационных системах»

для студентов очной формы обучения

по направлению 230100 «Информатика и вычислительная техника»


Воронеж 2009

Лекция 1. Введение в искусственный интеллект


  1. История развития искусственного интеллекта.

  2. Основные направления искусственного интеллекта.


1. История развития искусственного интеллекта

Идея искусственного подобия человека для решения сложных задач и моделирования человеческого разума витала в воздухе еще в древнейшие времена. Так, в древнем Египте была создана «оживающая» механическая статуя бога Амона. У Гомера в «Илиаде» бог Гефест ковал человекоподобные существа – автоматы. Однако родоначальником искусственного интеллекта (ИИ) считается средневековый испанский философ, математик и поэт Раймонд Луллий, который еще в XIII веке попытался создать механическую машину для решения различных задач, на основе разработанной им всеобщей классифика­ции понятий. В XVIII веке Лейбниц и Декарт независимо друг от друга продолжили эту идею, предложив универсальные языки классификации всех наук. Эти работы можно считать первыми теоретическими работами в области искусственного интеллекта.

Окончательное рождение искусственного интеллекта, как научного направления, произошло только после создания ЭВМ в 40-х годах ХХ века. В это же время Норберт Винер создал свои основополагающие работы по новой науке – кибернетике. Термин “искусственный интеллект” был впервые предложен в 1956 г. на семинаре с аналогичным названием в Дартмутском колледже (США).

В нашей стране началом исследований в направлении искусственного интеллекта принято считать семинар “Автоматы и мышление”, начавший свою работу в МГУ в 1954 г. под руководством академика Ляпунова А.А. Впоследствии, в 60-80х годах исследования в области искусственного интеллекта происходили в рамках школы ситуационного управления, основателем которой был проф. Поспелов Д.А. В 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет по проблеме “Искусственный интеллект”. В 1988 г. была создана АИИ – Ассоциация искусственного интеллекта, членами которой являются более 300 исследователей. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, издается научный журнал.

Исторически сложились три основных подхода в моделировании ИИ.

В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.


^ 2. Основные направления искусственного интеллекта

В настоящее время в исследованиях по искусственному интеллекту выделились шесть основных направлений:

1. ^ Представление знаний. В рамках этого направления решаются задачи, связанные с формализацией и представлением знаний в памяти системы ИИ. Для этого разрабатываются специальные модели представления знаний и языки описания знаний, внедряются различные типы знаний. Проблема представления знаний является одной из основных проблем для системы ИИ, так как функционирование такой системы опирается на знания о проблемной области, которые хранятся в ее памяти.

2. ^ Манипулирование знаниями. Чтобы знаниями можно было пользоваться при решении задачи, следует научить систему ИИ оперировать ими. В рамках данного направления разрабатываются способы пополнения знаний на основе их неполных описаний, создаются методы достоверного и правдоподобного вывода на основе имеющихся знаний, предлагаются модели рассуждений, опирающихся на знания и имитирующих особенности человеческих рассуждений. Манипулирование знаниями очень тесно связано с представлением знаний, и разделить эти два направления можно лишь условно.

3. Общение. В круг задач этого направления входят: проблема понимания и синтеза связных текстов на естественном языке, понимание и синтез речи, теория моделей коммуникаций между человеком и системой ИИ. На основе исследований в этом направлении формируются методы построения лингвистических процессов, вопросно-ответных систем, диалоговых систем и других систем ИИ, целью которых является обеспечение комфортных условий для общения человека с системой ИИ.

4. Восприятие. Это направление включает разработку методов представления информации о зрительных образах в базе знаний, создание методов перехода от зрительных сцен к их текстовому описанию и методов обратного перехода, создание средств для порождения зрительных сцен на основе внутренних представлений в системах ИС.

5. Обучение. Для развития способности систем ИИ к обучения, т.е. к решению задач, с которыми они раньше не встречались, разрабатываются методы формирования условий задач по описанию проблемной ситуации или по наблюдению за ней, методы перехода от известного решения частных задач (примеров) к решению общей задачи, создание приемов декомпозиции исходной задачи на более мелкие и уже известные для систем ИИ. В этом направлении ИИ сделано еще весьма мало.

6. Поведение. Поскольку системы ИИ должны действовать в некоторой окружающей среде, то необходимо разрабатывать некоторые поведенческие процедуры, которые позволили бы им адекватно взаимодействовать с окружающей средой, другими системами ИИ и людьми. Это направление в ИИ разработано очень слабо.

Прямо или косвенно проблемы искусственного интеллекта затрагивают следующие области научной и практической деятельности:

  • системы, основанных на знаниях (экспертные системы)

  • естественно-языковые и интеллектуальные интерфейсы и машинный перевод;

  • анализ данных (data mining) и поиск закономерностей в хранилищах данных;

  • системы поддержки принятия решений;

  • системы прогнозирования

  • распознавание речи и образов;

  • нейроинформатика и нейронные сети;

  • генетические алгоритмы;

  • многоагентные системы;

  • нечеткая логика и мягкие вычисления.



Вопросы для самоконтроля:

  1. Дайте определение, что такое искусственный интеллект?

  2. Перечислите шесть основных направлений в развитии искусственного интеллекта?

  3. Что представляет собой направление – Представление знаний?

  4. Что представляет собой направление – Манипулирование знаниями?

  5. Что представляет собой направление – Общение?

  6. Что представляет собой направление – Восприятие?

  7. Что представляет собой направление – Обучение?

  8. Что представляет собой направление – Поведение?

Лекция 2. Введение в представление знаний.


  1. Основные понятия.

  2. Классификация знаний.

  3. Основы инженерии знаний.


^ 1. Основные понятия

Представление знаний является одним из важнейших разделов искусственного интеллекта. Искусственный интеллект как научное направление связан с попыткой формализовать мышление человека – разработать методы, которые позволили бы запрограммировать машину таким образом, чтобы она могла воспроизводить или даже превосходить способности человеческого интеллекта. Исследования в этой области тесно связаны со смежными дисциплинами – информатикой, лингвистикой, психологией и философией.

Существуют разные точки зрения на главное предназначение исследований. Некоторые ученые склоняются к тому, что искусственный интеллект является ответвлением технических наук. Подход с точки зрения информатики. Другие делают акцент на изучении механизмов познания, процессов обработки информации в мозге человека (нейробионики).

Так или иначе, основными понятиями дисциплины являются понятия, связанные с процессами восприятия и обработки информации.

Информация с точки зрения ее возникновения и совершенствования проходит следующий путь: человек наблюдает некоторый факт окружающей действительности, это факт отражается в виде совокупности данных, при последующем структурировании в соответствии с конкретной предметной областью данные превращаются в знания. Таким образом, верхним уровнем информации как результата отражения окружающей действительности (результата мышления) являются знания. Знания возникают как итог теоретической и практической деятельности. Информация в виде знаний отличается высокой структурированностью, что позволяет выделить полезную информацию при анализе окружающих нас физических, химических и прочих процессов и явлений.

Обобщая вышесказанное, можем теперь дать основные определения в области искусственного интеллекта:

  • Информация – совокупность любых сведений о каком-либо событии, сущности, процессе и т.п., являющихся объектом некоторых операций: восприятия, передачи, преобразования, хранения или использования.

  • Данные – фиксированная в определенной форме информация об объектах предметной области, их свойствах и взаимосвязях, отражающих события и ситуации в этой области.

  • Предметная область – это сфера деятельности человека, в рамках которой осуществляется интерпретация получаемой и обрабатываемой информации.

  • Знания – это закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи в этой области.

На основе структурированной информации формируется информационная модель объекта.


^ 2. Классификация знаний

Знания могут быть классифицированы на следующие категории:

  • Поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области.

  • Глубинные – абстракции, аналогии, схемы, отображающие структуру и природу процессов, протекающих в предметной области. Эти знания могут использоваться для прогнозирования поведения объекта.

Например, поверхностные знания могут быть описаны следующим предложением:

«Если болит голова, то следует выпить аспирин».

При этом можно также рассмотреть глубинные знания:

«Знания физиологов и врачей высокой квалификации о причинах, видах головных болей и методах их лечения».

Знания, которыми обладает человек, делятся на формализованные (точные) и слабо формализованные (неточные). Формализованные знания можно зафиксировать в виде определений, формул, алгоритмов, моделей и т.п. Неформализованные знания – это знания, для которых отсутствует алгоритм (модель, метод) их получения. Эти знания трудно сформулировать, так как они, как правило, являются результатом обобщения многолетнего опыта человека. Например, мы не всегда можем ответить: почему мы приняли то или иное решение, говорим, что оно пришло на интуитивном уровне.


^ 3. Основы инженерии знаний

Инженерия знаний – достаточно молодое направление искусственного интеллекта, появившаяся тогда, когда практические разработчики столкнулись с весьма нетривиальными проблемами трудности «добычи» и формализации знаний. Инженерия знаний напрямую связана с проектированием баз знаний, т.е. получению и структурированию знаний специалистов для последующей разработки интеллектуальных информационных систем (ИИС).

Для БЗ характерны информационные массивы небольшого объема (в отличие от баз данных) являющиеся исключительно дорогими. В базе знаний можно проводить выбор по запросу информации, явно не хранимой, а выводимой из имеющихся данных. Базы знаний используются для хранения знаний и построения на их основе ИИС. Для этого знания необходимо представить в форме, понятной компьютеру.

Таким образом, идеология создания базы знаний в основном связана с формализацией знаний (или памяти человека). Модели памяти разрабатываются когнитивной психологией. Когнитивная психология (психология познания) занимается, прежде всего, изучением способов восприятия и понимания знаний человеком.

Процесс представления знаний представляет собой формализацию знаний об определенной области. В конечном итоге, знания должны быть представлены в форме, которая будет пригодна для создания интеллектуальной системы. Таким образом, необходимо создание определенных схем, позволяющих описать знания на некотором формальном языке.

Выделяют декларативные и процедурные знания. Декларативные знания хранятся в виде фактов и утверждений об объектах и отношений между этими объектами. К моделям представления таких знаний относятся, предикаты, семантические сети, фреймы. Процедурные знания хранятся в процедурах и выводятся в виде алгоритмов. К моделям их представления относятся правила продукции.

Особенности, присущие некоторым слабоструктурированным задачам, такие, как разнородность информации, неполнота и неопределенность исходных данных и т.д. делают привлекательным использование качественных знаний. Для их формализации используются методы нечеткой математики.

^ Извлечение знаний – это процедура взаимодействия специалиста с источником знаний, в результате которой становится явным процесс рассуждений специалиста при принятии решения и структура его представления о предметной области.

Условно этот процесс включает можно разбить на три этапа:

  1. ^ Формулировка проблемы – определение целей и задачей получения знаний;

  2. Сбор информации из различных источников. Следует отметить, что в качестве эксперта может выступа не только человек, но и любой другой источник информации (справочники, статьи, видеозаписи и т.д.);

  3. Разработка формализма (модели) знаний о предметной области.




Рис. 2.1 – Методы получения знаний


Стратегии получения знаний

  1. Извлечение знаний без использования вычислительной техники путем непосредственного контакта инженера по знаниям и источника знания (будь то эксперт, специальная литература или другие источники).

  2. ^ Приобретение знаний от эксперта с использованием ЭВМ при наличии подходящего программного инструментария.

  3. Формирование знаний с использованием программ обучения при наличии репрезентативной (т.е. достаточно представительной) выборки примеров принятия решений в предметной области и соответствующих пакетов прикладных программ.

Приобретение знаний подразумевает, что автоматизированные системы действительно непосредственно приобретают уже готовые фрагменты знаний в соответствии со структурами, заложенными разработчиками систем. Большинство этих инструментальных средств специально ориентировано на конкретные базы знаний с жестко обозначенной предметной областью и моделью представления знаний, т.е. не являются универсальными.

Например, система TEIRESIAS, ставшая прародительницей всех инструментариев для приобретения знаний, предназначена для пополнения базы знаний системы MYCIN и ее дочерних ветвей в области медицинской диагностики с использованием продукционной модели представления знаний.

Термин «формирование знаний» традиционно закрепился за областью инженерии знаний, которая занимается разработкой моделей, методов и алгоритмов обучения. Он включает индуктивные модели формирования знаний и автоматического порождения гипотез, обучение по аналогии и др. Эти модели позволяют выявить причинно- следственные зависимости в базах данных.


Вопросы для самоконтроля:

  1. Дайте определение, что такое информация?

  2. Дайте определение, что такое знания?

  3. Дайте определение, что такое данные?

  4. Как классифицируются знания?

  5. Дайте определение, что такое инженерия знаний?

  6. Какие этапы включает процесс извлечения знаний?

  7. Какие стратегии получения знаний вы знаете?


Лекция 3. Продукционные правила.


  1. Понятие продукционных правил.

  2. Системы продукций с обратными выводами.

  3. Системы продукций с прямыми выводами.


^ 1. Понятие продукционных правил

В основе человеческой деятельности лежит мышление. Когда утром звонит будильник, мозг человека дает команду руке выключить его. Следует заметить, что это не автоматическая реакция, а решение конкретной задачи. При этом конечный результат, на который мы рассчитываем, на который направлены наши мыслительные процессы, называется целью. Как только цель (в данном случае выключение будильника) достигнута, перед человеческим мозгом сразу встают новые цели, например, одеться, позавтракать, выйти на остановку и т.д. Осуществление всех этих целей приводит к осуществлению главной цели – не опоздать в институт.

Для достижения цели используется некоторая совокупность фактов и способов их применения – правил. На этих понятиях основан наиболее распространенный метод представления знаний – правила продукции или продукционные правила. Этот метод был предложен Э. Постом (1943 г.). Продукционные правила объясняют логическую связь между понятиями предметной области. Системы с базами знаний, основанных на этой модели, называются продукционными системами. Эти системы бывают двух диаметрально противоположных типов – с прямыми и обратными выводами.

Правило продукции представляет собой подстановку следующего вида:



где – конечная связка факторов, B – действие, которое выполняется, если – истинно.

Иначе говоря, примером правил продукции может являться выражение следующего типа:

^ ЕСЛИ <условие> ТО <действие>.

При этом факты и правила могут быть разной сложности. Они связаны между собой с помощью логических функций И, ИЛИ, НЕ.

Например:

Факт1 Тихие, темные улицы опасны

Факт2 Пожилые люди обычно не совершают дерзких преступлений

Факт3 Моя милиция меня бережет

Правило1 ЕСЛИ на темной, тихой улице вы встретите пожилого человека

ТО можно не очень беспокоится

Это простое правило можно усложнить добавив факты, объединенные в связку с помощью логической функции ^ И:

Правило2 ЕСЛИ на тихой темной улице вы видите милиционера

И вы не преступали закон

ТО можно чувствовать себя в полной безопасности

Правила продукции можно отнести к категорическим знаниям, т.е. они всегда верны. Однако, в некоторых предметных областях (например, медицинская диагностика, системы управления и т.п.) преобладают вероятностные знания. Эти знания являются «мягкими» в том смысле, что говорить об их применимости к любым практическим ситуациям возможно только до некоторой степени. В таких случаях правила продукции дополняют вероятностной оценкой:

^ ЕСЛИ <условие> ТО <действие> С УВЕРЕННОСТЬЮ <значение>

Например:

Правило1 ЕСЛИ на тихой темной улице вы видите милиционера

И вы не преступали закон

ТО можно чувствовать себя в полной безопасности

^ С УВЕРЕННОСТЬЮ 0,3

Факты в правилах могут быть представлены в двух видах: в виде списков или в виде изолированной тройки:

атрибут→ объект→ значение,

при этом с каждым фактом связан коэффициент уверенности, изменяющийся в пределах [0,1].

Представление знаний в виде правил продукции обладает следующими преимуществами:

  • независимостью правил, выражающих самостоятельные фрагменты знаний;

  • легкостью и естественностью модификации знаний (правила продукции по структуре весьма похожи на рассуждения естественного языка);

  • отделением управляющих знаний (правил) от предметных знаний (фактов). Это позволяет применять различные стратегии управления.

Основной недостаток продукций состоит в том, что при их большом количестве становится трудоемкой проверка непротиворечивости системы продукции. Например, при добавлении новых правил необходимо проверить, насколько они согласуются с уже существующими в базе знаний правилами.

Как уже отмечалось выше, правила продукции относятся к процедурным моделям представления знаний. Даже самое простое правило продукции (т.е. правило, не содержащие присоединенных процедур) есть элемент «процедурности», т.к. предполагается, что это правило будет использовано для выполнения некоторого действия. Именно это отличает процедурное представление знаний от декларативного, поскольку декларативные знания не несут никакой информации о том, как они будут использованы.

^ 2. Системы продукций с обратными выводами

В системе продукций с обратными выводами с помощью правил строится дерево И/ИЛИ, связывающее в единое целое факты и заключения; оценка этого дерева на основании фактов, имеющихся в базе данных, и есть логический вывод. Логические выводы бывают прямыми, обратными и двунаправленными. При прямом выводе отправной точкой служат предоставленные данные, процесс оценки приостанавливается в узлах с отрицанием, причем в качестве заключения (если не все дерево пройдено) используется гипотеза, соответствующая самому верхнему уровню дерева (корню). Однако для такого вывода характерно большое количество данных, а также оценок дерева, не имеющих прямого отношения к заключению, что излишне. Преимущество обратных выводов в том, что оценивается только те части дерева, которые имеют отношение к заключению, однако если отрицание или утверждение невозможны, то порожденное дерево лишено смысла. В двунаправленных выводах сначала оценивается небольшой объем полученных данных и выбирается гипотеза, а затем запрашиваются данные необходимые для принятия решения о пригодности данной гипотезы. На основе этих выводов можно реализовать более гибкую и мощную систему.


^ 3. Системы продукций с прямыми выводами

Системы продукций с прямыми выводами среди систем, основанных на использовании знаний, имеют наиболее древнюю историю, поэтому они являются в некотором смысле основополагающими. Эти системы включают три компонента: базу правил, состоящую из наборов правил (правила вывода), базу данных, содержащую множество фактов, и интерпретатор для получения логического вывода на основании этих знаний. База правил и база данных образуют базу знаний, а интерпретатор соответствует механизму логического вывода. Вывод выполняется в идее цикла «понимание - выполнение», причем в каждом цикле выполняемая часть выбранного правила обновляет базу данных. В результате содержимое базы данных преобразуется от первоначального к целевому, т.е. целевая система синтезируется в базе данных. Иначе говоря, для системы продукций характерен простой цикл выбора и выполнения (или оценки) правил, однако из-за необходимости периодического сопоставления с образом в базе правил (отождествлением) с увеличением числа последних (правил) существенно замедляется скорость вывода. Следовательно, такие системы не годятся для решения крупномасштабных задач. Итак, упорядочим сильные и слабые стороны хорошо известных систем продукций.

Сильные стороны:

  1. Простота создания и понимания отдельных правил;

  2. Простота пополнения и модификации

  3. Простота механизма логического вывода.

Слабые стороны:

  1. Неясность взаимных отношений правил

  2. Сложность оценки целостного образа знаний

  3. Крайне низкая эффективность обработки

  4. Отличие от человеческой структуры знаний

  5. Отсутствие гибкости в логической выводе.

Таким образом, если объектом является небольшая задача, выявляются только сильные стороны системы продукций.


Вопросы для самоконтроля:

  1. Дайте определение, что такое правила продукции?

  2. Каким выражением характеризуется правила продукции?

  3. Дайте определение, что такое система продукций с прямыми выводами?

  4. Дайте определение, что такое система продукций с обратными выводами?

  5. Какое строится дерево в системе продукций с обратными выводами?

  6. Какие компоненты входят в состав системы продукций с прямыми выводами?

  7. Перечислите основные недостатки системы продукций?



Лекция 4-5. Семантические сети и фреймы


  1. Семантические сети.

  2. Фреймы.


^ 1. Семантические сети

Сетевая модель представления знаний является более наглядной, нежели продукционная. Она позволяет более ясно структурировать информацию и представлять ее в графическом виде.

Понятие семантической сети основано на древней и очень простой идее о том, что «память» формируется через ассоциации между понятиями. Понятие «ассоциативная память» появилось еще во времена Аристотеля. В информатику оно вошло в связи с работами по использованию простых ассоциаций для представления значений слов в базе данных. Разработка семантических сетей относится к 1960 г., когда они использовались для моделирования обработки естественного языка, для представления смысла (семантики) выражения. Отсюда и происходит их название. Квиллиан предположил, что наша способность понимать язык может быть охарактеризована некоторым множеством базовых понятий (концептов) и правил. Так с помощью 100 базовых понятий был смоделирован словарь в 15 000 слов. Процесс восприятия текста включает в себя «создание некоторого рода мысленного символического представления». Квиллиан первым предложил использовать для моделирования человеческой памяти сетевые структуры. Теперь же они используются в качестве структуры, пригодной для представления информации общего вида.

Базовыми функциональными элементами семантической сети служит структура из двух компонентов – узлов и связывающих их дуг. Таким образом, семантической сетью называется ориентированный граф с конечными вершинами. Каждый его узел представляет собой некоторое понятие, а дуга – отношение между парой понятий. Можно считать, что каждая из таких пар отношений представляет простой факт. Узлы в семантической сети соответствуют объектам, понятиям или событиям. Они обладают определенной маркировкой, позволяющий идентифицировать этот узел.

Основной принцип семантической сети: знания, которые семантически связаны между собой (связаны по смыслу) должны храниться рядом. В семантической сети имеется два типа дуг:

  1. является (is)

  2. имеет частью (has part)

Дуги обладают свойством транзитивности – устанавливают отношения иерархии наследования в сети (элементы низкого уровня наследуют свойства высокого)

В качестве простого примера семантической сети рассмотрим предположения:

«Студент Иванов является мужчиной»; «Мужчина является человеком»

Студент Иванов мужчиной человеком.

Очевидно, что отношение «является» транзитивно, т.е. из этой сети мы можем вывести третье утверждение, хотя оно и не было сформулировано в чистом виде «Студент Иванов является человеком». Свойство транзитивности позволяет экономить память, поскольку информация о сходных узлах может не повторяться в каждом узле сети, а храниться в одном центральном узле. Это свойство модели памяти получило наименование когнитивной экономии. Например, на рис. 4.1 информация об узле с маркировкой «сердечная мышца» присоединена к узлу с маркировкой «система органов кровообращения», а информация о том, что сердечная мышца является частью человека задана неявно.



Рис. 4.1 – Диаграмма семантической сети.

Квиллиан также ввел разделение между видами узлов. Один вид узлов он назвал узлами-типами. Такой узел представляет концепт, связанный с конфигурацией других узлов, узлов-лексем. Это в определенной степени напоминает толковый словарь, в котором каждое понятие определяется другими понятиями, также присутствующими в этом словаре, причем и их смысл толкуется с помощью еще каких либо понятий в этом словаре.

Например, можно определить смысл слова «машина» как конструкцию из связанных компонентов, которые передают усилия для выполнения определенной работы. Это потребует присоединения узла-типа для слова «машина» к узлам-лексемам «конструкция», «компонент» и т.д. Однако в дополнение к связям, сформированным для определения смысла, могут существовать связи к другим узлам-лексемам, например «телетайп», «офис». Эти связи представляют знания о том, что телетайпы являются одним из видов машин, которые используются в офисе.

Проблема поиска решений в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, отражающей поставленный запрос к базе.

Существует довольно обширный перечень проблем, при решении которых представление, базирующееся на формализме семантических сетей, оказывается весьма полезным. И использование узлов и связей в сети для представления понятий и отношений может показаться само сбой разумеющимся. Однако следует учитывать следующие недостатки семантических сетей:

  • В различных вариантах спецификаций структуры сети далеко не всегда можно четко определить смысл маркировки узлов. Так если рассмотреть узел-тип, имеющий маркировку «телетайп», то часто бывает непонятно, представляет ли этот узел понятие «телетайп», или класс всех агрегатов типа «телетайп», или какой-то конкретный телетайп. Аналогично, и узел-лексема открыт для множества толкований. Разные толкования влекут за собой и разный характер влияния этого узла на другие узлы сети. Иначе говоря, семантические сети являются логически неадекватными.

  • Процесс поиска информации в сети сам по себе знаниями не управляется. Другими словами, этот механизм не предполагает наличия какого-либо знания о том, как искать нужную нам информацию в представленных знаниях. Таким образом, сети является эвристически неадекватными.

Эти два недостатка иногда усиливают друг друга. Например. Если невозможно представить логическое отрицание или исключение (логическая неадекватность), то это приведет к определенным «провалам» в знаниях, которые к тому же нельзя ликвидировать, прекратив поиск в этом направлении (эвристическая неадекватность). Одним из способов ликвидировать эти недостатки является переход к специальному представлению узлов в сети и унификация связей между узлами (фреймами).

  1   2   3

Реклама:





Скачать файл (2142.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru
Разработка сайта — Веб студия Адаманов