Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по теории систем и системному анализу - файл 1.doc


Лекции по теории систем и системному анализу
скачать (2378.5 kb.)

Доступные файлы (1):

1.doc2379kb.15.11.2011 23:41скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7   8   9   ...   14
Реклама MarketGid:
Загрузка...
^

Реляционная модель данных


Реляционная модель данных характеризуется:

  • информационной конструкцией;

  • допустимыми операциями (выборкой, соединением и др.);

  • ограничениями (функциональными зависимостями между атрибутами).

Реализационная база данных может быть описана как:

S(rel)=<A, R, Dom, Rel, V(s)>

где

A - множество имен переменных;

R - множество имен отношений;

Dom - вхождение атрибутов в домены;

Rel - вхождение атрибутов в отношения;

V(s) - множество ограничений.

Описание процесса обработки отношений может быть выполнено двумя способами:

  • указанием перечня операций, выполнение которых приводит к требуемому результату (процедурный подход);

  • описанием требуемых свойств (декларативный подход).


Множество операций и отношений образуют реляционную алгебру.

Как правило, список операций содержит проекцию, выборку, объединение, пересечение, вычитание, соединение и деление.


Проекцией называется операция, которая переносит результирующие отношения столбцы исходного отношения.

T=R[X].

R - исходное отношение;

T - результирующие отношение;

X - список атрибутов (условие проекции).


Выборка

Выборка - перенос в результирующие отношение строки удовлетворяющие условию выборки.

T=R[p].

R - исходное отношение;

T - результирующие отношение;

p - условие выборки.


Операция объединения, пересечения, вычитания.

Исходные отношения R1 и Р2, результирующие - T.


Операция объединения

Т=U(R1,R2)

Отношение Т содержит строки встречающиеся в отношениях R1 или в R2.


Операция пересечения

Т=I(R1,R2)

Отношение Т содержит строки встречающиеся одновременно в отношениях R1 и в R2.


Операция вычитания

Т=М(R1,R2)

Отношение Т содержит строки из отношения R1 за исключением строк встречающихся в отношении R2.


Операция соединения отношений.

T=R1 [p] R2

p - условие соединения.

Если строка из R1 по очереди сопоставляется со строками из R2 и если условие [p] выполняется, то строки сцепляются.


Операция натурального соединения

Операция не содержит условия

T=R1*R2

Если структуры R1 и R2 не содержат общих атрибутов то производится сцепление каждой строки из R1 со всеми строками из R2.


Основные свойства операции натурального соединения

Свойство коммутативности

R*S=S*R

Свойство ассоциативности

(R*S)*T=R*(S*T)

^

Виды информационных систем


Классификация ИС: по виду формализованного аппарата представления (детерминированные, стохастические); по сложности структуры и поведения; по степени организованности («хорошо» и «плохо» организованные, самоорганизующиеся).
^

Классификация информационных систем


Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками. Системы классифицируются следующим образом:

по виду отображаемого объекта—технические, биологические и др.;

по виду научного направления — математические, физические, химические и т. п.;

по виду формализованного аппарата представления системы — детерминированные и стохастические;

по типу целеустремленности — открытые и закрытые;

по сложности структуры и поведения—простые и сложные;

по степени организованности — хорошо организованные, плохо организованные (диффузные), самоорганизующиеся системы.

Классификации всегда относительны. Так в детерминированной системе можно найти элементы стохастических систем.

Цель любой классификации ограничить выбор подходов к отображению системы и дать рекомендации по выбору методов.
^

Технические, биологические и др. системы


Технические системы. Параметрами технических объектов являются движущие объекты, объекты энергетики, объекты химической промышленности, объекты машиностроения, бытовая техника и многие другие. Объекты технических систем хорошо изучены в теории управления.

Экономические объекты. Экономическими объектами являются: цех, завод, предприятия различных отраслей. В качестве одной из переменных в них выступают экономические показатели - например - прибыль.

Биологические системы. Живые системы поддерживают свою жизнедеятельность благодаря заложенным в них механизмам управления.
^

Детерминированные и стохастические системы


Если внешние воздействия, приложенные к системе (управляющие и возмущающие) являются определенными известными функциями времени u=f(t). В этом случае состоянии системы описываемой обыкновенными дифференциальными уравнениями, в любой момент времени t может быть однозначно описано по состоянию системы в предшествующий момент времени. Системы для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого момента времени называются детерминированными.

Стохастические системы - системы изменения в которых носят случайный характер. Например воздействие на энергосистему различных пользователей. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

Случайные воздействия могут прикладываться к системе из вне, или возникать внутри некоторых элементов (внутренние шумы). Исследование систем при наличии случайных воздействий можно проводить обычными методами, минимизировав шаг моделирования чтобы не пропустить влияния случайных параметров. При этом так как максимальное значение случайной величины встречается редко (в основном в технике преобладает нормальное распределение), то выбор минимального шага в большинстве моментов времени не будет обоснован.

В подавляющем большинстве случаев при проектировании систем закладываются не максимальным а наиболее вероятным значением случайного параметра. В этом случае поучается более рациональная система, заранее предполагая ухудшение работы системы в отдельные промежутки времени. Например установка катодной защиты.

Расчет систем при случайных воздействиях производится с помощью специальных статистических методов. Вводятся оценки случайных параметров, выполненные на основании множества испытаний. Например карта поверхности уровня грунтовых вод СПб.

Статистические свойства случайной величины определяют по ее функции распределения или плотности вероятности.
^

Открытые и закрытые системы


Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем - способность обмениваться с внешней средой энергией и информацией. Закрытые (замкнутые) системы изолированны от внешней среды (с точностью принятой в модели).


^

Хорошо и плохо организованные системы


Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы — это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

1   2   3   4   5   6   7   8   9   ...   14



Скачать файл (2378.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru